首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
基于波段选择的高光谱遥感影像分类   总被引:1,自引:0,他引:1  
针对高光谱数据波段众多、数据量较大的特点,提出了一种基于波段选择的高光谱遥感影像分类方法,以北京昌平小汤山地区高光谱遥感数据为例,分析了各波段的信息含量和相邻波段的相关性,采用子空间划分、自适应波段选择的方法,实现了特征波段的选择。针对农村道路和空地、柏油路和居民地间的同谱异物现象,利用J-M距离模型判别其类间的可分性,获得了最佳波段组合,最后采用支持向量机分类器进行分类。结果表明,采用波段选择的方法能有效地提高高光谱数据的分类精度。  相似文献   

2.
粒子群优化算法用于高光谱遥感影像分类的自动波段选择   总被引:1,自引:0,他引:1  
丁胜  袁修孝  陈黎 《测绘学报》2010,39(3):0-302
针对传统SVM分类方法的缺点,采用粒子群优化(particle swarm optimization,PSO)算法自动选择合适的渡段影像并对SVM核函数参数进行优化,提出一种新的PSO-BSSVM分类模型.经过对高光谱遥感影像的分类试验,并与K_最近邻(K-NN)、径向基神经网络(RBF-NN)和标准的支持向量机(SVM)三种分类方法进行对比实验,证明PSO-BSSVM方法能优选高光谱遥感影像的波段和优化SVM参数,明显提高影像的分类精度.  相似文献   

3.
提出一种稀疏自表达方法来研究高光谱影像分类中的波段选择问题。该方法利用字典矩阵等于测量矩阵的条件来改进多观测向量的稀疏表达模型,将波段子集看作高光谱影像波段集合中的代表子集。稀疏自表达方法将波段选择转换为寻求多观测向量中稀疏系数矩阵的非零行向量问题,通过引入混合范数来限定非零元素行向量的个数,利用快速交替方向乘子方法求解稀疏系数矩阵,并聚类非零行向量,实现波段的有效选择。基于两个公开高光谱影像数据集并对比其他4种波段选取方法来验稀疏自表达方法。实验结果证明,稀疏自表达方法能够在计算效率明显优于基于波段相关性的线性限制最小方差方法的同时,取得与该方法和非负稀疏矩阵分解方法相匹甚至略高的总体分类精度。  相似文献   

4.
Hyperspectral Image Classification Using Relevance Vector Machines   总被引:6,自引:0,他引:6  
This letter presents a hyperspectral image classification method based on relevance vector machines (RVMs). Support vector machine (SVM)-based approaches have been recently proposed for hyperspectral image classification and have raised important interest. In this letter, it is genuinely proposed to use an RVM-based approach for the classification of hyperspectral images. It is shown that approximately the same classification accuracy is obtained using RVM-based classification, with a significantly smaller relevance vector rate and, therefore, much faster testing time, compared with SVM-based classification. This feature makes the RVM-based hyperspectral classification approach more suitable for applications that require low complexity and, possibly, real-time classification.  相似文献   

5.
This paper discusses a statistical and band transformation based approach to select bands for hyperspectral image analysis. Hyperspectral images contain large number of spectral bands with redundant information about the spectral classes in the image scene. It is necessary to reduce the high dimensionality of the data for the processing of hyperspectral data. We report a feature selection technique that removes correlated spectral bands using band decorrelation technique and obtains maximum variance image bands based on factor analysis. Factor analysis method of band selection technique is also validated against existing methods of band selection. The study is carried out for the agriculturally rich area of Musiri region of South India that has varied landcover types. Evaluation of the band selection procedure is done using signature separability measures such as Euclidean distance, Divergence, Transformed divergence and Jeffries Matusita distance. Results indicated that selected bands exhibited maximum separability and also occurred predominantly at wavelength 700 nm, 850, 1000 nm, 1200 nm, 1648 nm and 2200 nm.  相似文献   

6.
Shadow is an inevitable problem in high-resolution remote sensing images. There are need and significance in extracting information from shadow-covered areas, such as in land-cover mapping. Although the illumination energy of shadow pixels is low, hyperspectral image can provides rich enough band information to differentiate various urban targets/materials and to classify them. This study firstly analyzes the spectra difference between shadow and non-shadow classes so as to detect shadow-pixel. To classify the shadow pixels, Spectral Angle Mapper (SAM) method was adopted to classify urban land-cover mapping, because it can reduce the influence resulted from different illumination intensity. Then, training samples were collected among different classes from the shadow pixels, and their Jeffries–Matusita (J–M) distance were computed to validate the spectral separability among classes, with the square distances of J–M among classes all bigger than 1.9. Finally, Maximum Likelihood Classifier (MLC) and Support Vector Machine (SVM) classifier were used to classify all the shadow pixels as different land-cover types. The results showed MLC and SVM outperform the SAM in classifying similar classes. The classification result in SVM was validated to find having conformity with ground truth.  相似文献   

7.
残差网络能够有效地解决卷积神经网络出现的梯度消失问题,应用于高光谱图像分类取得了良好的效果,但简单地堆积残差单元并不能很好地提高模型性能。通道注意力机制能够有区别地处理卷积层输出的特征图,更好地利用对分类有用的特征通道。为了充分利用残差网络及通道注意力机制的特征提取能力,设计适用于高光谱图像分类的残差通道注意力网络。在残差单元中结合卷积层和通道注意力机制,实现对特征通道的重新调整,并在模型中实现局部残差学习和全局残差学习,促进信息传递,增强模型稳定性。实验结果表明,该方法用于Indian Pines数据和University of Pavia数据能够分别取得98.78%和99.22%的分类精度,在有限数量训练样本的情况下,能够达到较高的分类精度。  相似文献   

8.
非监督波段选择方法是高光谱图像降维的主要方法,但现有方法应用到实际高光谱图像分类时,分类精度并不理想。本文提出一种改进的基于聚类的高光谱图像非监督波段选择方法,主要通过对传统的K-means聚类算法进行两方面改进:一方面是相似性度量函数;另一方面是聚类中心的选取。然后,通过实验数据用支持向量机法(SVM)对所提算法及现有的三种非监督波段选择方法进行分类。最后,用总体精度(OA)和Kappa系数评价分类结果。表明本文所提方法在分类精度方面优于其他现有方法。  相似文献   

9.
卷积神经网络等深度学习模型已经在高光谱影像分类任务中取得了理想的结果.然而,由于传统神经元只能进行标量计算,现有的深度学习模型无法对高光谱影像特征的实例化参数进行建模,因此无法在邻域范围受限的条件下获得令人满意的分类效果.通过引入胶囊网络结构设计了一种新型网络模型,该模型利用胶囊神经元进行向量计算,并利用权重矩阵编码特...  相似文献   

10.
基于分块特性的高光谱影像波段选取方法的研究   总被引:3,自引:0,他引:3  
从高光谱影像波段间相关性强的特点出发,揭示高光谱影像各波段间相关系阵分块的特性,介绍基于波段间相关性的高光谱波段选取方法,即自适应子空间分解法及相关性过滤法。通过实验表明,该方法能较快地删除相关强的波段,可作为有效的波段预选方法。  相似文献   

11.
传统高光谱图像分类方法主要使用图像的光谱特征信息,没有充分利用高光谱图像的空间特性及样本的其他信息。本文提出了一种基于空间特征与纹理信息的高光谱图像半监督分类方法。首先,将高光谱图像每一像素的光谱特征与其邻域范围内的光谱特征进行结合,得到了这一像素的空-谱特征;然后用灰度共生矩阵提取了高光谱图像的纹理特征,并与空-谱特征进行了融合;最后,用基于图的半监督分类算法进行了分类。通过在Indian Pines数据集和PaviaU数据集上进行试验,结果表明本文提出的方法能取得较高的分类结果。  相似文献   

12.
面对高光谱影像分类的半监督阶梯网络   总被引:1,自引:0,他引:1  
提出一种半监督阶梯网络用于对高光谱影像进行分类,以解决小样本条件下基于堆栈式自编码器的高光谱影像分类方法分类精度不高的问题。首先,该网络以堆栈式自编码器为基础,在编码器和解码器之间增加横向连接参数构建阶梯网络,以使网络适合半监督分类;然后将无监督损失函数与有监督损失函数之和作为最终优化的目标函数,采用半监督的方式对整个网络进行训练。为进一步提高分类精度,提取局部二值模式纹理特征进行分类实验。实验结果表明:提出的半监督阶梯网络能够较好地解决高光谱影像分类小样本问题;且LBP纹理特征能够有效提高分类精度。  相似文献   

13.
施蓓琦  刘春  孙伟伟  陈能 《测绘学报》2013,42(3):351-358,366
针对高光谱影像数据高维性、高度相关性和冗余性等特点,提出应用稀疏非负矩阵分解聚类实现高光谱影像波段的优化选择。通过稀疏非负矩阵分解方法对高光谱影像进行稀疏化表示,同时顾及其可聚类的特性,在保留所选波段物理意义的基础上,得到波段选择后的高光谱影像降维数据。通过该方法对PHI-3高光谱影像进行波段选择的试验分析,应用聚类特征有效性分析波段聚类结果,并采用波段子集的信息量、相关性和可分性3类评价指标来验证方法的效果。最终,从运行效率和分类精度两方面证明了基于无监督聚类的稀疏非负矩阵分解对高光谱影像的波段选择的实用性。  相似文献   

14.
针对高光谱图像分类中对光谱信息利用不足的问题,提出一种基于卷积神经网络在光谱域开展的分类算法。该算法通过构建五层网络结构,逐像素对光谱信息开展分析,将全光谱段集合作为输入,利用神经网络展开代价函数值的计算,实现对光谱特征的提取与分类。实验中采用三组高光谱遥感影像数据进行对比分析,以India Pines数据集为例,提出的基于卷积神经网络的分类方法的分类正确率达到90.16%,比RBF-SVM方法高出2.56%,相比三种传统的深度学习方法高出1%~3%,训练速度也较为理想。实验结果表明,本文所提出的算法充分利用了高光谱图像中逐像素点的光谱域信息,能够有效提高分类正确率。与传统学习算法相比,在较少训练样本的情况下,更能发挥其良好的分类性能。  相似文献   

15.
Object-based image analysis (OBIA) has attained great importance for the delineation of landscape features, particularly with the accessibility to satellite images with high spatial resolution acquired by recent sensors. Statistical parametric classifiers have become ineffective mainly due to their assumption of normal distribution, vast increase in the dimensions of the data and availability of limited ground sample data. Despite pixel-based approaches, OBIA takes semantic information of extracted image objects into consideration, and thus provides more comprehensive image analysis. In this study, Indian Pines hyperspectral data set, which was recorded by the AVIRIS hyperspectral sensor, was used to analyse the effects of high dimensional data with limited ground reference data. To avoid the dimensionality curse, principal component analysis (PCA) and feature selection based on Jeffries–Matusita (JM) distance were utilized. First 19 principal components representing 98.5% of the image were selected using the PCA technique whilst 30 spectral bands of the image were determined using JM distance. Nearest neighbour (NN) and random forest (RF) classifiers were employed to test the performances of pixel- and object-based classification using conventional accuracy metrics. It was found that object-based approach outperformed the traditional pixel-based approach for all cases (up to 18% improvement). Also, the RF classifier produced significantly more accurate results (up to 10%) than the NN classifier.  相似文献   

16.
高光谱影像波段众多且相关性强,导致分类存在信息冗余且计算量较大。提出了可分离非负矩阵分解方法来选取高光谱影像的代表性波段子集,在保证分类精度的同时降低计算量。该方法假设高光谱影像的波段集合具有可分离特性,改进传统非负矩阵分解模型,将波段选择转换为可分离非负矩阵分解问题,采用迭代投影方法来依次选取能够非负线性表达其他波段的代表性波段。在此基础上,利用两个公开高光谱数据集对比几种主流方法,采用定量评价和分类精度指标来综合评价所提的波段选择方法的效果。实验结果表明,可分离非负矩阵分解方法的分类精度高于其他几种方法,而且计算效率排名第2,能够选取合适的波段子集以满足高光谱遥感的应用需求。  相似文献   

17.
One of the challenging problems in processing high dimensional data, as hyperspectral images, with better spectral and temporal resolution is the computational complexity resulting from processing the huge amount of data volume. Various methods have been developed in the literature for dimensionality reduction, generally divided into two main techniques: data transformation techniques and features selection techniques. The feature selection technique is advantageous compared to transformation techniques in preserving the original data. However, deciding the appropriate number of features to be selected and choosing these features are very challenging since they require exhaustive researches. The progressive feature selection technique is a new concept recently introduced to address these issues based on priority criteria. However, this approach presents limits when these criteria are insufficient or depends on domain applications. In this paper, we present a new approach to improve the Progressive Feature Selection technique by adding new criteria that measure the amount of information present in each band. The endmembers extraction phase of the proposed approach includes both the N-FINDR and the ATGP algorithms. A case based reasoning system is used to choose the optimal criterion for the endmember extraction. The performances of this proposed approach were evaluated using AVIRIS hyperspectral image and the obtained results prove its effectiveness compared to other PBS techniques.  相似文献   

18.
面向对象的高光谱影像湿地植被信息提取   总被引:1,自引:0,他引:1  
以美国Sacramento-San Joaquin三角洲为研究区,提取高光谱遥感影像上湿地植被的光谱响应特征,用于指导面向对象的湿地植被信息提取。结果表明,基于光谱响应特征分析的面向对象分类精度为88.03%,而未利用光谱响应特征的面向对象分类精度为72.08%。在面向对象提取前对植物光谱响应特征进行特征提取,可以实现湿地植被在物种水平上的识别,并可以有效提高分类精度。  相似文献   

19.
ALOS影像在土地覆被分类中最佳波段选取的研究   总被引:4,自引:0,他引:4  
选定长江口北岸ALOS影像为实验遥感数据,以影像土地覆被分类为目的,根据信息量最大、相关性小、地物光谱差异大可分性好的原则,进行ALOS影像各光谱波段影像特性统计分析和波段组合的实验分析,结合基于信息量的波段选择指数和地物光谱特征分析方法,选取ALOS最佳组合波段为4,3,2.  相似文献   

20.
提出了一种光谱相似性测度用于高光谱图像分类方法。通过将光谱向量进行归一化处理,将计算得到的欧氏距离与光谱角余弦的值域归化到相同区间,得到光谱角余弦与欧氏距离联合测度值(SAC-NED)。在对图像像元进行分类时,以距离加权的方式将邻域像元参与中心像元SAC-NED值的计算,将像元分到SAC-NED值最大的类别。通过与其他5种常用相似性测度方法的实验结果对比表明:该算法能够提升高光谱图像分类的准确性和稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号