首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
青藏高原有效辐射任意时段总量的气候计算方法探讨   总被引:2,自引:0,他引:2  
本文在分析常见经验公式优缺点的基础上,讨论了有效辐射的计算方法问题。根据简单的物理考虑,从几种计算方案的比较中提出了计算青藏高原有效辐射任意时段总量的经验公式。该法具有意义明确、计算简便、精确度较高等优点,最适于高原面上推广。根据此式已计算并绘制出有效辐射日总量以及三日、候、旬、月总量的样图。  相似文献   

2.
利用东南极高原熊猫-1自动气象站2011年2月—2012年1月观测的辐射资料和相关资料,对辐射分量和辐射平衡的季节变化进行了研究。结果表明,夏季是东南极高原获得太阳能的主要时段,总辐射通量夏季平均为365.0 W/m2,总量达到2752.1 MJ/m2,占全年总辐射量的58%。各个季节均能出现总辐射瞬时值大于大气顶水平总辐射,春季发生频率最高,冬季最小,总辐射平均日变化呈单峰型。大气长波辐射除夏季外,日变化不明显。冰雪面长波辐射除冬季外,各季节平均日变化呈明显的单峰单谷型。净辐射12月和1月为很小的正值,其他月份为负值。年平均净辐射为 -8.7 W/m2,表明地表相对于大气为冷源。该站的辐射平衡特征与其他南极内陆高原站相似,雪面具有强烈的辐射冷却效应,导致净辐射绝对值都小于下降风区。  相似文献   

3.
青藏高原地区有效辐射的计算及其分布特征   总被引:6,自引:4,他引:6  
本文利用1982年8月—1983年7月在青藏高原地区观测得到的有效辐射资料,讨论了高原地区有效辐射的气候计算方法,並根据拟合得到的气候计算公式,绘制了高原地区有效辐射的年、月分布图。结果表明,全年有效辐射的分布形势是:高原西部为有效辐射的高值区,由西向东逐渐减少,四川盆地为低位区。随着季节的变化,高低值中心略有偏移。  相似文献   

4.
本文在讨论并验证大气逆辐射和地表有效辐射计算方法的基础上,计算并分析了两者在青藏高原及其周围地区的气候特征。结果表明,大气逆辐射和有效辐射的分布形势与高原地形有很大的一致性,高原主体分别为大气逆辐射的低中心和有效辐射的高中心。季节变化对大气逆辐射分布形势影响不大,而对有效辐射分布的影响较大,可造成高值中心的位移。最后,文中还就大气逆辐射和有效辐射的年变化问题作了讨论。  相似文献   

5.
该文利用TOGA-COARE强化观测期(IOP)所获得的辐射观测资料(1992年11月10日—1993年2月18日),对考察点(2°15′S,158°00′E)的辐射分量进行了分析,其中包括总辐射、直接辐射、散射辐射、海表长波辐射、大气逆辐射、海表反射辐射及其反照率、净辐射及有效辐射。结果表明:和其它地区(如高原)比较,观测点的总辐射、直接辐射均很强;反射率小,晴天平均为0.04—0.05,阴天为0.06—0.08;海表长波辐射大而日变化小,大气逆辐射强而日变化大;有效辐射小而净辐射大。  相似文献   

6.
青藏高原地面总辐射的地理分布及其季节变化特征   总被引:1,自引:0,他引:1  
本文利用日照百分率和卫星云图云量与地面总辐射的关系,分别建立了经验计算公式,並绘制了1982年8月—1983年7月青藏高原地面总辐射旬、月总量分布图。受海拔高度的影响,在青藏高原上形成一自成体系的总辐射高值区,它在一年内可以分成雨季型(7—9月)和干季型(10—6月)两种基本分布型式。它们之间的转换与高原自然天气季节的转换完全一致。青藏高原地面总辐射场季节变化的关键是高值中心位置和范围的变化,它的变化不仅改变整个高原上地面总辐射的地理分布特征,而且还与高原地面热低压的位置、范围变化密切相关。  相似文献   

7.
太阳辐射能的研究,愈来愈受到人们的重视。本文讨论了太阳直接辐射和散射辐射候总量的计算方法,并分析了本省的光能利用率和光合生产潜力。 一、直接辐射和散射辐射候总量的计算 碧空条件下,直接辐射和散射辐射日总量的理论计算式可写成:  相似文献   

8.
中国地表净辐射的气候学研究   总被引:5,自引:0,他引:5  
本文根据作者提出的净辐射各分量的气候学计算方法,计算出全国223站的净辐射及其各分量的通量密度,并分析其在全国的分布特征。指出青藏高原南部雅鲁藏布江流域、内蒙高原东部为稳定的高中心,川黔山地为低中心。随着季节转移,地表净辐射分布形势有所变动。各地净辐射年变化曲线形式,特别是最大值出现月份与雨季出现早晚有很大关系。辐射平衡各分量的相对计算误差分别为:总辐射2.7%;地表反射率4.0%;有效辐射9.4%;净辐射8.9%。  相似文献   

9.
利用昌吉市1961—1997年的逐日气候资料,对昌吉市1961—1997年多年平均逐日太阳总辐射进行了气候学计算,并分析了其变化特征和变化趋势,结果表明:昌吉市太阳总辐射多年平均年日总量为22.82MJ.m-2.d-1,太阳总辐射在8~9月份最高,12月份最低,昌吉市的太阳总辐射呈逐年下降趋势。  相似文献   

10.
1983年夏季青藏高原地区的地面和大气加热场   总被引:3,自引:3,他引:3  
本文利用1982年8月—1983年7月在青藏高原所取得的太阳辐射观测资料,计算和分析了高原主体78个站夏季地面和大气的加热场。结果表明:1983年夏季,高原地区地面加热场为较强的热源,高原主体的最大加热中心在东南部,林芝和甘孜各有一个地面热源中心;地面加热场强度最大值在6月和7月出现。4—9月高原主体为大气热源,最大热源中心位于高原东部和中部,最大热源强度在7月出现。在大气总加热中,高原东部以降水潜热为主,高原中部、西部和南部则以地面有效辐射为主。  相似文献   

11.
光合有效辐射(PAR)在不同的陆地生态系统模型中都是重要的输入参数,直接利用卫星遥感数据估算光合有效辐射有利于在空间上强化空间信息的连续性与差异性。针对复杂地形条件下遥感估算模型参数存在的不确定性,以及遥感获取的瞬时PAR难以满足实际应用需求的问题,本研究在岷江上游地区开展了复杂地形下光合有效辐射的遥感估算研究。利用MODIS标准大气产品,采用简化的大气辐射传输模型,综合考虑复杂地形下太阳辐射入射角的变化以及地形遮蔽和邻近地形辐射增强的作用,完成了对瞬时PAR估算结果的地形校正,并通过线性插值方法得到了PAR日总量数据。将估算得到的岷江上游2013年22个晴空天气下的PAR与中国科学院茂县山地生态系统定位研究站同期实测数据的对比显示,瞬时光合有效辐射平均估算误差为7.26%,日总量数据的平均估算误差也为7.26%。结果表明,该模型反演估算瞬时光合有效辐射和时间尺度上推至PAR日总量都能够较好的适用岷江上游的复杂地形条件。  相似文献   

12.
广州地区太阳分光辐射的某些变化特征   总被引:1,自引:0,他引:1       下载免费PDF全文
利用广州地区1985—1990年的太阳分光辐射的连续观测资料(观测角度为23°11′),研究了广州地区紫外辐射、可见光辐射(光合有效辐射)、近红外辐射的某些特征。结果指出,每年7—10月份各分光辐射及总辐射总量较大。月总辐射中可见光辐射占总辐射的百分比年平均为47.3%,相应的紫外辐射和近红外辐射分别占7.1%和45.6%。文中还分析了晴天条件下分光辐射的变化和1990年紫外辐射变化的某些特征,并分析和讨论了分光辐射与云量、日照时间等因子的相关。  相似文献   

13.
青藏高原冬小麦田辐射能量收支的初步研究   总被引:7,自引:0,他引:7       下载免费PDF全文
通过对青藏高原冬小麦田净全辐射各分量的观测资料分析,论述了净全辐射及其各分量的日变化特征;计算得出冬小麦抽穗—乳熟期麦田平均反射率为13.3%,净全辐射占总辐射百分率:白天75%,包括夜间67.4%;指出了净全辐射和总辐射间存在良好的线性关系,给出了由总辐射计算净全辐射的经验公式。  相似文献   

14.
青藏高原地表净辐射的气候学研究   总被引:7,自引:2,他引:7  
根据作者提出的地表净辐射各分量的气候学计算方法,计算出青藏高原及其周边地区173站的净辐射和其各分量的年,月平均通量密度,并分析其地理分布特征。指出高原主体为总辐射,有效辐射的高值区,地表净辐射场在冬,夏季有较大差异。冬季为一弱正值区,相对低中心呈块状散布在祁连山区等几个地区;夏季因夜雨及地表湿润的缘故,高原大部地区的地表净辐射反有加强。各地净辐射年变化基本形式与总辐射相似。有效辐射年变化一般呈双  相似文献   

15.
格尔木辐射站是青海省唯一的太阳辐射观测一级站,地处柴达木盆地,太阳总辐射及地表反射辐射均较强.1993—2011年19 a的观测结果表明:反射辐射时总量的变化规律与总辐射时总量同步,只是量值比较小,总辐射瞬时最大值为1 596 W/m2,反射辐射瞬时最大值为383 W/m2;总辐射日总量、反射辐射日总量的年变化曲线呈不规则的正弦波曲线变化过程,两者变化趋势完全一致;总辐射日总量、反射辐射日总量的年变化、年际变化与日照时数相同,说明日照时数是太阳总辐射、反射辐射的重要影响因素之一;总辐射日总量、反射辐射日总量均是夏季>秋季>春季>冬季,反射比是冬季>春季>秋季>夏季;反射比分布主要与太阳高度角的变化有关,反射比的大小取决于地面的性质和状态,地面被积雪覆盖时,各时及日反射比值明显大于晴天和土壤潮湿的时期.  相似文献   

16.
本文在上文基础上,进一步探讨了地面有效辐射的经验计算方法。根据Берлянд,М.Е.和Берлянд,Т.Г.理论公式推导出简化的经验公式。该式结构合理,使用方便。计算全国101个站的有效辐射与[1]的计算结果基本一致。文中还给出了全年各季代表月份地面有效辐射的全国分布图,并对地面有效辐射的年变化进行了分型和区划。我国有效辐射分布的一般规律是高原大于平原;干燥区大于湿润区;北方地区夏季大于冬季;青藏高原东南部地区冬季大于夏季;江淮流域的广大地区全年变化很小。  相似文献   

17.
大气臭氧总量的经验计算方法   总被引:1,自引:0,他引:1  
依据臭氧生消与紫外辐射(UV)能量利用相互作用的观点,考虑与臭氧有关的主要因子UV、大气中物质在化学和光化学反应中对UV能量的吸收、气溶胶粒子的散射等,在分析1990—1992年臭氧总量、太阳辐射、气象资料的基础上,建立了计算臭氧总量的经验模式,其优点是所用资料均可由常规气象站获得。结果表明,计算值与观测值符合得比较好。利用该经验模式计算了北京地区1979年1月—1996年6月的臭氧总量,计算值与观测值同样比较一致,二者相对偏差的最大值、最小值、平均值分别为15.2%、0.05%和4.9%,相对偏差在±10%之内的比例为91.4%,因而该经验模式是合理、可行的。1991年之后北京地区臭氧的下降与Pinatubo火山气溶胶的影响有关。  相似文献   

18.
农田光合有效辐射观测与分析   总被引:13,自引:0,他引:13  
董振国  于沪宁 《气象》1983,9(7):23-24
目前,农业气候资源调查和估算农田光合生产潜力,都需要知道某一地区光合有效辐射年、季总量及变化特征。我们于1980—1982年在河北省栾城县良种场观测太阳总辐射、光合有效辐射和光照度,对石家庄地区光合有效辐射特征和可见光与太阳总辐射的比例关系,得出了初步结论。  相似文献   

19.
熊效振  王庚辰 《大气科学》1993,17(5):611-620
本文在充分考虑太阳紫外辐射在大气中传输的物理过程的基础上,引入局地地面气压、臭氧和地表反照率的时空变化,利用Delta-Eddington近似法计算了中国地区冬季(1月)和夏季(7月)晴天时地面太阳紫外辐射(0.290—0.400μm)和紫外B辐射(0.290—0.325μm)的分布,并进一步计算出臭氧总量减少5%、15%时紫外B的变化.结果指出,由于臭氧总量的减少,中国北部地区紫外B的增加比南部地区显著.平均而言,臭氧总量减少1%时,冬季紫外B将增加1%左右,夏季紫外B将增加0.6%—0.7%.  相似文献   

20.
有效辐射作为地表辐射平衡的重要组成部分,其对大气的加热对辐射平衡,能量平衡以及周边大气环流起着重要的作用。基于2000-2014年的Aqua/CERES卫星产品地表长波辐射及其他相关参数,研究了青藏高原(下称高原)地区全天气和晴天两个不同条件下地表有效辐射的时空分布及其成因。结果表明:在高原地区有效辐射呈现出西部地区较大,东南部较小的空间分布。由于高原有效辐射的变化存在区域性的不同,应用经验正交分解方法将高原分为高原西部边缘(Ⅰ区)、中西部腹地(Ⅱ区)、东北(Ⅲ区)和东南(Ⅳ区)4个气候区。有效辐射与地表向上长波辐射的增加(减弱)趋势基本一致,而大气逆辐射的改变对有效辐射的影响在不同气候分区的不同季节呈现出不同的变化趋势,且云通过增加大气逆辐射进而减小有效辐射。在高原中西部腹地(Ⅱ区)以冷平流为主,相对湿度偏低,而在其他三个地区则以暖平流为主,相对湿度偏高。温度平流和大气水汽等因子均通过影响大气逆辐射进而影响有效辐射。研究结果可为认识高原整体非绝热加热特征及影响机理提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号