首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 A one-dimensional model for coupled heat flow, fluid flow, and mineral reaction predicts the identity and spatial and temporal distributions of mineral assemblages produced during contact metamorphism of siliceous dolomite. Results are compared to mineral distributions predicted by transport models for fluid flow along steady-state temperature profiles and to mineral distributions observed in contact aureoles to assess whether a detailed analysis of heat flow is required to extract meaningful information of fluid flow history from field data. Results identify several mineral assemblages whose interpretation in terms of fluid flow is dependent on an understanding of their thermal history. Certain key mineral assemblages, however, are sensitive records of the geometry and amount of fluid flow but are insensitive to thermal history. The presence or absence of these mineral assemblages constrains the history of fluid flow during contact metamorphism of siliceous dolomite regardless of the details of heat flow. Occurrences of the key assemblages record both magmatic fluid flow in the direction of decreasing temperature (Alta, Elkhorn aureoles) and metamorphic fluid flow in the direction of increasing temperature (Beinn an Dubhaich, Kasuga-mura aureoles) during contact metamorphism. Time-integrated input fluid flux averages on the order of 100 mol/cm2 with a range of ±1 order of magnitude. Received: 13 October 1995 / Accepted: 20 March 1996  相似文献   

2.
This paper proposes a three-dimensional coupled hydrothermal model for fractured rock based on the finite-discrete element method to simulate fluid flow and heat transport. The 3D coupled hydrothermal model is composed of three main parts: a heat conduction model for the rock matrix, a heat transfer model for the fluid in the fractures (including heat conduction and heat convection), and a heat exchange model between the rock matrix and the fluid in the fractures. Four examples with analytical solutions are provided to verify the model. A heat exchange experiment of circulating water in a cylindrical granite sample with one fracture is simulated. The simulation results agree well with the experimental results. The effects of the fracture aperture, fluid viscosity, and pressure difference on the heat exchange between the fluid and rock are studied. Finally, an application concerned with heat transport and fluid flow in fractured rock is presented. The simulation results indicate that the 3D fully coupled hydrothermal model can capture the fluid flow and temperature evolution of rocks and fluids.  相似文献   

3.
盆地流体的基本类型及其驱动机制   总被引:6,自引:0,他引:6  
盆地流体是近年地学研究的热点之一。按照成国,盆地流体可以划分为内部流体和外部8流体两大类。盆地流体的驱动机制包括压实驱动、重力驱动和密度(热对流)驱动三种机制,其基本特征及岩石学记录各有不同。压实流动可产生蒙脱石的脱水转变和砂泥岩处的物质转移,大气水流动以矿物溶解和沉淀为特征,热对流的成岩作用主要涉及那些溶解度对温度变化敏感的矿物。  相似文献   

4.
ABSTRACT Sandstones occur in back-arc basins of the western Pacific at DSDP sites 299 (Sea of Japan), 297 (northern Shikoku Basin), 445 and 446 (Daito-Ridge-and-Basin Province), 453 (Mariana Trough), 286 (New Hebrides Basin) and 285 (South Fiji Basin). These sandstones are dominantly volcaniclastic arenites derived from andesitic island arcs. The degree of sandstone diagenesis is dependent on original composition, burial rate, heat flow history of the basin, and timing of sandstone deposition with respect to rifting processes and associated high heat flow.
Sandstones containing a larger proportion of volcaniclastic components showed more diagenetic effects than sandstones containing a significant volume of other rock fragments and mineral components. Sandstones deposited during early stages of rifting (sites 445, 446) with a slow burial rate and high crustal heat flow showed the greatest degree of downhole diagenetic change. These diagenetic changes include early pore-space reduction and rim cementation by clay minerals followed later by calcite, and subsequent pore-fill cementation by clinoptilolite, heulandite, analcite and later calcite. Replacement of recognizable volcanic rock fragments by chert, calcite and zeolites was observed in the deepest part of the hole. Sandstones deposited after rifting under conditions of associated lower heat flow showed considerably less diagenetic changes, particularly if burial was rapid.
The high heat flow associated with earliest rifting, associated fluid circulation driven by thermal convection, and slow burial rate controlled the diagenetic history of these sandstones. Thus, timing of sandstone deposition with rifting stage and associated burial rates were key factors in controlling sandstone diagenesis in back-arc basins.  相似文献   

5.
Yan  Chengzeng  Jiao  Yu-Yong  Yang  Shengqi 《Acta Geotechnica》2019,14(2):403-416

Based on the combined finite-discrete element method (FDEM), a two-dimensional coupled hydro-thermal model is proposed. This model can simulate fluid flow and heat transfer in rock masses with arbitrary complex fracture networks. The model consists of three parts: a heat conduction model of the rock matrix, a heat-transfer model of the fluid in the fracture (including the heat conduction and convection of fluid), and a heat exchange model between the fluid and rock at the fracture surface. Three examples with analytical solutions are given to verify the correctness of the coupled model. Finally, the coupled model is applied to hydro-thermal coupling simulations of a rock mass with a fracture network. The temperature field evolution, the effect of thermal conductivity of the rock matrix thermal conductivity and the fracture aperture on the outlet temperature are studied. The coupled model presented in this paper will enable the application of FDEM to study rock rupture driven by the effect of hydro-thermo-mechanical coupling in geomaterials such as in geothermal systems, petroleum engineering, environmental engineering and nuclear waste geological storage.

  相似文献   

6.
塔里木盆地西北地区苏盖特布拉克组发育一套潮坪相沉积,是该层系油气勘探的主要目标。基于什艾日克剖面、奇格布拉克剖面、肖尔布拉克剖面的地质测量,采用薄片鉴定、阴极发光、扫描电镜、流体包裹体测温及黏土矿物X衍射等分析手段开展海相碎屑岩成岩作用和成岩演化研究,为塔里木盆地苏盖特布拉克组进一步开展油气勘探部署和甜点储层预测提供地质依据。结果表明:(1)研究区苏盖特布拉克组发育潮坪沉积环境的砂体,砂岩类型以岩屑石英砂岩、岩屑砂岩为主,偶见长石岩屑砂岩,成分成熟度和结构成熟度中等;(2)苏盖特布拉克组砂岩经历了压实(溶)作用、胶结作用、溶蚀作用及交代作用等成岩作用,压实作用是造成储层致密的直接原因,钙质胶结和硅质胶结是储层致密化的根本因素;(3)苏盖特布拉克组砂岩的成岩演化阶段已达到中成岩B期,成岩演化序列为:压实作用/自生黏土矿物(绿泥石)环边—第一期长石、岩屑溶蚀作用—第一期硅质胶结—第一期泥微晶方解石胶结/压溶作用/黏土矿物的伊利化—第二次硅质胶结/第二期铁方解石胶结—钙质胶结物溶蚀。据此建立的成岩演化模式为塔里木盆地超深层致密砂岩中甜点储层预测提供可靠的地质依据。  相似文献   

7.
The Tunnel Sealing Experiment (TSX) was a full‐scale in situ demonstration of technology for constructing nearly water tight‐seals in excavations through crystalline rock deep below the surface of the earth. The experiment has been carried out at Atomic Energy of Canada Limited's (AECL's) Underground Research Laboratory near Lac du Bonnet, Canada, in support of international programs for geologic disposal of radioactive waste. The TSX, with partners from Canada, Japan, France and the United States, was carried under conditions of high pressure (up to 4 MPa) and elevated temperature (up to 85°C). Comparing numerical model predictions with eight years of data collected from approximately 900 sensors was an important component of this experiment. Model of Transport In Fractured/porous Media (MOTIF), a finite element computer program developed by AECL for simulating fully coupled or uncoupled fluid flow, solute transport and heat transport, was used to model both the ambient temperature and heated phases of the TSX. The plan to heat the water in the TSX to 85°C was developed using model predictions and a comparison of simulated results with measurements during heating of the water in the TSX to about 50°C. The three‐dimensional MOTIF simulations were conducted in parallel with axisymmetric modelling using Fast Lagrangian Analysis of Continua (FLAC), which computed the heat loss from pipes that carried the heated water through the rock to and from the experiment. The numerical model was initially used to develop a plan for operation of the experiment heaters, and then subsequently used to predict temperatures and hydraulic heads in the TSX bulkhead seals and surrounding rock. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
花岗岩单裂隙渗流传热特性试验   总被引:1,自引:0,他引:1  
李正伟  张延军  张驰  许天福 《岩土力学》2018,39(9):3261-3269
基于岩石裂隙渗流传热试验系统,以蒸馏水为换热工质,针对预制平滑裂隙与粗糙裂隙的花岗岩岩样,开展不同试验温度与水流条件下的单裂隙对流换热特性试验研究。试验结果表明:①同一温度水平下,对流换热系数的量值与流量呈正相关关系,但对流换热系数的增幅大于流量的增幅,随岩石基质温度的升高,相同流量水平下的对流换热系数呈增大趋势;②与平滑裂隙试验结果相比,粗糙裂隙面的对流换热强度有所提高,但增幅不大;③沿渗流路径,裂隙面局部对流换热强度的演化呈现多波峰的非线性特征,其中粗糙裂隙的非线性更加强烈。但二者均存在由进水口至出水口,换热强度逐渐减弱的特征。④努塞尔数与普朗特数1/3次方的商与雷诺数较好地满足幂指数关系,随着试验温度的升高,这种关系逐渐向线性转变。  相似文献   

9.
Examining the evolution of fracture permeability under stressed and temperature-elevated conditions, a series of flow-through experiments on a single rock fracture in granite has been conducted under confining pressures of 5 and 10 MPa, under differential water pressures ranging from 0.04 to 0.5 MPa, and at temperatures of 20–90 °C, for several hundred hours in each experiment. Measurements of fluid and dissolved mass fluxes, and post-experimental microscopy, were conducted to constrain the progress of mineral dissolution and/or precipitation and to examine its effect on transport properties. Generally, the fracture aperture monotonically decreased with time at room temperature, and reached a steady state in relatively short periods (i.e., <400 h). However, once the temperature was elevated to 90 °C, the aperture resumed decreasing and kept decreasing throughout the rest of the experimental periods. This reduction may result from the removal of the mineral mass from the bridging asperities within the fracture. Post-experimental observations by scanning electron microscopy, coupled with energy dispersive X-ray spectroscopy (SEM-EDX), revealed the formation of several kinds of secondary minerals such as silica and calcite. However, the precipitated minerals seemed to have had little influence on the flow characteristics within the fracture, because the precipitation was limited to quite local and small areas. The evolving rates and ultimate magnitudes of the fracture aperture are likely to be controlled by the stress exerted over the contacting asperities and temperatures, and by the prescribed flow conditions. Thus, this complex behavior should be attributed to the coupled chemically- and mechanically-induced effect. A coupled chemo–mechano conceptual model, accounting for pressure and free-face dissolutions, is presented in this paper to follow the evolution of the fracture permeability observed in the flow-through experiments. This model addresses the two dissolution processes at the contacting asperities and the free walls within the fractures, and is also capable of describing multi-mineral dissolution behavior. The model shows that the evolution of a fracture aperture (or related permeability) and of element concentrations may be followed with time under arbitrary temperature and pressure conditions. The model predictions for the evolving fracture aperture and elements concentrations show a relatively good agreement with the experimental measurements, although it is not possible to replicate the abrupt reduction observed in the early periods of the experiments, which is likely to be due to an unaccounted mechanism of more stress-mediated fracture compaction driven by the fracturing of the propping asperities.  相似文献   

10.
The influence of the intrusion of basaltic dykes and sills was investigated on sandstones and siltstones of the Atane Formation (Turonian-Coniacian) from the Sarqaq area (Nûgssuaq peninsula, central West Greenland).In the unaltered rock sequence, the siltstones are dominated by kaolinite, quartz and feldspar. No cementation was observed. The sandstones which are prevalent in this formation are arkoses and lithic arkoses with quartz/feldspar ratios of about 1, with variable contents of rock fragments and with minor amounts of matrix. The matrix consists mainly of kaolinite, less frequently of illite-muscovite and smectite or interstratified illite-smectite. Cement minerals include calcite, Fe-calcite, both mainly in concretions, and subordinate Fe-oxide hydrates.The porosity of the sandstones and siltstones indicates a former maximum depth of burial of 1000 m in the Sarqaq region.Adjacent to thin dykes and sills (1–2 m) the above-described rocks are altered as follows. In sandstones albite (fibrous), quartzine, smectite, goethite were all formed at the expense of kaolinitic matrix, and aragonite cement. In siltstones, interstratified illite-smectite, illite, smectite and low-cristobalite replaced kaolinite. These minerals, especially smectite, exclude temperatures above 200°C; they were probably formed during a cooling period.Adjacent to thicker basalt intrusions—only sills, over 5 m thick, and no dykes are known from this area—the following alterations are observed. In sandstones two textural types of albite were formed in addition to: (1) fibrous albite mentioned above; (2) undulose lath-shaped albite; (3) coarse-twinned non-undulose replacement albite. Moreover, brownish luminescing undulose quartz, muscovite, chlorite, epidote, nontronite and anatase occur. In siltstones the mineral association muscovite-chlorite-pyrophyllite-albite occurs, suggesting temperatures in the range of 250–500°C. Additionally a 22–26 Å mixed-layer mineral (chlorite-muscovite?) formed. At the contacts of thick as well as thin basalt intrusions the detrital grains directly adjoining the basalt are partly fractured; potassium feldspar grains show also a chemical disintegration.The temperatures calculated by application of a cooling model are higher than those indicated by the mineral alterations observed. Convective heat transfer by pore water is suggested as an explanation.  相似文献   

11.
This paper presents a model for the analysis of clay liner desiccation in a landfill barrier system due to temperature effects. The model incorporates consideration of fully coupled heat‐moisture‐air flow, a non‐linear constitutive relationship, the dependence of void ratio and volumetric water content on stress, capillary pressure and temperature, and the effect of mechanical deformation on all governing equations. Mass conservative numerical schemes are proposed to improve the accuracy of the finite element solution to the governing equations. The application of the model is then demonstrated by examining three test problems, including isothermal infiltration, heat conduction and non‐isothermal water and heat transport. Comparisons are made with results from literature, and good agreement is observed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Quantification of mass and heat transport in fractured porous rocks is important to areas such as contaminant transport, storage and release in fractured rock aquifers, the migration and sorption of radioactive nuclides from waste depositories, and the characterization of engineered heat exchangers in the context of enhanced geothermal systems. The large difference between flow and transport characteristics in fractures and in the surrounding matrix rock means models of such systems are forced to make a number of simplifications. Analytical approaches assume a homogeneous system, numerical approaches address the scale at which a process is operating, but may lose individual important processes due to averaging considerations. Numerical stability criteria limit the contrasts possible in defining material properties. Here, a hybrid analytical–numerical method for transport modeling in fractured media is presented. This method combines a numerical model for flow and transport in a heterogeneous fracture and an analytical solution for matrix diffusion. By linking the two types of model, the advantages of both methods can be combined. The methodology as well as the mathematical background are developed, verified for simple geometries, and applied to fractures representing experimental field conditions in the Grimsel rock laboratory.  相似文献   

13.
Hydrothermal alteration of a quartz‐K‐feldspar rock is simulated numerically by coupling fluid flow and chemical reactions. Introduction of CO2 gas generates an acidic fluid and produces secondary quartz, muscovite and/or pyrophyllite at constant temperature and pressure of 300°C and 200 MPa. The precipitation and/or dissolution of the secondary minerals is controlled by either mass‐action relations or rate laws. In our simulations the mass of the primary elements are conserved and the mass‐balance equations are solved sequentially using an implicit scheme in a finite‐element code. The pore‐fluid velocity is assumed to be constant. The change of rock volume due to the dissolution or precipitation of the minerals, which is directly related to their molar volume, is taken into account. Feedback into the rock porosity and the reaction rates is included in the model. The model produces zones of pyrophyllite quartz and muscovite due to the dissolution of K‐feldspar. Our model simulates, in a simplified way, the acid‐induced alteration assemblages observed in various guises in many significant mineral deposits. The particular aluminosilicate minerals produced in these experiments are associated with the gold deposits of the Witwatersrand Basin.  相似文献   

14.
昆明市地热田越流含水系统中地下热水的数值模拟   总被引:7,自引:0,他引:7  
深层基岩地下(热)水水化学污染问题日趋严重,急需定量而仿真地模拟和预报天然状态和各种人为工程经济活动下地下(热)水流动及溶质(或污染物)的运移。在充分认识地质、水文地质条件的基础上,建立了考虑温压变化和越流条件的昆明市地热田深层基岩地下热水系统中水流和溶质运移的准三维非稳定流数学模型。模型用于开采条件下地热田地下热水水位及 F、Cl浓度的模拟,模拟结果具有较高的仿真性,拟合误差一般小于 2%~5%,表明模型合理、可靠。应用所建模型预测了开采条件下昆明市地热田II块段地下热水流场和溶质浓度动态的变化趋势,并提出了控制地下热水环境进一步恶化的措施。  相似文献   

15.
为研究填充裂隙水流速度对岩体温度和应力的影响,选取甘肃北山地区的花岗岩,制作了稀疏非正交裂隙岩体模 型,采用河砂填充裂隙后进行模型试验;并对模型试验进行离散元数值模拟,分析了模型试验所测岩体温度和热应力与数 值模拟结果的差异和原因。结果显示:填砂裂隙强化了裂隙介质的热导能力,无填充时岩体温度和热应力比填砂时低;模 型试验和离散元模拟均表明,岩体温度和岩体应力随裂隙水流速度增大而减小,但是系统达到稳态所需要的时间变短;模 型试验中斜裂隙水流对温度场起主要作用;由于现有3DEC软件不能考虑水的热物性参数随温度的变化,进而产生自然对 流换热,斜裂隙水流和靠近热源侧的竖裂隙水流对温度场起主要作用。  相似文献   

16.
为研究填充裂隙水流速度对岩体温度和应力的影响,选取甘肃北山地区的花岗岩,制作了稀疏非正交裂隙岩体模 型,采用河砂填充裂隙后进行模型试验;并对模型试验进行离散元数值模拟,分析了模型试验所测岩体温度和热应力与数 值模拟结果的差异和原因。结果显示:填砂裂隙强化了裂隙介质的热导能力,无填充时岩体温度和热应力比填砂时低;模 型试验和离散元模拟均表明,岩体温度和岩体应力随裂隙水流速度增大而减小,但是系统达到稳态所需要的时间变短;模 型试验中斜裂隙水流对温度场起主要作用;由于现有3DEC软件不能考虑水的热物性参数随温度的变化,进而产生自然对 流换热,斜裂隙水流和靠近热源侧的竖裂隙水流对温度场起主要作用。  相似文献   

17.
《Applied Geochemistry》2005,20(2):275-293
The recently developed geochemical modelling code, SULFIDOX, has been applied to simulate weathering of a waste rock dump at the Aitik mine site, Sweden. SULFIDOX models the key chemical and physical processes in the dump temporally and spatially (in two dimensions). The following processes are represented: gas and heat transport; water infiltration; aqueous speciation; mineral dissolution/oxidation and precipitation.Field observations at the site suggest that sulphide oxidation rates within the dump are variable. Although the major part of the dump is oxidising slowly, there are pockets of more highly oxidising material, particularly toward the dump edges. Using SULFIDOX, several models of the dump were investigated: (i) a dump wholly comprised of slowly oxidising material (representing a case where water flow paths are such that no rapidly oxidising regions are accessed); (ii) a dump wholly comprised of the more rapidly oxidising material (representing the opposite (and probably unlikely) extreme, where water flows only through rapidly oxidising regions in the dump); and (iii) a dump comprising a mixture of both slowly and more rapidly oxidising material, that more closely represents the mix of material in the dump.All the models studied gave O2 depth profiles consistent with those observed in probe holes at the site, and confirmed that only a minimal amount of heat production would be expected in the dump due to the role of exothermic sulphide oxidation reactions. The models suggested that a medium-term steady-state, with respect to effluent chemistry, would be achieved after 3–4 years. Based on sulphide consumption rates during this steady-state period, the time periods required to consume all the sulphide in the dump range from a few hundred to many thousands of years. Using the mixed model, and based on a mixture containing 86% slowly and 14% rapidly oxidising material, the calculated effluent chemistry was in good agreement with the observed effluent chemistry. Improvements with respect to the K concentrations were possible by including precipitation of a K-bearing secondary mineral such a K-jarosite in the model. Results from the more rapidly oxidising model suggested that gypsum precipitation might be expected in those regions of the dump containing this material.In summary, the SULFIDOX modelling code has been used successfully to reproduce observed data for the Aitik waste-rock dump. Using SULFIDOX, valuable insight was gained in relation to the temporal and spatial evolution of the dump.  相似文献   

18.
The composition of heavy mineral assemblages in sandstones may be heavily influenced by processes operating during transport, deposition and diagenesis. As a consequence, conventional heavy mineral data may not be a reliable guide to the nature of sediment source material. Certain features of heavy mineral suites, however, are inherited directly from the source area without significant modification, such as the varietal characteristics of individual mineral species. This paper describes an alternative approach to varietal studies that concentrates on relative abundances of minerals that are stable during diagenesis and have similar hydraulic behaviour. Ratios of apatite to tourmaline, TiO2 minerals to zircon, monazite to zircon, and chrome spinel to zircon provide a good reflection of the source rock characteristics, because they are comparatively immune to alteration during the sedimentary cycle. These ratios are described as index values (ATi, RZi, MZi and CZi, respectively). This approach avoids some of the practical problems associated with varietal studies, such as the need to make subjective decisions about mineral properties or to use advanced analytical techniques that may not be accessible to the analyst. It also makes use of more components of the heavy mineral suite and thus provides a more balanced view of provenance characteristics. The use of these ratios is illustrated with examples from Upper Jurassic sandstones in the Outer Moray Firth area of the UK continental shelf and Triassic sandstones from onshore and offshore UK. Heavy mineral indices, notably ATi and MZi, show marked variations in Upper Jurassic Piper sandstones of the Outer Moray Firth. Main Piper sandstones have lower ATi and MZi values compared with Supra Piper sandstones, indicating significant stratigraphic evolution of provenance. The UK Triassic shows major regional variations in a number of index values, including ATi, MZi and CZi, demonstrating that sediment was supplied from several distinct source regions. This indicates a need for some modification of existing palaeogeographic models for the UK Triassic.  相似文献   

19.
Intercrystalline stable isotope diffusion: a fast grain boundary model   总被引:5,自引:0,他引:5  
We formulated a numerical model for stable isotope interdiffusion which predicts the temperatures recorded between two or more minerals, and the intragranular distribution of stable isotopes in each mineral, as functions of mineral grain sizes and shapes, diffusivities, modes, equilibrium isotopic fractionations, and the cooling rate of a rock. One of the principal assumptions of the model is that grain boundaries are regions of rapid transport of stable isotopes. This Fast Grain Boundary (FGB) model describes interdiffusion between any number of mineral grains, assuming that local equilibrium and mass balance restrictions apply on the grain boundaries throughout the volume modeled. The model can be used for a rock containing any number of minerals, and number of grain sizes of each mineral, several grain shapes, and any thermal history or domain size desired. Previous models describing stable isotope interdiffusion upon cooling have been based on Dodson's equation or an equivalent numerical analogue. The closure temperature of Dodson is the average, bulk temperature recorded between a mineral and an infinite reservoir. By using Dodson's equation, these models have treated the closure temperature as an innate characteristic of a given mineral, independent of the amounts and diffusion rates of other minerals. Such models do not accurately describe the mass balance of many stable isotope interdiffusion problems. Existing models for cation interdiffusion could be applied to stable isotopes with some modifications, but only describe exchange between two minerals under specific conditions. The results of FGB calculations differ considerably from the predictions of Dodson's equation in many rock types of interest. Actual calculations using the FGB model indicate that closure temperature and diffusion profiles are as strongly functions of modal abundance and relative differences in diffusion coefficient as they are functions of grain size and cooling rate. Closure temperatures recorded between two minerals which exchanged stable isotopes by diffusion are a function of modal abundance and differences in diffusion coefficient, and may differ from that predicted by Dodson's equation by hundreds of degrees C. Either or both of two minerals may preserve detectable zonation, which may in some instances be larger in the faster diffusing mineral. Rocks containing three or more minerals can record a large span of fractionations resulting from closed system processes alone. The results of FGB diffusion modeling indicate that the effects of diffusive exchange must be evaluated before interpreting mineral fractionations, concordant or discordant, recorded within any rock in which diffusion could have acted over observable scales. The predictions of this model are applicable to thermometry, evaluation of open or closed system retrogression, and determination of cooling rates or diffusion coefficients.  相似文献   

20.
裂隙岩体渗流耦合传热分析   总被引:2,自引:0,他引:2  
以地下裂隙岩体在裂隙水—孔隙水和温度场之间耦合作用为研究对象,对热和流体流动控制方程采用有限容积数值方法进行离散求解,设置了六种裂隙水—孔隙水流速方案,给出了部分无量纲温度场,并分析了传热与流动原因。分析结果表明:岩体内裂隙水—孔隙水引发的热质迁移对裂隙岩体的温度场分布有重要影响;当裂隙岩体内发生地下裂隙水—孔隙水渗流、及热量的转移时,会产生渗流场、温度场之间的耦合作用;裂隙内水流渗透速度是影响岩体温度的主要因素,孔隙内水流渗透速度是影响岩体温度的次要因素,温差主要发生在裂隙水边界层处。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号