首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Assessment of vegetation water content is critical for monitoring vegetation condition, detecting plant water stress, assessing the risk of forest fires and evaluating water status for irrigation. The main objective of this study was to investigate the performance of various mono- and multi-variate statistical methods for estimating vegetation water content (VWC) from hyper-spectral data. Hyper-spectral data is influenced by multi-collinearity because of a large number of (independent) spectral bands being modeled by a small number of (dependent) biophysical variables. Therefore, some full spectrum methods that are known to be suitable for analyzing multi-collinear data set were chosen. Canopy spectral reflectance was obtained with a GER 3700 spectro-radiometer (400–2400 nm) in a laboratory setting and VWC was measured by calculating wet/dry weight difference per unit of ground area (g/m2) of each plant canopy (n = 95). Three multivariate statistical methods were applied to estimate VWC: (1) partial least square regression, (2) artificial neural network and (3) principal component regression. They were selected to minimize the problem related to multi-collinearity. For comparison, uni-variate techniques including narrow band ratio water index (RWI), normalized difference water index (NDWI), second soil adjusted vegetation index (SAVI2) and transferred soil adjusted vegetation index (TSAVI) were applied. For each type of vegetation index, all two-band combinations were evaluated to determine the best band combination. Validation of the methods was based on the cross validation procedure and using three statistical indicators: R2, RMSE and relative RMSE. The cross-validated results identified PLSR as the regression model providing the most accurate estimates of VWC among the various methods. The result revealed that this model is highly recommended for use with multi-collinear datasets (RCV2=0.94, RRMSECV = 0.23). Principal component regression exhibited the lowest accuracy among the multivariate models (RCV2=0.78, RRMSECV = 0.41).  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
The study shows that leaf area index (LAI), leaf chlorophyll content (LCC) and canopy chlorophyll content (CCC) can be mapped in a heterogeneous Mediterranean grassland from canopy spectral reflectance measurements. Canopy spectral measurements were made in the field using a GER 3700 spectroradiometer, along with concomitant in situ measurements of LAI and LCC. We tested the utility of univariate techniques involving narrow band vegetation indices and the red edge inflection point, as well as multivariate calibration techniques, including stepwise multiple linear regression and partial least squares regression. Among the various investigated models, CCC was estimated with the highest accuracy (, ). All methods failed to estimate LCC (), while LAI was estimated with intermediate accuracy ( values ranged from 0.49 to 0.69). Compared with narrow band indices and red edge inflection point, stepwise multiple linear regression generally improved the estimation of LAI. The estimations were further improved when partial least squares regression was used. When a subset of wavelengths was analyzed, it was found that partial least squares regression had reduced the error in the retrieved parameters. The results of the study highlight the significance of multivariate techniques, such as partial least squares regression, rather than univariate methods such as vegetation indices in estimating heterogeneous grass canopy characteristics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号