首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
In this paper, we analyze the relations between photospheric vector magnetic fields, chromospheric longitudinal magnetic fields and velocity fields in a solar active region. Agreements between the photospheric and chromospheric magnetograms can be found in large-scale structures or in the stronger magnetic structures, but differences also can be found in the fine structures or in other places, which reflect the variation of the magnetic force lines from the photosphere to the chromosphere. The chromospheric superpenumbral magnetic field, measured by the Hline, presents a spoke-like structure. It consists of thick magnetic fibrils which are different from photospheric penumbral magnetic fibrils. The outer superpenumbral magnetic field is almost horizontal. The direction of the chromospheric magnetic fibrils is generally parallel to the transverse components of the photospheric vector magnetic fields. The chromospheric material flow is coupled with the magnetic field structure. The structures of the H chromospheric magnetic fibrils in the network are similar to H dark fibrils, and the feet of the magnetic fibrils are located at the photospheric magnetic elements.  相似文献   

2.
T. Moran  P. Foukal 《Solar physics》1991,135(1):179-191
We describe an electrograph instrument designed for measurement of macroscopic electric fields in solar plasmas, using the polarization dependence of line width in Stark-broadened hydrogen Paschen emission lines. Observations of quiescent prominences and limb chromosphere with our electrograph at the NSO/Sac Peak Evans Coronal Facility provide upper limits of 5–10 V cm–1 for transverse macroscopic electric fields in these structures, averaged over an area of about 5 × 7 arc sec. Random thermal motions of hydrogen ions across magnetic field lines generate a quasi-static electric field, which should be distinguishable from pressure broadening in the intensely magnetized chromosphere over a sunspot, given an electrograph sensitivity a factor 2–3 better than that achieved here. Future electrograph measurements of limb flares, post-flare loops and eruptive prominences, even at 5 V cm–1 sensitivity, could provide a useful new test of reconnection and discharge effects in such dynamic structures.  相似文献   

3.
In the present paper we present the results of measurement of magnetic fields in some sunspots at different heights in the solar atmosphere, based on simultaneous optical and radio measurements. The optical measurements were made by traditional photographic spectral observations of Zeeman splitting in a number of spectral lines originating at different heights in the solar photosphere and chromosphere. Radio observations of the spectra and polarization of the sunspot - associated sources were made in the wavelength range of 2–4 cm using large reflector-type radio telescope RATAN-600. The magnetic field penetrating the hot regions of the solar atmosphere were found from the shortest wavelength of generation of thermal cyclotron emission (presumably in the third harmonic of electron gyrofrequency). For all the eight cases under consideration we have found that magnetic field first drops with height, increases from the photosphere to lower chromosphere, and then decreases again as we proceed to higher chromosphere and chromosphere-corona transition region. Radio measurements were found to be well correlated with optical measurements of magnetic fields for the same sunspot. An alternative interpretation implies that different lines used for magnetic field measurements refer to different locations on the solar surface. If this is the case, then the inversion in vertical gradients of magnetic fields may not exist above the sunspots. Possible sources of systematic and random errors are also discussed.  相似文献   

4.
Sixteen years of WSO magnetogram data have been studied to determine the solar cycle variation and latitude dependence of the east-west inclination of photospheric magnetic field lines. East-west inclination is here defined as the angle between a field line and its local radial vector, as projected onto the plane of the latitude and line of sight. Inclination is determined by a least-squares fit of observed magnetic fields to a simple projection model, and is found to depend on polarity and to change with the solar cycle. Leading and following polarities are tipped towards each by about 9° and have an overall net tilt in the direction of rotation (to the west) of 0.6°. New cycles are seen to begin at high latitudes and to grow through the lower latitudes over approximately 5 years, providing evidence for an extended cycle length of 16–18 years.  相似文献   

5.
E. Haugen 《Solar physics》1969,9(1):88-101
The wavelength shifts of approximately 8000 absorption elements in the H-line from spectra of 66 different sunspot regions have been measured.The average velocity field in the chromosphere close to sunspots is determined. Inside 15000 km from the spot's penumbral rim the average velocity vector is directed towards the spot and downwards in the chromosphere; the angle with the horizontal direction is on the average equal to 20°. The magnitude of the average velocity vector shows a maximum of 6.8 ± 1.2 km/sec just outside the penumbral rim and decreases quickly with increasing distance from the spot. Outside 15000 km from the penumbral rim the average velocity vector is small (-0.7 km/sec) and directed nearly vertically outwards from the sun. No significant tangential component of the average velocity field is found.The deviations of the individual elements from the average velocity field are on the average larger than the value of the average velocity. The total rms deviation in the line of sight velocity is equal to 6.8 km/sec. Thus, a large number of elements, as used in this investigation, is required to give significant values of the average velocity vector.We have also observed velocities in the penumbra. The average velocity vector is here probably small and its direction uncertain. The rms deviation in the line of sight velocities observed in the penumbra is equal to 7.5 km/sec.  相似文献   

6.
Using a magnetograph, we examine four sunspots for evidence of a magnetic canopy at the penumbra/photosphere boundary. The penumbral edge is determined from the photometric intensity and is defined to correspond to the value of the average intensity minus twice the standard deviation from the average. From a comparison of the location of this boundary with the location of contours of the vertical and horizontal components of the magnetic field, we conclude that the data are best represented by canopy-type fields close to all four sunspots. There is some evidence that the magnetic inclination in the canopies is 5°–15° with respect to the horizontal and that the canopy base height lies in the middle/upper photosphere. The observations further suggest that the magnetic canopy of a sunspot begins at its outer penumbral boundary.  相似文献   

7.
R. Muller 《Solar physics》1976,48(1):101-102
It is confirmed that the penumbral bright grains are moving towards the sunspots umbra. At the umbra-penumbra boundary their horizontal velocity is about 0.5 km s–1 and their displacement is inclined downwards with an angle of 5° to 20°.  相似文献   

8.
We make a quantitative comparison between spectral vs filter measurement and analysis techniques for extraction of solar vector magnetic fields from polarimetric data using as a basis the accurately calibrated, high angular resolution Stokes profile data from the Advanced Stokes Polarimeter. It is shown that filter-based measurements deliver qualitative images of the field alignment for sunspots that are visually similar to images derived from the more detailed analysis of the Stokes profiles. However, quantitative comparison with least-squares fits to the full Stokes profiles show that both the strength of the field predicted by the filter-based analysis and its orientation contain substantial errors. These errors are largest for plage regions outside of sunspots, where the field strengths are inferred to be only a fraction of their true values, and errors in the orientation of 40–50° are common. Within sunspots, errors of 20° are commonplace. The greatest source of these errors is the inability of the filter-based measurements to account for the small fill fraction of magnetic fields or, equivalently, scattered light in the instrument, which reduce the degree of polarization. The uncertainties of the full profile fitting methods are also discussed, along with the errors introduced by coarser wavelength sampling of the observed Stokes profiles. The least-squares fitting procedure operates best when the profiles are sampled at least as frequently as one Doppler width of the line.On leave from the Instituto de Astrofísica de Canarias, La Laguna, Tenerife, Spain.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

9.
Engvold  O.  Jensen  E.  Andersen  B. N. 《Solar physics》1979,62(2):331-341
The kinematics of a loop system has been studied from high resolution Ca ii K line spectra and H filtergrams recorded at Oslo Solar Observatory.Emission features are seen to fall at supersonic velocities from the top of the arches towards the chromosphere. Our data are in agreement with the assumption of matter falling freely along a dipole type magnetic field of maximum height 100–150 thousand km. There is a slight asymmetry between positive and negative line shifts which can be accounted for as a tilt of the individual loops relative to the plane of the sky of 5–10°. The planes of the loops are also inclined by a small angle of approximately 15°. It appears that matter starts from rest at the top of the loops. An observed tilt of some emission features in the K line spectra may be explained by a gradient in the line-of-sight velocity with height caused by the curvature of the dipole type loops.  相似文献   

10.
First observations of the full Stokes vector in the upper chromosphere are presented. The He I 10830 Å line, which has been shown to give reliable measurements of the line-of-sight component of the magnetic field vector, has been used for this purpose. It is shown that the difference between the appearance of chromospheric and photospheric magnetic structures observed close to the solar limb is largely due to the difference in height to which they refer and projection effects. The observations do suggest, however, that the magnetic field above sunspot penumbrae is somewhat more vertical in the chromosphere than in the photosphere.The National Optical Astronomy Obervatories are operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation  相似文献   

11.
Fine dark H filaments fibrils form at the limb, apparently in most of the middle chromosphere corresponding to an altitude between 1500–2000 km and 4000 km. The space in between filaments is corona and the transition layer. The cool gas in fibrils is protected by the magnetic field against the conductive flux out of the hot corona. Therefore the fibrils stretch up to 4000 km where their temperature is about 18 000 K and the density about 5 × 109 cm–3. The gas in the fibrils is ionized by electronic collisions and by the external ultraviolet radiation. The second level of the hydrogen atoms in fibrils is populated by recombinations, electronic collisions and by Ly- quanta. The calculated optical thickness of the fibrils in H is about 1, it explains the absorption features on the spectroheliograms. The gas pressure in fibrils is lower than the coronal pressure, and the pressure equilibrium is achieved by a magnetic field of about 1.5–2 G. In the active regions the photospheric fields are stronger, therefore the fibrils in active regions are wider and show more contrast. The emission of the fibrils at the limb is explained by the scattering of the solar radiation. The temperature in arches reaching as high as 5000–6000 km, is stabilized near the top by the HeII emission. Thus the middle chromosphere is essentially a collection of magnetic arches.  相似文献   

12.
By comparison of photoelectric magnetograms with high resolution Hα pictures it is possible to formulate a set of rules by which the magnetic field may be derived directly from the filtergrams. This is possible because of the regularities of magnetic field configurations on the sun and because chromospheric morphology is determined by the magnetic field. Off-band pictures (preferably 0.5 Å red) show a well-defined enhanced chromospheric network, the boundaries of which coincide with the 5 G contour of longitudinal field on the Mt. Wilson magnetograms. The actual fields are presumably more concentrated along the dark structure of the network. Higher fields are marked by filled-in cells. Regions of predominantly transverse fields may be inferred from the absence of normal network structure and the presence of chromospheric fibrils. The quiet chromosphere is recognized by the presence of oscillatory motion and the absence of fibrils or strong network structure. Thus, the chromosphere may be divided into three types of regions: enhanced network, horizontal field, and quiet network. The polarity of the magnetic field may be recognized by plage-antiplage asymmetry; that is, the fact that only following magnetic fields show bright plage in the center of Hα.  相似文献   

13.
Leka  K.D.  Metcalf  Thomas R. 《Solar physics》2003,212(2):361-378
The full magnetic vector has been measured in both the photosphere and chromosphere across sunspots and plage in NOAA Active Region 8299. We investigate the vertical magnetic structure above the umbral, penumbral and plage regions using quantitative statistical comparisons of the photospheric and chromospheric magnetic data. The results include: (1) a general decrease in average magnetic flux density with height; (2) the direct detection of the superpenumbral canopy in the chromosphere; (3) values for dB/dz which are consistent with earlier investigations when derived from a straight difference between the two measurements, but which are somewhat small when derived from the B=0 condition, (4) a monolithic structure in the umbrae which extends well into the upper chromosphere, with a very complex and varied structure in penumbrae and plage, as evidenced by (5) a uniform magnetic scale height in the umbrae with an abrupt jump to widely varying scale heights in penumbral and plage regions. Further, we find (6) evidence that field extrapolations using the photospheric flux as the boundary may not agree with expectations or with observed coronal structures as well as those which use the chromospheric magnetic flux as the extrapolation starting point.  相似文献   

14.
Lotova  N.A.  Obridko  V.N.  Vladimirskii  K.V.  Bird  M.K.  Pätzold  M.  Sieber  W.  Güsten  R.  Korelov  O.A. 《Solar physics》1999,189(2):387-398
Long-term scintillation measurements of the solar wind formation zone at solar elongations ranging from 1°–8° (Sun impact parameters: 4–30 R ) were recorded using the water maser source IRC-20431 at the wavelength =1.35 cm during its annual solar occultations in December 1981–1998. Dramatic changes in the spatial dependence of the scintillation index were recorded over the course of the 11-year solar cycle. Markedly diminished scattering, attributed to a pronounced heliolatitude effect, was observed at the closest solar approach distances in the years around solar activity minimum. From parallel investigations of the solar magnetic field structure it was determined that the field strength at the source of the solar wind streamlines is the governing factor for the solar wind acceleration process. Particularly apparent in the scintillation data during solar activity minimum is the increasing role of the polar coronal holes with their associated open magnetic field structure. The dependence of the solar scattering intensity on heliolatitude fades in the years of high solar activity as the level of scintillations increases at polar latitudes.  相似文献   

15.
Peter Foukal 《Solar physics》1971,20(2):298-309
The physical characteristics of the H structures previously defined as fibrils and threads are studied. The interpretation of the fibrils as ends of flux tubes is useful in tracing the behavior of the transverse field component over the solar surface.The observed properties of fibrils and threads are consistent with the hypothesis that they are produced by a shock wave mechanism similar to that advanced by Parker to explain spicules. It is suggested that the undisturbed magnetic field in the chromosphere of an active region is confined to a thin sheath, while the field of the quiet regions extends into the corona.  相似文献   

16.
An estimate of the average magnetic field strength at the poles of the Sun from Mount Wilson measurements is made by comparing low latitude magnetic measurements in the same regions made near the center of the disk and near the limb. There is still some uncertainty because the orientation angle of the field lines in the meridional plane is unknown, but the most likely possibility is that the true average field strengths are about twice the measured values (0–2 G), with an absolute upper limit on the underestimation of the field strengths of about a factor 5. The measurements refer to latitudes below about 80°.  相似文献   

17.
In this paper we explore techniques to identify sources of electric current systems and their channels of flow in solar active regions. Measured photospheric vector magnetic fields (VMF) together with high-resolution white-light and H filtergrams provide the data base to derive the current systems in the photosphere and chromosphere. Simple mathematical constructions of fields and currents are also adopted to understand these data. As an example, the techniques are then applied to infer current systems in AR 2372 in early April 1980. The main results are: (i) In unipolar sunspots the current density may reach values of 103 CGSE, and the Lorentz force on it can accelerate the Evershed flow, (ii) Spots exhibiting significant spiral pattrn in the penumbral filaments are the sources of vertical major currents at the photospheric surface, (iii) Magnetic neutral lines where the transverse field was strongly sheared were channels along which strong current system flows, (iv) The inferred current systems produced oppositely-flowing currents in the area of the delta configuration that was the site of flaring in AR 2372.  相似文献   

18.
Obridko  V.N.  Shelting  B.D. 《Solar physics》1999,187(1):185-205
The structure and variations of open field regions (OFRs) are analyzed against the solar cycle for the time interval of 1970–1996. The cycle of the large-scale magnetic field (LSMF) begins in the vicinity of maximum Wolf numbers, i.e. during the polar field reversal. At the beginning of the LSMF cycle, the polar and mid-latitude magnetic field systems are connected by a narrow bridge, but later they evolve independently. The polar field at the latitudes above 60° has a completely open configuration and fills the whole area of the polar caps near the cycle minimum of local fields. At this time, essentially all of the open solar flux is from the polar caps. The mid-latitude open field regions (OFRs) occur at a latitude of 30–40° away from solar minimum and drift slowly towards the equator to form a typical 'butterfly diagram' at the periphery of the local field zone. This supports the concept of a single complex – 'large-scale magnetic field – active region – coronal hole'. The rotation characteristics of OFRs have been analyzed to reveal a near solid-body rotation, much more rigid than in the case of sunspots. The rotation characteristics are shown to depend on the phase of the solar cycle.  相似文献   

19.
Spectroheliograms obtained in extreme ultraviolet (EUV) lines and the Lyman continuum are used to determine the rotation rate of the solar chromosphere, transition region, and corona. A cross-correlation analysis of the observations indicates the presence of differential rotation through the chromosphere and transition region. The rotation rate does not vary with height. The average sidereal rotation rate is given by (deg day–1) = 13.46 - 2.99 sin2 B where B is the solar latitude. This rate agrees with spectroscopic determinations of the photospheric rotation rate, but is slower by 1 deg day–1) = 13.46 - 2.99 sin2 than rates determined from the apparent motion of photospheric magnetic fields and from the brightest points of active regions observed in the EUV. The corona does not clearly show differential rotation as do the chromosphere and transition region.  相似文献   

20.
Y. C. Whang 《Solar physics》1970,14(2):489-502
This paper presents a continued study of the two-dimensional guiding-center model of the solar wind interaction with the Moon. The characteristics theory and the computational method are discussed. The magnetic permeability of plasma is (1 + /2)–1 in the solar wind flow upstream of the Moon, and it changes to 1 in the void region of the lunar wake. The gradual change of the magnetic permeability in the penumbral region from the interplanetary condition to the void condition is explained as the source of field perturbations in the lunar wake. Perturbations of the magnetic field propagate as magnetoacoustic waves in a frame of reference moving with the plasma flow. Computer solutions were obtained to show that (i) the two principal perturbations of the magnetic field in the lunar wake (the umbral increase and the penumbral decrease) are confined to a region bounded by a Mach cone tangent to the lunar body, and (ii) the penumbral increases occur outside the lunar Mach cone. Computer solutions are also used to identify the source of field perturbations and to simulate the solar wind-moon interaction under varying interplanetary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号