首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The terpenoid composition of fossil resin from the Cape York Peninsula, Australia has been analysed by pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) to determine its origin. The pyrolysis products were dominated by cadalene-based C15 bicyclic sesquiterpenoids including some C30–C31 bicadinanes and bicadinenes typical of Class II resin derived from angiosperm plants of Dipterocarpaceae. This observation contrasts with the Araucariaceae (Agathis sp.) source previously suggested for the resin based on Fourier transform infrared (FTIR) analyses. Dipterocarpaceae are not known in Australian vegetation but grow abundantly in Southeast Asia including New Guinea, indicating that the geological origin of the amber is not the Australian mainland but could be traced to Southeast Asia.  相似文献   

2.
The molecular composition of fossil resins from early to middle Eocene coal from northeast India, has been analyzed for the first time to infer their paleobotanical source. The soluble component of fossil resin was analyzed using gas chromatography–mass spectrometry (GC–MS). The resin extracts are composed of cadalene-based C15 sesquiterpenoids and diagenetically altered triterpenoids. The macromolecular composition was investigated using pyrolysis gas chromatography-mass spectrometry (Py-GC–MS) and Fourier transform infrared (FTIR) spectroscopy. The major pyrolysis products are C15 bicyclic sesquiterpenoids, alkylated naphthalenes, benzenes and a series of C17–C34 n-alkene-n-alkane pairs. Spectroscopic analysis revealed the dominance of aliphatic components. The presence of cadalene-based sequiterpenoids confirms the resin to be Class II or dammar resin, derived from angiosperms of Dipterocarpaceae family. These sesquiterpenoids are often detected in many SE Asian fluvio-deltaic oils. Dipterocarpaceae are characteristic of warm tropical climate suggesting the prevalence of such climate during early Eocene in northeast India.  相似文献   

3.
One 2.5 m lacustrine sedimentary profile dated back to 6340 years BP from Deosila swamp under Rangjuli Reserve forest of Assam, Northeast India has been pollen analyzed for tracing past vegetation vis à vis climate variability since mid-Holocene. The pollen diagram has deciphered that during 6340 to 2970 years BP, tropical tree savannah type of vegetation grew in the region chiefly constituted of grasses interspersed with scattered trees of Salmalia, Dillenia, Emblica, Meliaceae along with sporadic presence of Artocarpus chaplasha, Symplocos, Ilex, Schima and Shorea robusta under relatively less cool and dry climatic condition with a little ameliorating trend at the upper column. The vegetation scenario implies poor growth of arboreals due to harsh abiotic dynamics causing changes in drainage system. Subsequently during 2970 to 1510 years BP, tropical mixed deciduous forest succeeded tree savannah with invasion of Shorea robusta, Lagerstroemia, Lannea, Semecarpus and Acacia under warm and humid climate. The gradual enrichment of organic soil might have been conducive for better growth of both deciduous and semi evergreen arboreals as found today. However, during 1510 to 540 years BP, the forest groves became more strengthened resulting establishment of tropical deciduous Sal forest. Steady increment of Shorea robusta along with Lannea, Lagerstroemia, Terminalia, Sapotaceae, Albizia and Adina was observed probably due to influence of active SW monsoon under increased warm and humid climatic regime. This is well substantiated by the consistent occurrence of marshy and aquatic taxa along with ferns and fungal remains. Finally during 540 years BP onward the reduced forest floristics have obviously been envisaged the change in climate which turned to warm and relatively dry probably attributable to the weak monsoon rainfall. The acceleration in human settlement during this phase is evidenced by Cerealia and by the increase of Melastoma, Ziziphus and Areca catechu implying forest clearance.  相似文献   

4.
Owing to proximity of the North Atlantic Stream and the shelf, the Andøya biota are assumed to have responded rapidly to climatic changes taking place after the Weichselian glaciation. Palynological, macrofossil, loss‐on‐ignition, tephra and 14C data from three sites at the northern part of the island of Andøya were studied. The period 12 300–11 950 cal. yr BP was characterized by polar desert vegetation, and 11 950–11 050 cal. yr BP by a moisture‐demanding predominantly low‐arctic Oxyria vegetation. During the period 11 050–10 650 cal. yr BP, there was a climatic amelioration towards a sub‐arctic climate and heaths dominated by Empetrum. After 10 650 cal. yr BP the Oxyria vegetation disappeared. As early as about 10 800 cal. yr BP the bryozoan Cristatella mucedo indicated a climate sufficient for Betula woodland. However, tree birch did not establish until 10 420–10 250 cal. yr BP, indicating a time‐lag for the formation of Betula ecotypes adapted to the oceanic climate of Andøya. From about 10 150 to 9400 cal. yr BP the summers were dry and warm. There was a change towards moister, though comparatively warm, climatic conditions about 9400 cal. yr BP. The present data are compared with evidence from marine sediments and the deglaciation history in the region. It is suggested that during most of the period 11 500–10 250 cal. yr BP a similar situation as in present southern Greenland existed, with birch woodland in the inner fjords near the ice sheet and low‐arctic heath vegetation along the outer coast.  相似文献   

5.
Plant fossils from the volcano-clastic marine deposits of the Coniacian Hidden Lake Formation of James Ross Island in Antarctica are described based on their macromorphology. Stratigraphic positions of fossiliferous horizons and details of the lithostratigraphic situation of the middle part of the Hidden Lake Formation are published for the first time. The flora consists primarily of leaf impressions and petrified wood. There are also small amounts of mesofossils, dispersed cuticles and charcoalified wood. The megafossils typically occur fragmented, underpinning their allochtonous origin. The plants are described in systematical order. This contribution in contrast to earlier observations reports a high diversity of pteridophytes (11 taxa) and conifers (6 taxa). Angiosperms representing families Nothofagaceae, Atherospermataceae, probably Lauraceae and Sterculiaceae are the most abundant and common plant groups of the flora (12 taxa). The presence of the tropical fern family Marattiaceae and rarity of the genus Nothofagus are of interest, arguing for the prevalence of a warm temperate to tropical humid climate during the Coniacian in this part of Antarctica.  相似文献   

6.
The terpenoid composition of resins from the Miocene lignite horizons from the Kerala-Konkan Coast, western India was analyzed by Curie-point pyrolysis-gas chromatography-mass spectrometry (Cupy-GC-MS). The major pyrolysates were cadalene-based bicyclic sesquiterpenoids including some C30-C31 bicadinenes and bicadinanes typical of dammar resin from angiosperm plants of Dipterocarpaceae family. These plants are typically supported by tropical climates which the western Indian region was known to have experienced during early Tertiary period. The present study suggests that these palaeoclimatic conditions persisted until at least the Miocene epoch. These sesquiterpenoids which are commonly detected in many SE Asian crude oils may be utilised as useful biomarkers for petroleum exploration in the western Indian region.  相似文献   

7.
Plant remains, including both mega and micro collected from the middle part of the Tharumsa Foramtion (early Miocene) are described for the first time from the Tharumsa village of the Kargil district, Jammu and Kashmir to reconstruct the palaeoenvironment. They indicate their affinities with Broussonetia of the Moraceae and Abies, Cedrus and Pinus of the Pinaceae. Their presence indicates warm and moist tropical to sub-tropical climate in the Kargil area during the depositional period against the cold and dry climate prevailing at present.  相似文献   

8.
The Amazonian lowlands include large patches of open vegetation which contrast sharply with the rainforest, and the origin of these patches has been debated. This study focuses on a large area of open vegetation in northern Brazil, where δ13C and, in some instances, C/N analyses of the organic matter preserved in late Quaternary sediments were used to achieve floristic reconstructions over time. The main goal was to determine when the modern open vegetation started to develop in this area. The variability in δ13C data derived from nine cores ranges from ?32.2 to ?19.6‰, but with nearly 60% of data above ?26.5‰. The most enriched values were detected only in ecotone and open vegetated areas. The development of open vegetation communities was asynchronous, varying between estimated ages of 6400 and 3000 cal a BP. This suggests that the origin of the studied patches of open vegetation might be linked to sedimentary dynamics of a late Quaternary megafan system. As sedimentation ended, this vegetation type became established over the megafan surface. In addition, the data presented here show that the presence of C4 plants must be used carefully as a proxy to interpret dry paleoclimatic episodes in Amazonian areas. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A fossil wood resembling Shorea and other allied genera of the Dipterocarpaceae is described from the Tipam Group of Manipur. This is for the first time any angiosperm wood is recorded from this state. The fossil collected from Jiribam district is considered as late Miocene in age. Its occurrence indicates warm and humid climate in the region during the deposition of the sediments.  相似文献   

10.
Birks, H. H. & van Dinter, M. 2010: Lateglacial and early Holocene vegetation and climate gradients in the Nordfjord–Ålesund area, western Norway. Boreas, Vol. 39, pp. 783–798. 10.1111/j.1502‐3885.2010.00161.x. ISSN 0300‐9483. Modern climate in western Norway shows a strong west–east gradient in oceanicity–continentality (coast to inner fjord) and altitudinal temperature gradients that control the regional and altitudinal zonation of vegetation. To discover if similar gradients existed during the Lateglacial and early Holocene, plant‐macrofossil analyses were made from five lacustrine sediment sequences in the Nordfjord–Ålesund region selected to sample the present climatic gradients. The macrofossil assemblages could be interpreted as analogues of the present vegetation, thus allowing reconstruction of past vegetation and climates. When the five sites were compared, climatic gradients could be detected. During the Lateglacial interstadial, mid‐alpine assemblages with Salix herbacea and S. polaris occurred at the lowland coast and upland inland sites, whereas the inland lowland site had low‐alpine dwarf‐shrub heath dominated by Betula nana, demonstrating a strong west–east gradient in temperature and precipitation and an altitudinal gradient inland. During the Younger Dryas stadial, assemblages at the lowland coast and upland inland sites resembled high‐alpine vegetation, whereas the inland lowland site was warmer with mid‐alpine vegetation, demonstrating west–east and altitudinal temperature gradients. Gradients became less pronounced in the Holocene. The early abundance of Betula nana in the inner fjord sites but its rarity at the coast is striking and reflects the oceanicity gradient. All sites became forested with Betula pubescens a few centuries into the Holocene. This forest was probably close to tree line at 370 m a.s.l. at the coast. Inland, there was no detectable altitudinal gradient, with the tree line well above 400 m a.s.l. reflecting the present pattern of tree‐line elevation.  相似文献   

11.
Cryolithological, ground ice and fossil bioindicator (pollen, diatoms, plant macrofossils, rhizopods, insects, mammal bones) records from Bol'shoy Lyakhovsky Island permafrost sequences (73°20′N, 141°30′E) document the environmental history in the region for the past c. 115 kyr. Vegetation similar to modern subarctic tundra communities prevailed during the Eemian/Early Weichselian transition with a climate warmer than the present. Sparse tundra‐like vegetation and harsher climate conditions were predominant during the Early Weichselian. The Middle Weichselian deposits contain peat and peaty soil horizons with bioindicators documenting climate amelioration. Although dwarf willows grew in more protected places, tundra and steppe vegetation prevailed. Climate conditions became colder and drier c. 30 kyr BP. No sediments dated between c. 28.5 and 12.05 14C kyr BP were found, which may reflect active erosion during that time. Herb and shrubby vegetation were predominant 11.6–11.3 14C kyr BP. Summer temperatures were c. 4 °C higher than today. Typical arctic environments prevailed around 10.5 14C kyr BP. Shrub alder and dwarf birch tundra were predominant between c. 9 and 7.6 kyr BP. Reconstructed summer temperatures were at least 4 °C higher than present. However, insect remains reflect that steppe‐like habitats existed until c. 8 kyr BP. After 7.6 kyr BP, shrubs gradually disappeared and the vegetation cover became similar to that of modern tundra. Pollen and beetles indicate a severe arctic environment c. 3.7 kyr BP. However, Betula nana, absent on the island today, was still present. Together with our previous study on Bol'shoy Lyakhovsky Island covering the period between about 200 and 115 kyr, a comprehensive terrestrial palaeoenvironmental data set from this area in western Beringia is now available for the past two glacial–interglacial cycles.  相似文献   

12.
Mixed‐wood boreal forests are characterized by a heterogeneous landscape dominated by coniferous or deciduous species depending on stand moisture and fire activity. Our study highlights the long‐term drivers of these differences between landscapes across mixed‐wood boreal forests to improve simulated vegetation dynamics under predicted climate changes. We investigate the effects of main climate trends and wildfire activities on the vegetation dynamics of two areas characterized by different stand moisture regimes during the last 9000 years. We performed paleofire and pollen analyses in the mixed‐wood boreal forest of north‐western Ontario, derived from lacustrine sediment deposits, to reconstruct historical vegetation dynamics, which encompassed both the Holocene climatic optimum (ca. 8000–4000 a bp ) and the Neoglacial period (ca. 4000 a bp ). The past warm and dry period (Holocene climatic optimum) promoted higher fire activity that resulted in an increase in coniferous species abundance in the xeric area. The predicted warmer climate and an increase in drought events should lead to a coniferization of the xeric areas affected by high fire activity while the mesic areas may retain a higher broadleaf abundance, as these areas are not prone to an increase in fire activity. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

13.
Krüger, L. C., Paus, A., Svendsen, J. I. & Bjune, A. E. 2011: Lateglacial vegetation and palaeoenvironment in W Norway, with new pollen data from the Sunnmøre region. Boreas, 10.1111/j.1502‐3885.2011.00213.x. ISSN 0300‐9483. Two sediment sequences from Sunnmøre, northern W Norway, were pollen‐analytically studied to reconstruct the Lateglacial vegetation history and climate. The coastal Dimnamyra was deglaciated around 15.3 ka BP, whereas Løkjingsmyra, further inland, became ice‐free around 14 ka BP. The pioneer vegetation dominated by snow‐bed communities was gradually replaced by grassland and sparse heath vegetation. A pronounced peak in Poaceae around 12.9 ka BP may reflect warmer and/or drier conditions. The Younger Dryas (YD) cooling phase shows increasing snow‐bed vegetation and the local establishment of Artemisia norvegica. A subsequent vegetation closure from grassland to heath signals the Holocene warming. Birch forests were established 500–600 years after the YD–Holocene transition. This development follows the pattern of the Sunnmøre region, which is clearly different from the Empetrum dominance in the Lateglacial interstadial further south in W Norway. The Lateglacial oscillations GI‐1d (Older Dryas) and GI‐1b (Gerzensee) are hardly traceable in the north, in contrast to southern W Norway. The southern vegetation was probably closer to an ecotone and more susceptible to climate changes.  相似文献   

14.
Two eustatic high sea stands during the last glacial period are recognised at Pantai Remis. These highstands, lower than present-day sea-level, are tropical manifestations of the ameliorating interstadial climate during the Weichselian/Devensian/Wisconsin glaciation in the Northern Hemisphere. The earlier highstand corresponds to a sea-level of 14.6 m below mean sea-level (MSL). It is interpreted as synchronous with Oyxgen Isotope Stage 5a and is correlated with other known sea-level curves in other parts of the world. The younger high sea stand, dated 55810 ± 1140 to 53870 ± 1400 yr BP, indicates sea-level of 4.3 m below MSL. It represents an interstadial equivalent that lasted for at least 2000 yr, whereas the earlier interstadial period indicates a minimum duration of twice this amount or very likely even longer, as reflected from the thickness of the accumulated deposits. The palynological records indicate that during interstadial times, climatic stability in the tropics is attained and was sufficiently long for vegetation to thrive and develop. The palynofloral constituents of the earlier interstadial phase at Pantai Remis showed the establishment of vegetation in a coastal setting, initiated by Pandanus swamp forests. Simultaneously, mangrove swamp flourished in the lower lying parts of the area, hence the presence of direct tidal influence is evident. Both the Pandanus and mangrove swamps were succeeded by mixed freshwater swamp forests of a Campnosperma–Calophyllum assemblage. Subsequently a slightly open and somewhat drier mixed swamp forest prevailed, marked by the increase in fern spore representation. The later interstadial phase showed shorter vegetation successions, which commenced on the landward edge of a mangrove swamp forest. The mangrove was successively replaced by strand forest, as indicated by domination of Casuarina equisetifolia. The palynological assemblages in both the interstadial periods indicate similarity to the present-day coastal vegetation. This implies that during the interstadials the climate in the lowlands of Peninsular Malaysia and presumably throughout the equatorial region, was as that prevailing today. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
The occurrence of pronounced climate reversals during the last glacial termination has long been recognised in palaeoclimate records from both hemispheres and from high to low latitudes. Accurate constraint of both the timing and magnitude of events, such as the Younger Dryas and Antarctic Cold Reversal, is vital in order to test different hypotheses for the causes and propagation of abrupt climate change. However, in contrast to higher‐latitude regions, well‐dated records from the Tropics are rare and the structure of late‐glacial tropical climate remains uncertain. As a step toward addressing this problem, we present an in situ cosmogenic 3He surface exposure chronology from Nevado Coropuna, southern Peru, documenting a significant fluctuation of the ice margin during the late‐glacial period. Ten tightly clustered ages from a pair of moraines located halfway between the modern glacier and the Last Glacial Maximum terminus range from 11.9 to 13.9 ka and give an arithmetic mean age of 12.8 ± 0.7 ka (1σ). These data constitute direct evidence for a readvance, or prolonged stillstand, of glaciers in the arid Andes of southwestern Peru. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Multiproxy analysis of three littoral cores from western New Caledonia supports the hypothesis that the main controlling factors of environmental changes are sea-level change, ENSO variability and extra-tropical phenomena, such as the Medieval Warm Period (MWP) marked by a tendency for La Niña-like conditions in the tropical Pacific. The record starts during the late Holocene sea-level rise when the terrestrial vegetation indicated wet and cool conditions. The site was a coastal bay definitely transformed into a freshwater swamp at around 3400 cal yr BP, after the rapid drawdown of sea level to its current level. Sediments and foraminiferal assemblages indicated subsequent episodes of freshwater infillings, emersion or very high-energy conditions, likely related to climatic changes and mostly controlled by ENSO variability. Between 2750 and 2000 cal yr BP, relatively dry and cool climate prevailed, while wetter conditions predominated between ca. 1800 and 900 cal yr BP. The Rhizophoraceae peak between ca. 1080 and 750 cal yr BP, coeval with the MWP, may indicate a global phenomenon. Microcharcoal particles present throughout the record increased after 1500 cal yr BP, suggesting an anthropogenic source. From ca. 750 cal yr BP the appearance of current type of vegetation marks the human impact.  相似文献   

17.
In order to study the stability and dynamics of mountain rainforest and paramo ecosystems, including the biodiversity of these ecosystems, the Holocene and late Pleistocene climate and fire variability, and human impact in the southeastern Ecuadorian Andes, we present a high‐resolution pollen record from El Tiro Pass (2810 m elevation), Podocarpus National Park. Palaeoenvironmental changes, investigated by pollen, spores and charcoal analysis, inferred from a 127 cm long core spanning the last ca. 21 000 cal. yr BP, indicate that grass‐paramo was the main vegetation type at the El Tiro Pass during the late Pleistocene period. The grass‐paramo was rich in Poaceae, Plantago rigida and Plantago australis, reflecting cold and moist climatic conditions. During the early Holocene, from 11 200 to 8900 cal. yr BP, subparamo and upper mountain rainforest vegetation expanded slightly, indicating a slow warming of climatic conditions during this period. From 8900 to 3300 cal. yr BP an upper mountain rainforest developed at the study site, indicated by an increase in Hedyosmun, Podocarpaceae, Myrsine and Ilex. This suggests a warmer climate than the present day at this elevation. The modern subparamo vegetation became established since 3300 cal. yr BP at El Tiro Pass. Fires, probably anthropogenic origin, were very rare during the late Pleistocene but became frequent after 8000 cal. yr BP. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Pollen grains characteristic of tropical Northern Gondwana (Schrankipollis, Brenneripollis and Pennipollis peroreticulatus) have been recorded from the Cretaceous of Patagonia. They were recovered from the Late Albian–Cenomanian Kachaike Formation in Santa Cruz Province, southern Argentina. The palynological assemblages are dominated by gymnosperm pollen and bryophyte-pteridophyte spores, whereas angiosperms are poorly represented. The angiospermoid type Schrankipollis has not been reported previously from Argentina, and a new species S. kachaikensis is described. Two species of Brenneripollis (of uncertain affinity) and Pennipollis peroreticulatus (related to the Alismatales) are also reported. The first appearances of Pennipollis peroreticulatus are clearly diachronous from north to south, ranging from the Barremian in tropical regions to the Coniacian–Santonian in Antarctica. S. kachaikensis and P. peroreticulatus show restricted stratigraphic distributions through the Kachaike Formation and may be stratigraphically useful markers. A tetrad of Walkeripollis (related to modern Winteraceae) is also recognized. This is the oldest record of Winteraceae in the southern temperate region where the family lives today. Evidence for migration of Winteraceae from tropical Gondwana to Antarctica and Australia throughout South America, is provided by this new finding. The presence of tropical elements in the austral margin of South America gives support to previous studies on the expansion of warm temperatures towards high latitudes during the mid Cretaceous.  相似文献   

19.
Late-glacial-Holocene forest history of southern Isla Chiloé (latitude 43°10′ S) was reconstructed on the basis of pollen analysis in three profiles (Laguna Soledad, Laguna Chaiguata, Puerto Carmen). Prior to 12,500 yr B.P. pollen records are dominated by plant taxa characteristic of open habitats (Zone I). From 12,500 yr B.P. to the present, tree species predominate in the pollen records (Zones II–V). Between 12,500 and 9500 yr B.P. ombrophyllous taxa (Nothofagus, Podocarpus nubigena. Myrtaceae, Fitzroya/Pilgerodendron, and Drimys) are frequent in all pollen diagrams, suggesting a wetter and colder climate than the present. Between 9000 and 5500 yr B.P. Valdivian forest elements, such as Nothofagus dombeyi type, Weinmannia, and Eucryphia/Caldcluvia, dominate, indicating a period of drier and warmer climate. From 5500 yr B.P. onward, the expansion of mixed North Patagonian-Subantarctic forest elements and the increased frequence of Tepualia suggest increased rainfall and temperatures oscillating around the modern values.The change from open to forest vegetation (ca. 12,500 yr B.P.) probably represents the most pronounced climatic change in the record and can be interpreted as the glacial-postglacial transition in the study area.  相似文献   

20.
Helmens, K. F. & Engels, S. 2010: Ice‐free conditions in eastern Fennoscandia during early Marine Isotope Stage 3: lacustrine records. Boreas, 10.1111/j.1502‐3885.2010.00142.x. ISSN 0300‐9483. The traditional notion that Fennoscandia was glaciated throughout Marine Isotope Stages (MIS) 4–2, from c. 70 kyr BP to the deglaciation 15–10 kyr BP ago, has been challenged during the last decade. Recent studies have shown that climate and environmental settings during MIS 3 were more dynamic than previously assumed, and lacustrine sediment bodies indicate open‐water conditions for several sites in eastern Fennoscandia. In this study, three sediment sequences from western, eastern and northeast Finland are compared in detail with respect to their chronology, vegetation reconstruction and climatic inferences. OSL‐dating places the sediments in early MIS 3. Pollen evidence suggests the presence of isolated birch trees and open birch forest close to the retreating ice margin, in contrast to vegetation reconstructions from central Europe, which indicate tree‐less vegetation. Furthermore, reconstructions of climate using transfer functions have yielded surprising results, indicating present‐day summer temperatures in northeast Finland. The combined results suggest ice‐free and warm conditions in major parts of eastern Fennoscandia in early MIS 3, possibly during Greenland Interstadial (GIS) 14 around 53 kyr BP ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号