首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of vertical variations in density and dielectric constant on nadir-viewing microwave brightness temperatures are examined. Stratification models as well as models of a continuous increase in density with depth are analyzed. Specific applications address the vertical structure of the lunar frontside regolith, utilizing combined constraints from Apollo data, bistatic radar signatures, and Earth-based measurements of the lunar microwave brightness temperature.Results have been analyzed in terms of the effects on the zeroth and first harmonic of the lunar disk-center brightness temperature variation over a lunation, and their wavelength dependence. Lunation-mean brightness temperatures, which are diagnostic of emissivity and steady-state sub-surface temperatures, are sensitive to both near-surface soil density gradients and single high-impedance dielectric contrasts. Models of the rapid density increase in the upper 5–10 cm of the lunar regolith predict brightness temperature decreases of 2–10°K between λ0 = 3 and 30 cm. The magnitude of this spectral variation depends upon the thickness of a postulated low-density surface coating layer, and the magnitude of the density gradient in the transition soil layer. Comparable decreases in brightness temperature can be produced by a stratified two-layer model of soil overlaying bedrock if the high-density substrate lies within 1–2 m of the surface. Multiple soil layering on a centimeter scale, such as is observed in the Apollo core samples, is not likely to induce spectral variations in mean brightness temperature due to rapid regional variations in layer depths and thicknesses.The fractional variation in disk-center brightness temperature over a lunation (first harmonic) can be altered by vertical-structure effects only for the case in which a larger and abrupt dielectric contrast exists within the upper surface layer where the significant diurnal variations in physical temperature occur. Soil density variations do not cause scattering effects sufficient to significantly alter the microwave emission weighting function within the diurnal layer. For the Moon, this layer consists of the upper 10 cm. Since no widespread rock substrate as shallow as 10 cm exists in the lunar frontside, only volume scattering effects, due to buried shallow rock fragments, can explain the apparent high electrical loss inferred from Earth-based measurements of the amplitude of lunation brightness temperature variations.Representative models of the lunar frontside vertical structure have also been examined for their effects of radar cross-section measurements and resultant inferences of bulk dielectric constant. Models of the near-surface density gradient predict a significant increase in the remotely inferred dielectric constant value from centimeter to meter wavelengths. Such a model is in general agreement with the dielectric constant spectrum inferred from Earth-based brightness temperature polarization measurements, but is difficult to reconcile with the Apollo bistatic radar results at λ0 = 13 and 116 cm.  相似文献   

2.
《Icarus》1987,69(1):29-32
λ = 2 cm emission from 704 Interamnia was detected on June 28, 1984, using the VLA. At this time, 704 Interamnia was 2.0 AU distant from Earth. A flux density of 953±53 μJy was measured at 14.9 GHz (50-MHz bandwidth). If 338 km is adopted for the diameter, a disk temperature of 190±15°K results. This temperature is consistent with a rapidly rotating black sphere with 704 Interamnia's diameter. Using published 20-μm infrared data, we infer that a dust-like layer (depth ≥3 cm) covers 704 Interamnia. Most probably, the bulk composition of this layer is identical to that of the outermost shell of the asteroid. Comparison with observations of 15 Eunomia reported earlier suggest that smaller main belt asteroids are covered by a few centimeters of impact gardened material. The physical properties of this layer (especially its depth) make it impossible to infer the dielectric properties of the underlying surface with radio measurements at frequencies above 8 GHz.  相似文献   

3.
A longstanding problem in thermophysical modeling of cometary nuclei has been to accurately formulate the boundary conditions at the nucleus/coma interface. A correct treatment of the problem, where the Knudsen layer gas just above the cometary surface (which is not in thermodynamic equilibrium) is modeled in parallel with the nucleus, is extremely time-consuming and has so far been avoided. Instead, simplifying assumptions regarding the coma properties are used, e.g., the surface gas density is assumed equal to zero or set to the local saturation value, and the coma backflux is neglected or given some realistic but approximate value. The resulting inaccuracy regarding the exchange of mass, energy, and momentum between the nucleus and the coma, may introduce significant errors in the calculated nucleus temperature profiles, gas production rates, and momentum transfer efficiencies. In this paper, we present a practical, accurate, and time-efficient tool which makes it possible to consider the nucleus and the innermost coma of a comet (the former assumed to consist of a porous mixture of crystalline water ice and dust) as a coupled, physically consistent system. The tool consists of interpolation tables for the surface gas density and pressure, the recondensing coma backflux, and the cooling energy flux due to diffusely scattered coma molecules. The tables cover a wide range of surface temperatures and sub-surface temperature profiles, and can be used to improve the boundary conditions used in thermophysical models. The interpolation tables have been obtained by calculating the transmission distribution functions of gas emerging from sublimating porous ice/dust mixtures with various temperature profiles, which then are used as source functions in a Direct Simulation Monte Carlo model of inelastic intermolecular collisions in the Knudsen layer.  相似文献   

4.
Neutron currents measured using the Mars Odyssey Neutron Spectrometer, seasonally varying temperatures measured using the Thermal Emission Spectrometer, and visible images measured using the High Resolution Imaging Science Experiment (HiRISE) are studied to determine the water content and stratigraphy of Olympia Undae. Both the neutron and thermal infrared data are best represented by a two-layered model having a water-ice equivalent hydrogen content of 30±5% in a lower semi-infinite layer, buried beneath a relatively desiccated upper layer that is 9±6 g/cm2 thick (about 6 cm depth at a density of 1.5 g/cm3). A model that is consistent with all three data sets is that the dunes contain a top layer that is relatively mobile, which overlays a niveo-aeolian lower layer. The geomorphology shown by the HiRISE images suggests that the bottom layer may be cemented in place and therefore relatively immobile.  相似文献   

5.
Asteroid 2008 TC3 was characterized in a unique manner prior to impacting Earth's atmosphere, making its October 7, 2008, impact a suitable field test for or validating the application of high‐fidelity re‐entry modeling to asteroid entry. The accurate modeling of the behavior of 2008 TC3 during its entry in Earth's atmosphere requires detailed information about the thermophysical properties of the asteroid's meteoritic materials at temperatures ranging from room temperature up to the point of ablation (~ 1400 K). Here, we present measurements of the thermophysical properties up to these temperatures (in a 1 atm. pressure of argon) for two samples of the Almahata Sitta meteorites from asteroid 2008 TC3: a thick flat‐faced ureilite suitably shaped for emissivity measurements and a thin flat‐faced EL6 enstatite chondrite suitable for diffusivity measurements. Heat capacity was determined from the elemental composition and density from a 3‐D laser scan of the sample. We find that the thermal conductivity of the enstatite chondrite material decreases more gradually as a function of temperature than expected, while the emissivity of the ureilitic material decreases at a rate of 9.5 × 10?5 K?1 above 770 K. The entry scenario is the result of the actual flight path being the boundary to the load the meteorite will be affected with when entering. An accurate heat load prediction depends on the thermophysical properties. Finally, based on these data, the breakup can be calculated accurately leading to a risk assessment for ground damage.  相似文献   

6.
William H. Smyth  M.C. Wong 《Icarus》2004,171(1):171-182
Two-dimensional model calculations (altitude and solar zenith angle) are performed to investigate the impact of electron chemistry on the composition and structure of Io's atmosphere. The calculations are based upon the model of Wong and Smyth (2000, Icarus 146, 60-74) for Io's SO2 sublimation atmosphere with the addition of new electron chemistry, where the interactions of the electrons and neutrals are treated in a simple fashion. The model calculations are presented for Io's atmosphere at western elongation (dusk ansa) for both a low-density case (subsolar temperature of 113 K) and a high-density case (subsolar temperature of 120 K). The impact of electron-neutral chemistry on the composition and structure of Io's atmosphere is confined primarily to an interaction layer. The penetration depth of the interaction layer is limited to high altitudes in the thicker dayside atmosphere but reaches the surface in the thinner dayside and/or nightside atmosphere at larger solar zenith angles. Within most of the thicker dayside atmosphere, the column density of SO2 is not significantly altered by electrons, but in the interaction layer all number densities are significantly altered: SO2 is reduced, O, SO, S, and O2 are greatly enhanced, and O, SO, and S become comparable to SO2 at high altitudes. For the thinner nightside atmosphere, the species number densities are dramatically altered: SO2 is drastically reduced to the least abundant species of the SO2 family, SO and O2 are significantly reduced at all altitudes, and O and S are dramatically enhanced and become the dominant species at all altitudes except near the surface. The interaction layer also defines the location of the emission layer for neutrals excited by electron impact and hence determines the fraction of the total neutral column density that is visible in remote observation. Electron chemistry may also impact the ratio of the equatorial to polar SO2 column density deduced from Lyman-α images and the north-south alternating and System III longitude-dependent asymmetry observed in polar O and S emissions.  相似文献   

7.
The first part of this paper uses a contamination layer model to discuss the effects of electrode contamination upon electron temperatures estimated from Langmuir probe measurements. The model assumes that the contamination layer is equivalent to a parallel capacitor and resistor. It predicts two main features associated with electrode contamination. One of them, the so-called “frequency dependence,” concerns the sweep-rate of the probe voltage and is well understood. The other is that the effect of a contaminated electrode is decreased as the density of the ambient plasma is decreased and this will be called “density dependence.” We present several experimental results which verify the above predictions.This paper also presents some other experimental results which may be useful in improving the accuracy of Langmuir probe measurements.Finally the effects of electrode contamination upon electron density estimates and energy distribution measurements are briefly discussed.  相似文献   

8.
Thirty borehole temperature–depth profiles in the central and southern Urals, Russia were scrutinized for evidence of ground surface temperature histories. We explored two inversion schemes: a simple ramp inversion in which solutions are parameterized in terms of an onset time and magnitude of change and a more sophisticated functional space inverse algorithm in which the functional form of the solution is left unspecified. To enhance and potentially identify latitudinal differences in the ground surface temperature signal, we subdivided the data into three groups based on geographic proximity and simultaneously inverted the borehole temperature–depth logs. The simultaneous inversions highlighted 13 temperature–depth logs that could not both fit a common ground surface temperature history and a priori models within reasonable bounds. Our results confirm that this is an effective way to reduce site-specific noise from an ensemble of boreholes. Each inversion scheme gives comparable results indicating locally variable warming on the order of 1°C starting between 1800 and 1900 AD. Similarly surface air temperature records from 12 nearby meteorological stations exhibit locally variable warming also on the order of 1°C of warming during the 20th century. To explore the degree to which borehole temperatures and surface air temperature (SAT) time series are responding to the same signal, we average the SAT data into the same three groups and used these averages as a forcing function at the Earth's surface to generate synthetic transient temperature profiles. Root mean square (RMS) misfits between these synthetic temperature profiles and averaged temperature–depth profiles are low, suggesting that first-order curvature in borehole temperatures and variations in SAT records are correlated.  相似文献   

9.
The influence of the superadiabatic convection region and the hydrogen-helium ionization region on the spectrum of acoustic oscillations are considered. The spectrum peculiarities are studied by means of the phase-shift function which describes the reflection of the acoustic waves by the outermost layers of the Sun. This function permits us to investigate the influence of the envelope structure upon the oscillations without all the model data. It is shown that in spite of the strong influence of the superadiabatic convection upon acoustic oscillations, its structural changes cannot explain the discrepancy between observations and theory. It is emphasized that the explanation of the discrepancy between observations and standard model calculations requires taking into account the non-ideal nature of the plasma.  相似文献   

10.
The nucleus bulk density of Comet 19P/Borrelly has been estimated by modeling the sublimation-induced non-gravitational force acting upon the orbital motion, thereby reproducing the empirical perihelion advance (i.e., the shortening of the orbital period). The nucleus has been modeled as a prolate ellipsoid, covered by various surface activity maps which reproduce the observed water production rate. The theoretical water production rate of active areas has been obtained by applying a sophisticated thermophysical model. This model takes into account net sublimation of ice and thermal reradiation from the surface, solid state conductivity, sub-surface sublimation and recondensation, mass and heat transport by diffusing gas, layer absorption of solar energy, a full treatment of local time-dependent illumination conditions, and a detailed consideration of nucleus/coma interaction mechanisms. The outgassing properties of the modeled nucleus are physically consistent with the gas kinetic structure of the innermost coma since the molecular backflux and surface gas density required in the thermophysical model (as functions of the nucleus surface temperature and the sub-surface temperature profile) have been obtained from Direct Simulation Monte Carlo modeling of inelastic intermolecular collisions in the cometary Knudsen layer. The calculation of local normal forces acting on the nucleus due to outgassing has been made within the same framework—recoil and/or impact momentum transfer to the nucleus caused by sublimating molecules and by recondensing and/or scattered coma molecules is therefore evaluated in accordance with local nucleus/coma conditions. According to this model, the density is found to be 100-300 kg, depending on the applied spin axis orientation and surface activity map. This range can be narrowed down to 180-300 kg by also requiring that the empirical changes (per orbital revolution) of the argument of perihelion and the longitude of the ascending node are reproduced.  相似文献   

11.
We have constructed a model of the solar nebula that allows for the temperature and pressure distributions at various stages of its evolution to be calculated. The mass flux from the accretion envelope to the disk and from the disk to the Sun, the turbulent viscosity parameter α, the opacity of the disk material, and the initial angular momentum of the protosun are the input model parameters that are varied. We also take into account the changes in the luminosity and radius of the young Sun. The input model parameters are based mostly on data obtained from observations of young solar-type stars with disks. To correct the input parameters, we use the mass and chemical composition of Jupiter, as well as models of its internal structure and formation that allow constraints to be imposed on the temperature and surface density of the protoplanetary disk in Jupiter’s formation zone. Given the derived constraints on the input parameters, we have calculated models of the solar nebula at successive stages of its evolution: the formation inside the accretion envelope, the evolution around the young Sun going through the T Tauri stage, and the formation and compaction of a thin dust layer (subdisk) in the disk midplane. We have found the following evolutionary trend: an increase in the temperature of the disk at the stage of its formation, cooling at the T Tauri stage, and the subsequent internal heating of the dust subdisk by turbulence dissipation that causes a temperature rise in the formation zone of the terrestrial planets at the high subdisk density and the opacity in this zone. We have obtained the probable ranges of temperatures in the disk midplane, i.e., the temperatures of the protoplanetary material in the formation region of the terrestrial planets at the initial stage of their formation.  相似文献   

12.
In late 2004 and 2005 the Cassini composite infrared spectrometer (CIRS) obtained spatially resolved thermal infrared radial scans of Saturn's main rings (A, B and C, and Cassini Division) that show ring temperatures decreasing with increasing solar phase angle, α, on both the lit and unlit faces of the ring plane. These temperature differences suggest that Saturn's main rings include a population of ring particles that spin slowly, with a spin period greater than 3.6 h, given their low thermal inertia. The A ring shows the smallest temperature variation with α, and this variation decreases with distance from the planet. This suggests an increasing number of smaller, and/or more rapidly rotating ring particles with more uniform temperatures, resulting perhaps from stirring by the density waves in the outer A ring and/or self-gravity wakes.The temperatures of the A and B rings are correlated with their optical depth, τ, when viewed from the lit face, and anti-correlated when viewed from the unlit face. On the unlit face of the B ring, not only do the lowest temperatures correlate with the largest τ, these temperatures are also the same at both low and high α, suggesting that little sunlight is penetrating these regions.The temperature differential from the lit to the unlit side of the rings is a strong, nearly linear, function of optical depth. This is consistent with the expectation that little sunlight penetrates to the dark side of the densest rings, but also suggests that little vertical mixing of ring particles is taking place in the A and B rings.  相似文献   

13.
We calculate the cooling times at constant density for haloes with virial temperatures from 100 K to  1×105 K  that originate from a 3 σ fluctuation of a CDM power spectrum in three different cosmologies. Our intention is to determine the first objects that can cool to low temperatures, but not to follow their dynamical evolution. We identify two generations of haloes: those with low virial temperatures,   T vir≲9000 K  that remain largely neutral, and those with larger virial temperatures that become ionized. The lower temperature, lower mass haloes are the first to cool to 75 per cent of their virial temperature. The precise temperature and mass of the first objects are dependent upon the molecular hydrogen (H2) cooling function and the cosmological model. The higher mass haloes collapse later but, in this paradigm, cool much more efficiently once they have done so, first via electronic transitions and then via molecular cooling: in fact, a greater residual ionization once the haloes cool below 9000 K results in an enhanced H2 production and hence a higher cooling rate at low temperatures than for the lower mass haloes, so that within our constant-density model it is the former that are the first to cool to really low temperatures. We discuss the possible significance of this result in the context of CDM models in which the shallow slope of the initial fluctuation spectrum on small scales leads to a wide range of halo masses (of differing overdensities) collapsing over a small redshift interval. This 'crosstalk' is sufficiently important that both high- and low-mass haloes collapse during the lifetimes of the massive stars which may be formed at these epochs. Further investigation is thus required to determine which generation of haloes plays the dominant role in early structure formation.  相似文献   

14.
Data acquired by the Galileo magnetometer on five passes by Ganymede have been used to characterize Ganymede's internal magnetic moments. Three of the five passes were useful for determination of the internal moments through quadrupole order. Models representing the internal field as the sum of dipole and quadrupole terms or as the sum of a permanent dipole field upon which is superimposed an induced magnetic dipole driven by the time varying component of the externally imposed magnetic field of Jupiter's magnetosphere give equally satisfactory fits to the data. The permanent dipole moment has an equatorial field magnitude 719 nT. It is tilted by 176° from the spin axis with the pole in the southern hemisphere rotated by 24° from the Jupiter-facing meridian plane toward the trailing hemisphere. The data are consistent with an inductive response of a good electrical conductor of radius approximately 1 Ganymede radius. Although the data do not enable us to establish the presence of an inductive response beyond doubt, we favor the inductive response model because it gives a good fit to the data using only four parameters to describe the internal sources of fields, whereas the equally good dipole plus quadrupole fit requires eight parameters. An inductive response is consistent with a buried conducting shell, probably liquid water with dissolved electrolytes, somewhere in the first few hundred km below Ganymede's surface. The depth at which the ocean is buried beneath the surface is somewhat uncertain, but our favored model suggests a depth of the order of 150 km. As both temperature and pressure increase with depth and the melting temperature of pure ice decreases to a minimum at ∼170 km depth, it seems possible that near this location, a layer of water would be sandwiched between layers of ice.  相似文献   

15.
HAPEX-MOBILHY data, consisting of one year of hourly atmospheric forcing data at Caumont (SAMER No. 3, 43.68°N, 0.1°W) were used repeatedly to run the two-layer Variable Infiltration Capacity (VIC-2L) land-surface scheme until the model reached equilibrium in its water and energy balance. The equilibrium results are compared with one year of weekly soil moisture measurements at different depths, the estimated latent heat fluxes for 35 days of the intensive observation period (IOP), and the accumulated evaporation, runoff and drainage for the entire soya crop season. The latent heat flux comparisons show that VIC-2L tends to underestimate the evaporation due to the low soil moisture in its upper layer. The soil moisture comparison shows that the total soil water content is well simulated in general, but the soil water content in the top 0.5 m is underestimated, especially in May and June. These comparisons suggest that the lack of a mechanism for moving moisture from the lower to the upper soil layer in VIC-2L is the main cause for model error in the HAPEX-MOBILHY application. A modified version of VIC-2L, which has a new feature that allows diffusion of moisture between soil layers, and a 0.1 m thin layer on top of the previous upper layer, is described. In addition, the leaf area index (LAI) and the fraction vegetation cover are allowed to vary at each time step in a manner consistent with the rest PILPS-RICE Workshop, rather than being seasonally fixed. With these modifications, the VIC-2L simulations are re-evaluated. These changes are shown to resolve most of the structural deficiencies in the original version of the model. The sensitivity analysis of the new version of the model to the choices of soil depths and root distribution show that the evapotranspiration and soil moisture at the model equilibrium state are more sensitive to the root distribution than to the soil depth.  相似文献   

16.
17.
A simplified analysis of helmeted coronal structures is carried out and some of the gross properties of such structures discussed. It is found that the magnetically closed region can have but a limited extension into the corona. For temperatures in excess of 1.5 × 106 °K, the maximum height above the limb is about 1.6 R . The maximum possible extension of the helmet from the solar center is exactly one-half the distance to the critical point (where the flow velocity passes through the speed of sound). For this reason, a helmet streamer, at least out to a few solar radii, is essentially a magnetostatic structure - the flow adjacent to the helmet having little effect upon its properties. For given base dimensions, there is a maximum temperature for which a helmet streamer can exist - giving an indication of why such streamers do not appear over young active regions. If the temperature in the helmet and in the streaming region are approximately the same, the helmet height, helmet shape, external flow velocity, and rate of outward decline in the magnetic field are shown to be much more dependent upon the photospheric field distribution than upon the field strength. The density enhancement, however, is a strong function of the field strength. This enhancement is preserved out to the top of the helmet with both the density inside and outside decreasing approximately as predicted by hydrostatic equilibrium. The possible existence of both domed helmets and cusped helmets is demonstrated with the former existing at lower temperatures and the latter at higher temperatures. Cusped helmets occur, however, over a relatively narrow temperature range and are, hence, expected to be less common. The expansion velocity outside the helmet is higher than that predicted by radial flow but increases outward much more slowly. The magnetic field decreases outward proportionally to the square root of the density and inversely proportionally to the velocity - bearing, in general, no relation to a potential field since the rate of decline in field strength is determined by the temperature.On leave from AC Electronics Research Laboratories Santa Barvara, Calif., U.S.A.  相似文献   

18.
The exospheric theory based on the Kappa velocity distribution function (VDF) is used to model the exosphere of the giant planets Jupiter and Saturn. Such Kappa velocity distribution functions with an enhanced population of suprathermal particles are indeed often observed in space plasmas and in the space environment of the planets. The suprathermal particles have significant effects on the escape flux, density and temperature profiles of the particles in the exosphere of the giant planets. The polar wind flux becomes several orders larger when suprathermal electrons are considered, so that the planetary ionosphere becomes then a significant source for their inner magnetosphere. Moreover, the number density of the particles decreases slower as a function of the altitude when a Kappa distribution is considered instead of a Maxwellian one. Two-dimensional maps of density are calculated for typical values of the temperatures. The exospheric formalism is also applied to study the escape flux from the exospheres of Io and Titan, respectively, moons of Jupiter and Saturn.  相似文献   

19.
High spatial resolution images of Mars were acquired with the Advanced Electro-Optical System (AEOS) 3.63-meter telescope at the Maui Space Surveillance System (MSSS) during both the 2001 and 2003 Mars apparitions. Comparisons are made of the surface albedo patterns obtained from these AEOS images to the surface albedo maps constructed from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data taken during the same time periods. These comparisons demonstrate that the images provide albedo information in a limited area surrounding the sub-Earth point that is consistent with the TES-derived albedo field. Additionally, it is shown that by employing adaptive optics (AO), the typical ground-based observing season of Mars can be extended. This is the only known published AO data set of Mars with temporal coverage over an entire apparition. Changes in the surface albedo affect the local ground temperature, which impacts the depth of the planetary boundary layer (PBL) above the surface. Since it is the state of the PBL that controls surface/atmospheric interaction, albedo variations have the power to alter the amount of dust that is lifted. A one-dimensional radiative/convective version of the NASA Ames Mars General Circulation Model is used to demonstrate that the measured albedo variations can alter the daytime ground temperatures by as much as 5 K, which in turn alters the structure of the planetary boundary layer (PBL). Therefore, albedo changes are thermodynamically important, and the ability to characterize them, should orbital observations become unavailable, is a valuable capability.  相似文献   

20.
Data on thermophysical properties measured on lunar material returned by Apollo missions are reviewed. In particular, the effects of temperature and interstitial gaseous pressure on thermal conductivity and diffusivity have been studied. For crystalline rocks, breccias and fines, the thermal conductivity and diffusivity decrease as the interstitial gaseous pressure decreases from 1 atm to 10–4T. Below 10–4T, these properties become insensitive to the pressure. At a pressure of 10–4T or below, the thermal conductivity of fines is more temperature dependent than that of crystalline rocks and breccias. The bulk density also affects the thermal conductivity of the fines. An empirical relationship between thermal conductivity, bulk density and temperature derived from the study of terrestrial material is shown to be consistent with the data on lunar samples. Measurement of specific heat shows that, regardless of the differences in mineral composition, crystalline rocks and fines have almost identical specific heat in the temperature range between 100 and 340K. The thermal parameter calculated from thermal conductivity, density and specific heat shows that the thermal properties estimated by earth-based observations are those characteristic only of lunar fines and not of crystalline rocks and breccias. The rate of radioactive heat generation calculated from the content of K, Th and U in lunar samples indicates that the surface layer of the lunar highland is more heat-producing than the lunar maria. This may suggest fundamental differences between the two regions.Now at Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York, U.S.A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号