首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
方林  罗永忠 《吉林地质》2007,26(1):76-79
汛期地质灾害气象预报预警工作是一项系统工程,应建立完善的省级国土、气象专门管理机构——地质灾害气象预警中心。本文介绍了河南省汛期地质灾害气象预报预警系统的组织结构及管理体系、技术支持、硬件设施等3个层面。同时介绍了预报级别划分及预报信息发布方式。  相似文献   

2.
天津市地质灾害-气象预报预警方法探讨   总被引:1,自引:0,他引:1  
天津市蓟县山区面积727km2,以中低山和低山丘陵地貌形态为主,在强降雨和持续降雨条件下发生泥石流、滑坡等地质灾害的可能性客观存在。历史上地质灾害已给当地造成了一定的人员伤亡及财产损失。为了加强突发性地质灾害预防工作,提高人民群众的防灾意识,天津市2004年开始开展地质灾害-气象预报预警工作,取得了一定的效果。针对天津市山区面积较小、地质灾害事件较少的特点,目前常用的地貌分析———临界降雨量模型判据法具有一定的局限性,预报成功率较低。在区域性地质灾害-气象预报预警工作的基础上,开展单点泥石流灾害气象预报预警工作非常必要。对容易发生泥石流灾害的主要沟谷,通过现场调查可以获取沟谷的形态特征参数(沟谷的高差、纵坡的坡度、沟长、流域面积等)。以临界降雨量为变量因子,对每个监测沟谷建立泥石流灾害气象预警预报模型,可以很大程度提高预报的针对性。模型需要在实践中不断检验和完善,逐步提高预报的准确率。  相似文献   

3.
本文介绍了湖南地质灾害概况,通过对暴雨诱发地质灾害的机理分析和多普勒雷达系统监测暴雨的可能性分析,选取地质灾害频发的湖南省作为典型研究区,通过多普勒雷达图像地质灾害气象反演分析和灾害识别研究,精确地预报了湖南省新邵县“2005.05.31”特大地质灾害,论证多普勒雷达是监测突发性地质灾害的有效手段。  相似文献   

4.
基于天气预报的参考作物腾发量LS-SVM预测模型   总被引:6,自引:0,他引:6       下载免费PDF全文
利用最小二乘支持向量机(LS-SVM)方法,建立了基于天气预报的参考作物腾发量(ET0)的预测模型.对广利灌区1997~2006年逐日气象信息中的天气类型和风速等级进行量化后,以不同天气预报信息作为输入量,建立10种验证方案,对2007年的逐日ET0进行预测.经验证,方案1~方案7精度均令人满意,其中方案1精度最高.方案1的输入量为气温、天气类型、风速等级3项的预测值,该方案的模型预测值与计算值的统计参数分别为:均方根偏差ERMS为0.5182 mm,相对偏差ER为0.1878,决定系数R2为0.864 8,认同系数IA为0.966 9,回归系数RC为0.9867;方案7精度亦较好,且以上指标统计参数依次为0.6576 mm、0.2332、0.986 6、0.774 7及0.986 6,该方案输入量只有气温项,实用性很强.  相似文献   

5.
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are persistent organic pollutants (POPs) that are formed and released unintentionally from anthropogenic sources. The high persistence of PCDD/Fs results in the concentrations of these contaminants in environment decreasing only very slowly. Two transport pathways, air and water, carry PCDD/Fs into all regions of the world. Recently, more frequent extreme weather events, such as storms and floods, have been projected to occur as a result of global warming. Extreme weather events have a documented impact on the remobilization and subsequent bioavailability of POPs. In this study, three specific episodes, namely winter monsoon, southeast biomass burning and tropical cyclone (typhoon) events, which influence the environmental fate and transport of PCDD/Fs in Taiwan, were evaluated based on a climate change scenario. During the winter (northeast) monsoon period, the temperature and relative humidity observed in northern Taiwan decreases sharply. During this time, the quantity of PCDD/Fs adsorbed onto suspended particles, as observed at background sites, was found to increase from 300 ± 127 to 630 ± 115 pg I-TEQ g-TSP−1, which is even higher than that measured in Taipei City (438 ± 80 pg I-TEQ g-TSP−1). Hence, the winter monsoon not only brings cold air but also transports air pollutants and dust over long distances from mainland China to Taiwan. During the 2010 Southeast Asia biomass burning events (2010/3/22–3/28), the level of atmospheric PCDD/Fs were measured in central Taiwan (Mt. Lulin) and in the source region of northern Thailand (Chiang Mai); this revealed that the variations in atmospheric PCDD/F concentrations at these two sites followed a similar pattern. On 25 March 2010, the atmospheric PCDD/F concentration increased dramatically from 1.43 to 6.09 fg I-TEQ m−3 at Mt. Lulin and from 7.64 to 12.1 fg I-TEQ m−3 in northern Thailand. However, the atmospheric PCDD/F concentration decreased dramatically 1 day after the biomass burning event. Based on the measurements from a dated sediment core collected at a reservoir in northern Taiwan, the sharp increases in input fluxes of PCDD/Fs and mineral-derived elements levels in 1990 (20 ng I-TEQ m−2 year−1), 2001 (17 ng I-TEQ m−2 year−1), 2004 (16 ng I-TEQ m−2 year−1) and 2005 (15 ng I-TEQ m−2 year−1) seem to be a result of a deep turbid layer formed upstream due to landslides and/or mud flows during the typhoon season. This finding demonstrates the effect of typhoon events on the long-term remobilization of PCDD/Fs as well as supporting the hypothesis that such events would have the potential to remobilize pollutants that have been deposited previously.  相似文献   

6.
Obtaining an accurate initial state is recognized as one of the biggest challenges in accurate model prediction of convective events. This work is the first attempt in utilizing the India Meteorological Department (IMD) Doppler radar data in a numerical model for the prediction of mesoscale convective complexes around Chennai and Kolkata. Three strong convective events both over Chennai and Kolkata have been considered for the present study. The simulation experiments have been carried out using fifth-generation Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) mesoscale model (MM5) version 3.5.6. The variational data assimilation approach is one of the most promising tools available for directly assimilating the mesoscale observations in order to improve the initial state. The horizontal wind derived from the DWR has been used alongwith other conventional and non-conventional data in the assimilation system. The preliminary results from the three dimensional variational (3DVAR) experiments are encouraging. The simulated rainfall has also been compared with that derived from the Tropical Rainfall Measuring Mission (TRMM) satellite. The encouraging result from this study can be the basis for further investigation of the direct assimilation of radar reflectivity data in 3DVAR system. The present study indicates that Doppler radar data assimilation improves the initial field and enhances the Quantitative Precipitation Forecasting (QPF) skill.  相似文献   

7.
Heavy off-season rains in the tropics pose significant natural hazards largely because they are unexpected and the popular infrastructure is ill-prepared. One such event was observed from January 9 to 11, 2002 in Senegal (14.00° N, 14.00°␣W), West Africa. This tropical country is characterized by a long dry season from November to April or May. During this period, although the rain-bearing monsoonal flow does not reach Senegal, the region can occasionally experience off-season rains. We conducted a numerical simulation of the January 9–11, 2002 heavy off-season rain using the Fifth-Generation NCAR/Pennsylvania State University Mesoscale Model (MM5) and the Weather Research and Forecasting (WRF) model. The objective was to delineate the meteorological set-up that led to the heavy rains and flooding. A secondary objective was to test the model’s performance in Senegal using relatively simpler (default) model configurations and local/regional observations. The model simulations for both MM5 and WRF agree satisfactorily with the observations, particularly as regards the wind patterns, the intensification of the rainfall, and the associated drop in temperatures. This situation provided the environment for heavy rainfall accompanied by a cold wave. The results suggest that off-the-shelf weather forecast models can be applied with relatively simple physical options and modest computational resources to simulate local impacts of severe weather episodes. In addition, these models could become part of regional hazard mitigation planning and infrastructure.  相似文献   

8.
长期以来,学者们普遍认为垂直于喜马拉雅造山带的南北向裂谷是东西向伸展的构造形迹。现代GPS观测数据却显示,喜马拉雅造山带东西位移(分)量很小,甚至为零。综合前人资料,喜马拉雅造山过程可划分为热造山(25~13Ma)及造山后(< 13Ma)冷却两个时期,热造山期具有受热膨胀,物质向外运移的特点,高喜马拉雅热隆挤出并触发各主要断裂(MCT、STD、GCT)活动,印度板块向北汇聚速率下降。造山后则表现为冷却收缩,前期构造-热活动停止或减弱,印度板块向北汇聚加速。研究认为,南北向裂谷与高喜马拉雅等冷却过程的东西向收缩。且被局限于东、西两个构造结之间有关。并据此建立了裂谷的冷缩成因模型,模型估值与地质事实很吻合。  相似文献   

9.
九寨沟地质灾害预测的空间分析模型   总被引:3,自引:4,他引:3       下载免费PDF全文
辜寄蓉  范晓  彭东 《中国地质》2002,29(1):109-112
九寨沟是世界自然遗产,由于其活跃的新构造背景条件,因此是地质灾害的高发区。此次研究,应用了地理信息系统的空间分析工具,提取模型因子,采用模糊综合评价方法,建立九寨沟地区的地质灾害预测空间分析模型,划分地质灾害等级,对九寨沟地区的灾害进行预测,取得较好的效果。  相似文献   

10.
王海芝  冒建  任凯珍 《城市地质》2015,(Z1):150-155
自动监测预警系统,是目前山区突发地质灾害预警预报有效的预警模式。本系统是在详细调查的基础上,以调查数据为底层分析数据库,以.net为语言运行环境,经所建立的预警模型分析计算后,产生预警预报产品,进行预警发布。  相似文献   

11.
The Lesser Himalayan duplex (LHD) is a prominent structure through much of the Lesser Himalayan fold–thrust belt. In the Darjeeling - Sikkim Himalaya a component of the LHD is exposed in the Rangit window as the Rangit duplex (RD). The RD consists of ten horses of the upper Lesser Himalayan Sequence (Gondwana, Buxa, Upper Daling). The duplex varies from hinterland-dipping in the north, through an antiformal stack in the middle to foreland-dipping in the south. The Ramgarh thrust (RT) is the roof thrust and, based on a balanced cross-section, the Main Himalayan Sole thrust is the floor thrust at a depth of ~ 10 km and with a dip of ~ 3.5° N.Retrodeformation suggests that the RD initiated as a foreland-dipping duplex with the Early Ramgarh thrust as the roof thrust and the RT as the floor thrust. The RT became the roof thrust during continued duplexing by a combination of footwall imbrication and concurrent RT reactivation. This kinematic history best explains the large translation of the overlying MCT sheets. The restoration suggests that RD shortening is ~ 125 km, and the original Gondwana basin extended ~ 142 km northward of its present northernmost exposures within the window.  相似文献   

12.
土体流变破坏时间的灰色预测模型   总被引:1,自引:0,他引:1  
彭轩明  赵欣  陈小婷 《岩土力学》2003,24(6):1074-1078
根据不同载荷条件下土体蠕变破坏的时间数据列,建立了土体流变破坏时间的灰色预测模型。该模型能根据土体在较高应力条件下的蠕变破坏时间预测其在较低应力水平条件下的蠕变破坏时间,可用于边坡破坏预测、岩土工程、岩土力学试验等领域。  相似文献   

13.
Weather routing of ships is used to establish the shortest time route or the most economical route from a departure to arrival point by applying available information of the weather condition viz. wind, wave and current. Information on ship speed loss due to these effects is pre-computed using sea-keeping computing tools, which are then suitably employed in the optimum ship routing algorithm. This developed algorithm was investigated using the wave height information from GEOSAT altimeter records. Dijkstra’s path optimization scheme, which employs optimal control theory and dynamic programming technique, is used to obtain reliable optimum route in a given random sea-state.  相似文献   

14.
Landslides are one of the most frequent and common natural hazards in many parts of Himalaya. To reduce the potential risk, the landslide susceptibility maps are one of the first and most important steps in the landslide hazard mitigation. Earth observation satellite and geographical information system-based techniques have been used to derive and analyse various geo-environmental parameters significant to landslide hazards. In this study, a bivariate statistics method was used for spatial modelling of landslide susceptibility zones. For this purpose, thematic layers including landslide inventory, geology, slope angle, slope aspect, geomorphology, slope morphology, drainage density, lineament and land use/land cover were used. A large number of landslide occurrences have been observed in the upper Tons river valley area of Western Himalaya. The result has been used to spatially classify the study area into zones of very high, high, moderate, low and very low landslide susceptibility zones. About 72% of active landslides have been observed to occur in very high and high hazard zones. The result of the analysis was verified using the landslide location data. The validation result shows significant agreement between the susceptibility map and landslide location. The result can be used to reduce landslide hazards by proper planning.  相似文献   

15.
North-east India is seismically very active and has experienced many widelydistributed shallow, large earthquakes. Earthquake generation model for the region was studied using seismicity data [(1906–1984) prepared by National Geophysical Data Centre (NGDC), Boulder Colorado, USA]. For establishing statistical relations surface wave magnitudes (M s≥5·5) have been considered. In the region four seismogenic sources have been identified which show the occurrences of atleast three earthquakes of magnitude 5·5≤M s≤7·5 giving two repeat times. It is observed that the time interval between the two consecutive main shock depends on the preceding main shock magnitude (M p) and not on the following main shock magnitude (M f) revealing the validity of time predictable model for the region. Linear relation between logarithm of repeat time (T) and preceding main shock magnitude (M p) is established in the form of logT=cM p+a. The values ofc anda are estimated to be 0–36 and 1–23, respectively. The relation may be used for seismic hazard evaluation in the region.  相似文献   

16.
This paper presents a revised glacial chronology for the Lahul Himalaya and provides the most detailed reconstruction of former glacier extents in the western Himalayas published to date. On the basis of detailed geomorphological mapping, morphostratigraphy, and absolute and relative dating, three glaciations and two glacial advances are constrained. The oldest glaciation (Chandra glacial stage) is represented by glacially eroded benches and drumlins (the first to be described from the Himalaya) at altitudes of >4300 m and indicates glaciation on a landscape of broad valleys that had minimal fluvial incision. The second glaciation (Batal glacial stage) is represented by highly weathered and disssected lateral moraines and drumlins representing two phases of glaciation within the Batal glacial stage (Batal I and Batal II). The Batal stage was an extensive valley glaciation interrupted by a readvance that produced superimposed bedforms. Optically stimulated luminescence (OSL) dating, indicates that glaciers probably started to retreat between 43400 ± 10300 and 36900 ± 8400 yr ago during the Batal stage. The Batal stage may be equivalent to marine Oxygen Isotope Stage 4 and early Oxygen Isotope Stage 3. The third glaciation (Kulti glacial stage), is represented by well-preserved moraines in the main tributary valleys that formed due to a less-extensive valley glaciation when ice advanced no more than 12 km from present ice margins. On the basis of an OSL age for deltaic sands and gravels that underlie tills of Kulti age, the Kulti glaciation is younger than 36900 ± 8400 yr ago. The development of peat bogs, having a basal age of 9160 ± 70 14C yr BP possibly represents a phase of climatic amelioration coincident with post-Kulti deglaciation. The Kulti glaciation, therefore, is probably equivalent to all or parts of late Oxygen Isotope Stage 3, Stage 2 and early Stage 1. Two minor advances (Sonapani I and II) are represented by small sharp-crested moraines within a few kilometres of glacier termini. On the basis of relative weathering, the Sonapani advance is possibly of early mid-Holocene age, whereas the Sonapani II advance is historical. The change in style and extent of glaciation is attributed to topographic controls produced by fluvial incision and by increasing aridity during the Quaternary. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
Northward subduction of the leading edge of the Indian continental margin to depths greater than 100 km during the early Eocene resulted in high‐pressure (HP) quartz‐eclogite to ultrahigh‐pressure (UHP) coesite–eclogite metamorphism at Tso Morari, Ladakh Himalaya, India. Integrated pressure–temperature–time determinations within petrographically well‐constrained settings for zircon‐ and/or monazite‐bearing assemblages in mafic eclogite boudins and host aluminous gneisses at Tso Morari uniquely document segments of both the prograde burial and retrograde exhumation path for HP/UHP units in this portion of the western Himalaya. Poikiloblastic cores and inclusion‐poor rims of compositionally zoned garnet in mafic eclogite were utilized with entrapped inclusions and matrix minerals for thermobarometric calculations and isochemical phase diagram construction, the latter thermodynamic modelling performed with and without the consideration of cation fractionation into garnet during prograde metamorphism. Analysis of the garnet cores document (M1) conditions of 21.5 ± 1.5 kbar and 535 ± 15 °C during early garnet growth and re‐equilibration. Sensitive high resolution ion microprobe (SHRIMP) U–Pb analysis of zircon inclusions in garnet cores yields a maximum age determination of 58.0 ± 2.2 Ma for M1. Peak HP/UHP (M2) conditions are constrained at 25.5–27.5 kbar and 630–645 °C using the assemblage garnet rim–omphacite–rutile–phengite–lawsonite–talc–quartz (coesite), with mineral compositional data and regional considerations consistent with the upper PT bracket. A SHRIMP U–Pb age determination of 50.8 ± 1.4 Ma for HP/UHP metamorphism is given by M2 zircons analysed in the eclogitic matrix and that are encased in the garnet rim. Two garnet‐bearing assemblages from the Puga gneiss (host to the mafic eclogites) were utilized to constrain the subsequent decompression path. A non‐fractionated isochemical phase diagram for the assemblage phengite–garnet–biotite–plagioclase–quartz–melt documents a restricted (M3) P–T stability field centred on 12.5 ± 0.5 kbar and 690 ± 25 °C. A second non‐fractionated isochemical phase diagram calculated for the lower pressure assemblage garnet–cordierite–sillimanite–biotite–plagioclase–quartz–melt (M4) documents a narrow P–T stability field ranging between 7–8.4 kbar and 705–755 °C, which is consistent with independent multiequilibria PT determinations. Th–Pb SHRIMP dating of monazite cores surrounded by allanite rims is interpreted to constrain the timing of the M4 equilibration to 45.3 ± 1.1 Ma. Coherently linking metamorphic conditions with petrographically constrained ages at Tso Morari provides an integrated context within which previously published petrological or geochronological results can be evaluated. The new composite path is similar to those published for the Kaghan UHP locality in northern Pakistan, although the calculated 12‐mm a?1 rate of post‐pressure peak decompression at Tso Morari would appear less extreme.  相似文献   

18.
In the Ladakh–Zanskar area, relicts of both ophiolites and paleo-accretionary prism have been preserved in the Sapi-Shergol mélange zone. The paleo-accretionary prism, related to the northward subduction of the northern Neo-Tethys beneath the Ladakh Asian margin, mainly consists of tectonic intercalations of sedimentary and blueschist facies rocks. Whole rock chemical composition data provide new constraints on the origin of both the ophiolitic and the blueschist facies rocks. The ophiolitic rocks are interpreted as relicts of the south Ladakh intra-oceanic arc that were incorporated in the accretionary prism during imbrication of the arc. The blueschist facies rocks were previously interpreted as oceanic island basalts (OIB), but our new data suggest that the protolith of some of the blueschists is a calc-alkaline igneous rock that formed in an arc environment. These blueschists most likely originated from the south Ladakh intra-oceanic arc. This arc was accreted to the southern margin of Asia during the Late Cretaceous and the buried portion was metamorphosed under blueschist facies conditions. Following oceanic subduction, the external part of the arc was obducted to form the south Ladakh ophiolites or was incorporated into the Sapi-Shergol mélange zone. The incorporation of the south Ladakh arc into the accretionary prism implies that the complete closure of the Neo-Tethys likely occurred by Eocene time.  相似文献   

19.
Both advocates and critics disagree on the significance and interpretation of critical geological features which relate to the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Recent volcanism in the vicinity of Yucca Mountain is recognized readily by geologists and others with a knowledge of nuclear regulatory requirements as an important factor in determining future public and environmental safety. We regard basaltic volcanism as direct and unequivocal evidence of deep-seated geologic instability. Direct disruption of a repository site by basaltic volcanism therefore is a possibility. In this paper, sensitivity analysis of volcanic hazard assessment for the Yucca Mountain site is performed, taking into account some significant geological factors raised by experts. Three types of models are considered in the sensitivity data analysis. The first model assumes that both past and future volcanic activities follow a Homogeneous Poisson Process (HPP). The second model uses a Weibull Process (WP) to estimate the instantaneous recurrence rate based on the historical data at NTS (the Nevada Test Site). The model then switches from a WP of past events to a predictive HPP. The third model assumes that the prior historical trend based on a WP would continue for future activities. Hazards (at least one disruptive event during the next 10,000 years) using both classical and Bayesian approaches are evaluated based on the data for the following two observation periods: Pliocene and younger, and Quaternary. Combinations of various counts of events at volcanic centers of controversy and inclusion (or exclusion) of the youngest date at Lathrop Wells Center (=0.01 Ma) generate 90 different data sets. Sensitivity analysis is performed for each data set and the minimum and the maximum hazards for each model are summarized. We conclude that the estimated overall probability of at least one disruption of a repository at the Yucca Mountain site by basaltic volcanism during the next 10,000 years is bounded between 2.02×105 and 6.57×10–3.  相似文献   

20.
新疆西准噶尔巴尔鲁克山一带下—中泥盆统库鲁木迪组曾被广泛认为是滨海-浅海沉积相。通过测制库鲁木迪组Ⅰ、Ⅱ岩相剖面,结合工作区内库鲁木迪组岩性、沉积构造、厚度、化石等特征,研究其沉积岩石学及相特征,划分沉积相单元、组合序列,分析其由冲积扇、扇三角洲及滨-浅海相组成,重点建立该区早—中泥盆世沉积模式,为后期区域地质矿产调查工作提供一定的基础地质资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号