首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于jitter采样和曲波变换的三维地震数据重建   总被引:1,自引:3,他引:1       下载免费PDF全文
张华  陈小宏 《地球物理学报》2013,56(5):1637-1649
传统的地震勘探数据采样必须遵循奈奎斯特采样定理,而野外数据采样可能由于地震道缺失或者勘探成本限制,不一定满足采样定理要求,因此存在数据重建问题.本文基于压缩感知理论,利用随机欠采样方法将传统规则欠采样所带来的互相干假频转化成较低幅度的不相干噪声,从而将数据重建问题转为更简单的去噪问题.在数据重建过程中引入凸集投影算法(POCS),提出采用e-√x(0≤x≤1)衰减规律的阈值参数,构建基于曲波变换三维地震数据重建技术.同时针对随机采样的不足,引入jitter采样方式,在保持随机采样优点的同时控制采样间隔.数值试验表明,基于曲波变换的重建效果优于傅里叶变换,jitter欠采样的重建效果优于随机欠采样,最后将该技术应用于实际地震勘探资料,获得较好的应用效果.  相似文献   

2.
地震资料室内处理过程要求野外采集的地震资料越多越好, 而地震数据远距离快速传输又要求野外地震数据量越少越好. 为解决这一矛盾, 将基于曲波变换与压缩感知的数据重建技术引入到地震资料处理中, 对实际的野外不完整数据进行压缩重建. 结果表明, 曲波变换相对于傅里叶变换在数据压缩采样方法中占有一定的优势. 但是, 在对实际资料进行处理时, 首先要对资料中的面波进行处理, 同时还要在一定曲波基元尺寸的情况下, 考虑缺失道数量的影响. 最终, 得到的重建数据图像纹理清晰、 连接自然, 从而验证了该方法的实用性和有效性.   相似文献   

3.
基于压缩感知的Curvelet域联合迭代地震数据重建   总被引:1,自引:7,他引:1       下载免费PDF全文
由于野外采集环境的限制,常常无法采集得到完整规则的野外地震数据,为了后续地震处理、解释工作的顺利进行,地震数据重建工作被广泛的研究.自压缩感知理论的提出,相继出现了基于该理论的多种迭代阈值方法,如CRSI方法(Curvelet Recovery by Sparsity-promoting Inversion method)、Bregman迭代阈值算法(the linearized Bregman method)等.CSRI方法利用地震波形在Curvelet的稀疏特性,通过一种基于最速下降的迭代算法在Curvelet变换域恢复出高信噪比地震数据,该迭代算法稳定,收敛,但其收敛速度慢.Bregman迭代阈值法与CRSI最大区别在于每次迭代时把上一次恢复结果中的阈值前所有能量都保留到本次恢复结果中,从而加快了收敛速度,但随着迭代的进行重构数据中噪声干扰越来越严重,导致最终恢复出的数据信噪比低.综合两种经典方法的优缺点,本文构造了一种新的联合迭代算法框架,在每次迭代中将CRSI和Bregman的恢复量加权并同时加回本次迭代结果中,从而加快了迭代初期的收敛速度,又避免了迭代后期噪声干扰的影响.合成数据和实际数据试算结果表明,我们提出的新方法不仅迭代快速收敛稳定,且能得到高信噪比的重建结果.  相似文献   

4.
基于POCS方法指数阈值模型的不规则地震数据重建(英文)   总被引:5,自引:3,他引:5  
不规则地震数据会对地震多道处理技术的正确运行造成不良影响,降低地震资料的处理质量。本文将广泛用于图形图像重建的凸集投影方法应用到地震数据重建领域,实现规则样不规则道缺失数据的插值重建。对于整道缺失地震数据,将POCS迭代重建过程由时间域转移到频率域实现,避免每次迭代都对时间做正反Fourier变换,节约了计算量。在迭代过程中,阈值参数的选择方式对重建效率有重要影响。本文设计了两种阈值集合模型进行重建试验,试验结果表明:在相同重建效果下,指数型阈值集合模型可以有效减少迭代次数,提高重建效率。此外,分析了POCS重建方法的抗噪性能和抗假频性能。最后,理论模型和实际资料处理效果验证了本文重建方法的正确性和有效性。  相似文献   

5.
针对地震数据在采集处理过程中存在的随机噪声,本文从压缩感知的角度,给出了一种地震数据降噪方法.其基本思路是:首先对含有随机噪声地震数据通过离散余弦变换进行稀疏表示,然后选取随机高斯矩阵为测量矩阵,并计算出传感矩阵,在地震数据重构阶段,采用正交匹配追踪算法对地震数据进行重构;通过实验方法对比,本文方法的降噪效果在峰值信噪比、信噪比、均方误差指标上均优于对比方法,证明了本文方法对地震数据中的随机非平稳噪声有较好的压制效果,提高了地震数据的信噪比.  相似文献   

6.

压缩感知技术通常利用地震信号在某一变换域内的稀疏性质,将随机缺失的地震数据重建问题转化为L1正则化问题.本文首先通过Shearlet变换获得地震信号的稀疏性质,再将广义全变分(TGV)约束引入L1正则化模型,构建了基于Shearlet变换的双正则化模型用于重建地下介质的图像.与传统L1正则化方法相比,基于Shearlet变换的双正则化方法不仅考虑了信号的稀疏性,同时兼顾了地下介质结构的复杂性,可以较好的重建地下结构体的图像.最后采用交替方向乘子法(ADMM)求解所建模型,每个子问题均可得到显式解.数值实验对比了基于小波变换、Shearlet变换的L1正则化方法和TGV正则化方法,结果表明基于Shearlet变换的双正则化方法对于随机采样50%数据的情况具有较好的重建结果,同时对于有限范围的连续缺失数据的重建亦具有一定的有效性.

  相似文献   

7.
压缩感知技术通常利用地震信号在某一变换域内的稀疏性质,将随机缺失的地震数据重建问题转化为L1正则化问题.本文首先通过Shearlet变换获得地震信号的稀疏性质,再将广义全变分(TGV)约束引入L1正则化模型,构建了基于Shearlet变换的双正则化模型用于重建地下介质的图像.与传统L1正则化方法相比,基于Shearlet变换的双正则化方法不仅考虑了信号的稀疏性,同时兼顾了地下介质结构的复杂性,可以较好的重建地下结构体的图像.最后采用交替方向乘子法(ADMM)求解所建模型,每个子问题均可得到显式解.数值实验对比了基于小波变换、Shearlet变换的L1正则化方法和TGV正则化方法,结果表明基于Shearlet变换的双正则化方法对于随机采样50%数据的情况具有较好的重建结果,同时对于有限范围的连续缺失数据的重建亦具有一定的有效性.  相似文献   

8.
由于野外采集环境的限制,常常无法采集得到完整规则的野外地震数据,为后续地震处理、解释工作的顺利进行,需要进行地震数据重构。凸集投影(POCS)方法利用地震波形在Curvelet域的稀疏特性,可以重构出高信噪比地震数据,该迭代算法稳定,其收敛速度较快。但在地震数据恢复的时候,由于直达波和炮集上部空白区域的影响,随着迭代的进行,重构数据中噪声干扰越来越严重,导致最终恢复的地震数据信噪比较低。本文在实现POCS迭代阈值算法基础上,引入先验信息约束的思想对算法进行优化。通过先进行坐标映射的方法进行炮集插值,然后将其作为先验信息约束进行插值,可以有效地压制迭代噪音对重构地震波形数据的影响。通过合成地震炮记录与实际炮集进行测试,结果表明本文提出的改进方法可以明显改善重构地震数据的信噪比,并提高地震波场同相轴的连续性。  相似文献   

9.
随着页岩气勘探与开发的深入, 研究页岩裂隙的三维空间展布成为页岩岩石物理研究的必要步骤之一.但由于仪器的限制, 页岩切片在深度上具有不连续性, 以及数字岩心纵向上成像最小间隔与横向分辨率的不一致成为影响裂隙表征和数字岩石物理模拟精度提高的重要因素.为了更好的研究裂隙在三维的空间展布, 本文将curvelet稀疏变换与凸集投影(POCS)迭代算法有效结合, 实现三维数字岩心重建.首先对X射线扫描砂岩得到的三维数据体进行隔片抽稀, 利用本文方法实现三维数据体重建, 重建结果与完整数据体具有很好的一致性, 且优于现有方法(spgl1), 验证了新方法的有效性与先进性.其次对聚焦离子束扫描电镜(FIB-SEM)得到的纳米级页岩二维切片在深度上进行了加密重建, 获得纵向上成像最小间隔与横向分辨率基本一致的三维数字岩心, 由于仪器限制引起的页岩切片深度上的不连续性得到减弱, 裂隙展布更加清晰.砂岩CT图像以及页岩FIB-SEM成像数据的重建结果验证了本文方法的有效性与先进性.  相似文献   

10.
随着当今勘探难度的增加,地震数据处理的精度也逐步提升,因此,对数据的完整度也提出了更高的要求.本文基于形态分量分析,采用离散余弦变换(DCT)字典和Shearlet字典的组合形式用于地震数据恢复重建,相比于其他稀疏变换具有更高的稀疏性、更强的稀疏表示能力.在MCA框架下,首先通过对地震数据中的局部奇异分量与平滑状分量分别采用DCT字典和Shearlet字典进行稀疏表示;而后,在重建的算法中加入指数阈值模型和指数阈值函数的块坐标松弛(BCR)算法来得到各个分量;最后,将不同字典得到的结果合并得到最终重建结果.通过合成数据实验和实际数据实验均表明,该方法能够有效地重建缺失地震数据,并且重建精度高于Curvelet字典与DCT字典组合、单一Shearlet字典、Shearlet字典与Curvelet字典组合.同时,通过对含噪数据以及不同信噪比的数据处理结果均验证了该方法具有较强的适应性.  相似文献   

11.

地震数据规则化重构是地震资料处理十分重要的基础性工作.压缩感知理论打破了香农采样定理的制约,利用信号在某个变换域的稀疏特性重构出完整的信号,在地震数据重构领域得到了很好的应用.深反射地震剖面大都布置在地质构造比较复杂的区段,复杂的地质构造使深反射地震剖面上的波阻特征复杂,采用单一稀疏变换不能最有效地表征数据的内部结构特征.MCA(形态成分分析)方法将信号分解为几种形态特征区别明显的分量来逼近数据的内部复杂结构,但是对各成分简单的叠加仍然无法有效地描述复杂构造数据的各种特征.结合两种方法的优点,本文提出了一种新的基于压缩感知的重构算法框架,在MCA方法的基础上对各稀疏字典进行加权,在迭代中不断更新各个稀疏字典的权值系数,对信号内部的各种特征进行最优描述,从而实现对信号的高质量重构.模型测试和实际资料处理结果表明:基于压缩感知的加权MCA方法不仅可以对地质构造复杂的地震数据进行高效的插值重建,而且可以很好的消除空间假频.

  相似文献   

12.
基于泊松碟采样的地震数据压缩重建   总被引:1,自引:3,他引:1       下载免费PDF全文
唐刚  杨慧珠 《地球物理学报》2010,53(9):2181-2188
在地震资料处理领域,数据的压缩和重建是非常重要的问题,但往往由于数据的严重缺失或采样原因而达不到理想的效果.新发展起来的压缩感知理论为重建欠采样数据提供了可能,而选用合适的采样方法是其中的关键技术之一.本文基于傅里叶变换和压缩感知理论,采用泊松碟采样,对不完整地震数据进行恢复重建.数值实验表明,与传统的单纯随机采样方法相比,泊松碟采样方法在保持采样随机性的同时,使采样点的分布更加均匀,有效地调节了采样间距,从而达到更好的恢复效果,可以有效地指导地震数据采集设计及重建.  相似文献   

13.
刘洋  张鹏  刘财  张雅晨 《地球物理学报》2018,61(4):1400-1412

人工地震方法由于受到野外观测系统和经济因素等的限制,采集的数据在空间方向总是不规则分布.但是,许多地震数据处理技术的应用(如:多次波衰减,偏移和时移地震)都基于空间规则分布条件下的地震数据体.因此,数据插值技术是地震数据处理流程中关键环节之一.失败的插值方法往往会引入虚假信息,给后续处理环节带来严重的影响.迭代插值方法是目前广泛应用的地震数据重建思路,但是常规的迭代插值方法往往很难保证插值精度,并且迭代收敛速度较慢,尤其存在随机噪声的情况下,插值地震道与原始地震道之间存在较大的信噪比差异.因此开发快速的、有效的迭代数据插值方法具有重要的工业价值.本文将地震数据插值归纳为数学基追踪问题,在压缩感知理论框架下,提出新的非线性Bregman整形迭代算法来求解约束最小化问题,同时在迭代过程中提出两种匹配的迭代控制准则,通过有效的稀疏变换对缺失数据进行重建.通过理论模型和实际数据测试本文方法,并且与常规迭代插值算法进行比较,结果表明Bregman整形迭代插值方法能够更加有效地恢复含有随机噪声的缺失地震信息.

  相似文献   

14.
提高地震资料的分辨率是获得高分辨率地震剖面的基础,常规的处理方法对于提高地震资料分辨率虽有一定的效果,但却十分有限,难以达到资料解释的要求.对此本文将广义S变换理论与压缩感知理论相结合,提出了一种新的叠后地震资料处理方法.实现步骤为:将叠后地震数据进行广义S变换;利用压缩感知理论构建L1/2范数最优化模型;半阈值迭代法求得最优稀疏解得到更精确的时频域信息;能量重新分配补偿时频域弱信号能量;广义S反变换得到处理后的地震信号.理论模型和实际资料处理表明,与常规广义S变换提高分辨率处理相比,本文方法处理结果具有更好的效果,地震资料分辨率有了明显提高.  相似文献   

15.

在野外数据采集过程中,空间非均匀采样下的地震道缺失现象经常出现,为了不影响后续资料处理,必须进行高精度数据重建.然而大多数常规方法只能对空间均匀采样下的地震缺失道进行重建,而对于非均匀采样的地震数据则无能为力.为此本文在以往多尺度多方向二维曲波变换的基础上,首先引入非均匀快速傅里叶变换,建立均匀曲波系数与空间非均匀采样下地震缺失道数据之间的规则化反演算子,在L1最小范数约束下,使用线性Bregman方法进行反演计算得到均匀曲波系数,最后再进行均匀快速离散曲波反变换,从而形成基于非均匀曲波变换的高精度地震数据重建方法.该方法不仅可以重建非均匀带假频的缺失数据,而且具有较强的抗噪声能力,同时也可以将非均匀网格数据归为到任意指定的均匀采样网格.理论与实际数据的处理表明了该方法重建效果远优于非均匀傅里叶变换方法,可以有效地指导复杂地区数据采集设计及重建.

  相似文献   

16.
传统地震数据稀疏重建方法面临着:(1)叠前共炮点道集或CMP道集反射波为双曲线型同相轴,地震数据重建会损害有效波;(2)地震信号存在噪声和畸变,要求重建方法具有较好的噪声鲁棒性.针对这两个问题,提出一种基于L_1-L_1范数稀疏表示的共偏移距道集地震数据重建方法.该方法利用了共偏移距道集中地震波为水平同相轴,无道间时差,满足空间重建要求,和L_1-L_1范数稀疏表示具有较好的噪声鲁棒性.首先抽取共偏移距道集地震数据,并根据地震采集信息构造复合采样矩阵,然后采用L_1-L_1范数稀疏表示对数据稀疏重建后,再将数据反变换回共炮点道集或CMP道集,能够同时实现地震信号稀疏重建和随机噪声压制.理论模型和实际数据试算结果验证所提方法具有较好重建精度和噪声鲁棒性.  相似文献   

17.
受采集环境和经济因素的影响,地震数据在空间上往往存在道缺失的现象,严重影响后续资料解释的准确性。缺失的地震道破坏了完整数据的低秩性,因此,地震数据重建问题可以转化为秩最小化问题。核范数最小化(nuclear norm minimization, NNM)是经典的基于低秩约束的地震数据重建方法。但是,NNM是秩最小化的凸松弛,得到的只是原始秩最小化问题的次优解。基于log-sum函数(log-sum majorization minimization, LSMM)的方法使用非凸的log-sum函数代替秩函数用于地震数据重建,精度较高,但时间消耗较大。基于此,本文提出高效的非凸重建模型:基于非凸Geman函数的地震数据重建方法(nonconvex Geman low rank, NCGL),利用更近似秩函数的Geman函数代替核范数。根据Karush–Kuhn–Tucker(KKT)条件理论求解非凸问题,无需引入正则化参数。仿真与真实实验结果表明,非凸NCGL方法重建精度显著高于基于核范数最小化的奇异值阈值方法(singular value thresholding, SVT)和基于数据阈...  相似文献   

18.
基于非均匀Fourier变换的地震数据重建方法研究   总被引:1,自引:2,他引:1       下载免费PDF全文
不规则采样地震数据会对地震数据的多道处理造成严重影响,将非均匀Fourier变换和贝叶斯参数反演方法相结合,对不规则空间带限地震数据进行反演重建.对每一个频率依据最小视速度确定出重建数据的带宽,然后从不规则地震数据中估计出重建数据的空间Fourier系数.将不规则地震数据重建视为信息重建的地球物理反演问题,运用贝叶斯参数反演理论来估计Fourier系数.在反演求解时,使用共轭梯度算法,以保证求解的稳定性,加快解的收敛速度.理论模型和实际资料处理验证了本方法的有效性和实用性.  相似文献   

19.
3D高阶抛物Radon变换地震数据保幅重建   总被引:1,自引:2,他引:1       下载免费PDF全文
本文结合传统3D抛物Radon变换(PRT)和AVO数据正交多项式拟合,给出了3D高阶抛物Radon变换方法(HOPRT).该变换增加了描述AVO数据变化的梯度信息和曲率信息,拓展了传统3D抛物Radon变换方法,使其在具有AVO特征的数据重建中具有更高的准确度,从而提高AVO分析的可靠性.文中给出了3D高阶抛物Radon变换进行地震数据保幅重建的流程.理论模型和实际地震资料的重建结果显示了本文方法的优点.  相似文献   

20.
在气枪源探测过程中,由于各种干扰因素的影响,导致部分有效信号缺失或受随机干扰严重,为了重构出连续完整的数据,依据气枪源信号在傅里叶变换域中具有稀疏性的特点,构建了一种基于压缩感知(Compressive Sensing,简称CS)的缺失信号重建方法.首先进行数值模拟,并将该方法与传统的插值方法处理效果进行对比,对重建效...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号