首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Foreland basin strata provide an opportunity to review the depositional response of alluvial systems to unsteady tectonic load variations at convergent plate margins. The lower Breathitt Group of the Pocahontas Basin, a sub‐basin of the Central Appalachian Basin, in Virginia preserves an Early Pennsylvanian record of sedimentation during initial foreland basin subsidence of the Alleghanian orogeny. Utilizing fluvial facies distributions and long‐term stacking patterns within the context of an ancient, marginal‐marine foreland basin provides stratigraphic evidence to disentangle a recurring, low‐frequency residual tectonic signature from high‐frequency glacioeustatic events. Results from basin‐wide facies analysis, corroborated with petrography and detrital zircon geochronology, support a two end‐member depositional system of coexisting transverse and longitudinal alluvial systems infilling the foredeep during eustatic lowstands. Provenance data suggest that sediment was derived from low‐grade metamorphic Grenvillian‐Avalonian terranes and recycling of older Palaeozoic sedimentary rocks uplifted as part of the Alleghanian orogen and Archean‐Superior‐Province. Immature sediments, including lithic sandstone bodies, were deposited within a SE‐NW oriented transverse drainage system. Quartzarenites were deposited within a strike‐parallel NE‐SW oriented axial drainage, forming elongate belts along the western basin margin. These mature quartzarenites were deposited within a braided fluvial system that originated from a northerly cratonic source area. Integrating subsurface and sandstone provenance data indicates significant, repeated palaeogeographical shifts in alluvial facies distribution. Distinct wedges comprising composite sequences are bounded by successive shifts in alluvial facies and define three low‐frequency tectonic accommodation cycles. The proposed tectonic accommodation cycles provide an explanation for the recognized low‐frequency composite sequences, defining short‐term episodes of unsteady westward migration of the flexural Appalachian Basin and constrain the relative timing of deformation events during cratonward progression of the Alleghanian orogenic wedge.  相似文献   

2.
Models to explain alluvial system development in rift settings commonly depict fans that are sourced directly from catchments formed in newly uplifted footwalls, which leads to the development of steep-sided talus-cone fans in the actively subsiding basin depocentre. The impact of basin evolution on antecedent drainage networks orientated close to perpendicular to a rift axis, and flowing over the developing hangingwall dip slope, remains relatively poorly understood. The aim of this study is to better understand the responses to rift margin uplift and subsequent intrabasinal fault development in determining sedimentation patterns in alluvial deposits of a major antecedent drainage system. Field-acquired data from a coarse-grained alluvial syn-rift succession in the western Gulf of Corinth, Greece (sedimentological logging and mapping) has allowed analysis of the spatial distribution of facies associations, stratigraphic architectural elements and patterns of palaeoflow. During the earliest rifting phase, newly uplifted footwalls redirected a previously established fluvial system with predominantly southward drainage. Footwall uplift on the southern basin margin at an initially relatively slow rate led to the development of an overfilled basin, within which an alluvial fan prograded to the south-west, south and south-east over a hangingwall dip slope. Deposition of the alluvial system sourced from the north coincided with the establishment of small-scale alluvial fans sourced from the newly uplifted footwall in the south. Deposits of non-cohesive debris flows close to the proposed hangingwall fan apex pass gradationally downstream into predominantly bedload conglomerate deposits indicative of sedimentation via hyperconcentrated flows laden with sand- and silt-grade sediment. Subsequent normal faulting in the hangingwall resulted in the establishment of further barriers to stream drainage, blocking flow routes to the south. This culminated in the termination of sediment supply to the basin depocentre from the north, and the onset of underfilled basin conditions as signified by an associated lacustrine transgression. The evolution of the fluvial system described in this study records transitions between three possible end-member types of interaction between active rifting and antecedent drainage systems: (a) erosion through an uplifted footwall, (b) drainage diversion away from an uplifted footwall and (c) deposition over the hangingwall dip slope. The orientation of antecedent drainage pathways at a high angle to the trend of a developing rift axis, replete with intrabasinal faulting, exerts a primary control on the timing and location of development of overfilled and underfilled basin states in evolving depocentres.  相似文献   

3.
The Salar de Atacama forms one of a series of forearc basins developed along the western flank of the Central Andes. Exposed along the northwest margin of the basin, a salt‐cored range, the Cordillera de la Sal, records the Mid‐Miocene to recent sedimentological and structural development of this basin. Sediments of the Mid‐Miocene Vilama Formation record the complex interaction between regional/local climate change, halokinesis and compressional deformation. This study reveals how these factors have controlled the facies development and distribution within the Salar de Atacama. Detailed sedimentary logging, cross‐sections and present day geomorphology through the northern Cordillera de la Sal have been used to establish a lithostratigraphy, chronostratigraphy and the regional distribution of the Vilama Formation. The Vilama Formation documents an increase in aridity with a hiatus in sedimentation from Mid‐Miocene to 9 Ma with initial uplift of the Cordillera de la Sal. From 9 Ma to 8.5 Ma deposition of a meandering fluvial system is recorded followed by a rapid decrease in sedimentation till 6 Ma. From 6 to 2 Ma, the deposition of extensive palustrine carbonates and distal alluvial–mudflat–lacustrine demonstrates the existence of an extensive lake within the Salar de Atacama. Post 2 Ma, the lake decreased in size and braided alluvial gravels associated with alluvial fans were widespread through the region suggesting a final shift to hyperarid conditions. By comparing the Vilama Formation with similar age facies throughout northern Chile and southern Peru, several shifts in climate are recognized. Climate signatures within northern Chile appear to be largely diachronous with the last regional event in the Mid‐Miocene. Since that time, humid events have been restricted to either Precordillerian basins or the Central Atacama. Within the Central Atacama, the final switch to hyperarid conditions was not till the earliest Pleistocene, much later than previously estimated within the region.  相似文献   

4.
The study of source‐to‐sink systems relates long‐term variations in sediment flux to morphogenic evolution of erosional–depositional systems. These variations are caused by an intricate combination of autogenic and allogenic forcing mechanisms that operate on multiple time scales – from individual transport events to large‐scale filling of basins. In order to achieve a better understanding of how these mechanisms influence morphological characteristics on different scales, 29 submodern source‐to‐sink systems have been investigated. The study is based on measurements of morphological parameters from catchments, shelves and slopes derived from a ∼1 km global digital elevation model dataset, in combination with data on basin floor fans, sediment supply, water discharge and deposition rates derived from published literature. By comparing various morphological and sedimentological parameters within and between individual systems, a number of relationships governing system evolution and behaviour are identified. The results suggest that the amount of low‐gradient floodplain area and river channel gradient are good indicators for catchment storage potential. Catchment area and river channel length is also related to shelf area and shelf width, respectively. Similarly to the floodplain area, these parameters are important for long‐term storage of sediment on the shelf platform. Additionally, the basin floor fan area is correlative to the long‐term deposition rate and the slope length. The slope length thus proves to be a useful parameter linking proximal and distal segments in source‐to‐sink systems. The relationships observed in this study provide insight into segment scale development of source‐to‐sink systems, and an understanding of these relationships in modern systems may result in improved knowledge on internal and external development of source‐to‐sink systems over geological time scales. They also allow for the development of a set of semi‐quantitative guidelines that can be used to predict similar relationships in other systems where data from individual system segments are missing or lacking.  相似文献   

5.
The concept of‘syntectonic’ conglomerate is based on the idea that gravel progradation is mainly generated by an increase in tectonic uplift and erosion of a source area with attendant increase in sediment flux supplied to a basin. However, other mechanisms, such as changes in basin subsidence rates, sorting of supplied sediment, and capability of transporting streams, can also lead to progradation and be difficult to distinguish from a syntectonic origin. Here we use our previously developed model to help understand the origin of gravel progradation in three Neogene alluvial basins - the Bermejo Basin of Argentina, the Himalayan Foreland Basin, and the San Pedro Basin of southern Arizona - all of which have available high-resolution magnetostratigraphy. Interpretation of the origin of gravel progradation in these basins begins with calculation of basin equilibrium time, which is the time-scale required for the streams to reach a steady-state profile, assuming constant conditions. We then compare the time-scale of the observed changes in the basin with the equilibrium time to determine if and how the model can be applied to the stratigraphic record. Most of the changes we have studied occur on time scales longer than the equilibrium time (‘slow variations’), in which case the key to interpretation is the relationship between overall grain-size change and sedimentation rate in vertical sections. Of the three examples studied only one, the Bermejo Basin, is consistent with the traditional model of syntectonic progradation. Overall progradation in the two other basins is most consistent with a long-term reduction in basin subsidence rates. In addition, short-term variation in diffusivity or sediment flux, probably climatically driven, is the most likely control of small-scale progradation of gravel tongues in the San Pedro Basin. These results, along with observations from other basins, suggest that subsidence is clearly an important control on clastic progradation on ‘slow’ time scales (i.e. generally a million years or more). If subsidence rates are directly linked to tectonic events, then subsidence-driven progradation marks times of tectonic quiescence and is clearly not syntectonic in the traditional sense. These examples show that the model can be useful in interpreting the rock record, particularly when combined with other traditional basin-analysis techniques. In particular, our results can be used to help discriminate between clastic progradation due to tectonic origin and progradation resulting from other mechanisms in alluvial basins.  相似文献   

6.
The Dzereg Basin is an actively evolving intracontinental basin in the Altai region of western Mongolia. The basin is sandwiched between two transpressional ranges, which occur at the termination zones of two regional‐scale dextral strike‐slip fault systems. The basin contains distinct Upper Mesozoic and Cenozoic stratigraphic sequences that are separated by an angular unconformity, which represents a regionally correlative peneplanation surface. Mesozoic strata are characterized by northwest and south–southeast‐derived thick clast‐supported conglomerates (Jurassic) overlain by fine‐grained lacustrine and alluvial deposits containing few fluvial channels (Cretaceous). Cenozoic deposits consist of dominantly alluvial fan and fluvial sediments shed from adjacent mountain ranges during the Oligocene–Holocene. The basin is still receiving sediment today, but is actively deforming and closing. Outwardly propagating thrust faults bound the ranges, whereas within the basin, active folding and thrusting occurs within two marginal deforming belts. Consequently, active fan deposition has shifted towards the basin centre with time, and previously deposited sediment has been uplifted, eroded and redeposited, leading to complex facies architecture. The geometry of folds and faults within the basin and the distribution of Mesozoic sediments suggest that the basin formed as a series of extensional half‐grabens in the Jurassic–Cretaceous which have been transpressionally reactivated by normal fault inversion in the Tertiary. Other clastic basins in the region may therefore also be inherited Mesozoic depocentres. The Dzereg Basin is a world class laboratory for studying competing processes of uplift, deformation, erosion, sedimentation and depocentre migration in an actively forming intracontinental transpressional basin.  相似文献   

7.
The Salar de Atacama Basin holds important information regarding the tectonic activity, sedimentary environments and their variations in northern Chile during Cretaceous times. About 4000 m of high‐resolution stratigraphic columns of the Tonel, Purilactis and Barros Arana Formations reveal braided fluvial and alluvial facies, typical of arid to semi‐arid environments, interrupted by scarce intervals with evaporitic, aeolian and lacustrine sedimentation, displaying an overall coarsening‐upward trend. Clast‐count and point‐count data evidence the progressive erosion from Mesozoic volcanic rocks to Palaeozoic basement granitoids and deposits located around the Cordillera de Domeyko area, which is indicative of an unroofing process. The palaeocurrent data show that the source area was located to the west. The U/Pb detrital zircon geochronological data give maximum depositional ages of 149 Ma for the base of the Tonel Formation (Agua Salada Member), and 107 Ma for its middle member (La Escalera Member); 79 Ma for the lower Purilactis Formation (Limón Verde Member), and 73 Ma for the Barros Arana Formation. The sources of these zircons were located mainly to the west, and comprised from the Coastal Cordillera to the Precordillera. The ages and pulses record the tectonic activity during the Peruvian Phase, which can be split into two large events; an early phase, around 107 Ma, showing uplift of the Coastal Cordillera area, and a late phase around 79 Ma indicating an eastward jump of the deformation front to the Cordillera de Domeyko area. The lack of internal deformation and the thicknesses measured suggest that deposition of the units occurred in the foredeep zone of an eastward‐verging basin. This sedimentation would have ended with the K‐T phase, recognized in most of northern Chile.  相似文献   

8.
Formation of alluvial stratigraphy is controlled by autogenic processes that mix their imprints with allogenic forcing. In some alluvial successions, sedimentary cycles have been linked to astronomically‐driven, cyclic climate changes. However, it remains challenging to define how such cyclic allogenic forcing leads to sedimentary cycles when it continuously occurs in concert with autogenic forcing. Accordingly, we evaluate the impact of cyclic and non‐cyclic upstream forcing on alluvial stratigraphy through a process‐based alluvial architecture model, the Karssenberg and Bridge (2008) model (KB08). The KB08 model depicts diffusion‐based sediment transport, erosion and deposition within a network of channel belts and associated floodplains, with river avulsion dependent on lateral floodplain gradient, flood magnitude and frequency, and stochastic components. We find cyclic alluvial stratigraphic patterns to occur when there is cyclicity in the ratio of sediment supply over water discharge (Qs/Qw ratio), in the precondition that the allogenic forcing has sufficiently large amplitudes and long, but not very long, wavelengths, depending on inherent properties of the modelled basin (e.g. basin subsidence, size, and slope). Each alluvial stratigraphic cycle consists of two phases: an aggradation phase characterized by rapid sedimentation due to frequent channel shifting and a non‐deposition phase characterized by channel belt stability and, depending on Qs/Qw amplitudes, incision. Larger Qs/Qw ratio amplitudes contribute to weaker downstream signal shredding by stochastic components in the model. Floodplain topographic differences are found to be compensated by autogenic dynamics at certain compensational timescales in fully autogenic runs, while the presence of allogenic forcing clearly impacts the compensational stacking patterns.  相似文献   

9.
Active debris flow fans in the North Cascade Foothills of Washington State constitute a natural hazard of importance to land managers, private property owners and personal security. In the absence of measurements of the sediment fluxes involved in debris flow events, a morphological-evolutionary systems approach, emphasizing stratigraphy, dating, fan morphology and debris flow basin morphometry, was used. Using the stratigraphic framework and 47 radiocarbon dates, frequency of occurrence and relative magnitudes of debris flow events have been estimated for three spatial scales of debris flow systems: the within-fan site scale (84 observations); the fan meso-scale (six observations) and the lumped fan, regional or macro-scale (one fan average and adjacent lake sediments). In order to characterize the morphometric framework, plots of basin area v. fan area, basin area v. fan gradient and the Melton ruggedness number v. fan gradient for the 12 debris flow basins were compared with those documented for semi-arid and paraglacial fans. Basin area to fan area ratios were generally consistent with the estimated level of debris flow activity during the Holocene as reported below. Terrain analysis of three of the most active debris flow basins revealed the variety of modes of slope failure and sediment production in the region.Micro-scale debris flow event systems indicated a range of recurrence intervals for large debris flows from 106−3645 years. The spatial variation of these rates across the fans was generally consistent with previously mapped hazard zones. At the fan meso-scale, the range of recurrence intervals for large debris flows was 273−1566 years and at the regional scale, the estimated recurrence interval of large debris flows was 874 years (with undetermined error bands) during the past 7290 years. Dated lake sediments from the adjacent Lake Whatcom gave recurrence intervals for large sediment producing events ranging from 481−557 years over the past 3900 years and clearly discernible sedimentation events in the lacustrine sediments had a recurrence interval of 67−78 years over that same period.  相似文献   

10.
We study the interplay of various factors causing vertical grain-size changes in alluvial basins using a simple coupled model for sediment transport and downstream partitioning of grain sizes. The sediment-transport model is based on the linear diffusion equation; by deriving this from first principles we show that the main controls on the diffusivity are water discharge and stream type (braided or single-thread). The grain-size partitioning model is based on the assumption that the deposit is dominated by gravel until all gravel in transport has been exhausted, at which point deposition of the finer fractions begins. We then examine the response of an alluvial basin to sinusoidal variation in each of four basic governing variables: input sediment flux, subsidence rate, supplied gravel fraction, and diffusivity (controlled mainly by water flux). We find that, except in the case of variable gravel fraction, the form of the basin response depends strongly on the time-scale over which the variation occurs. There is a natural time-scale for any basin, which we call the ‘equilibrium time’, defined as the square of basin length divided by the diffusivity. We define ‘slow’ variations in imposed independent variables as those whose period is long compared with the equilibrium time. We find that slow variation in subsidence produces smoothly cyclic gravel-front migration, with progradation during times of low sedimentation rate, while slow variation in sediment flux produces gravel progradation during times of high sedimentation rate. Slow variation in diffusivity produces no effect. Conversely, we define ‘rapid’ variations as those whose period is short compared with the equilibrium time. Our model results suggest that basins respond strongly to rapid variation in either sediment flux or diffusivity; in both cases, deep proximal unconformities are associated with abrupt gravel progradation. This progradation occurs during times of either low sediment flux or high diffusivity. On the other hand, basin response to variation in subsidence rate gradually diminishes as the time scale becomes short relative to the equilibrium time. Each of the four variables we have considered - input sediment flux, subsidence, gravel fraction, and diffusivity - is associated with a characteristic response pattern. In addition, the time scale of imposed variations relative to the equilibrium time acts in its own right as a fundamental control on the form of the basin response.  相似文献   

11.
Distinguishing tectonic from climatic controls on range-front sedimentation   总被引:3,自引:0,他引:3  
Geologic and chronometric studies of alluvial fan sequences in south-central Australia provide insights into the roles of tectonics and climate in continental landscape evolution. The most voluminous alluvial fans in the Flinders Ranges region have developed adjacent to catchments uplifted by Plio-Quaternary reverse faults, implying that young tectonic activity has exerted a first-order control on long-term sediment accumulation rates along the range front. However, optically stimulated luminescence (OSL) dating of alluvial fan sequences indicates that late Quaternary facies changes and intervals of sediment aggradation and dissection are not directly correlated with individual faulting events. Fan sequences record a transition from debris flow deposition and soil formation to clast-supported conglomeritic sedimentation by ∼30 ka. This transition is interpreted to reflect a landscape response to increasing climatic aridity, coupled with large flood events that episodically stripped previously weathered regolith from the landscape. Late Pleistocene to Holocene cycles of fan incision and aggradation post-date the youngest-dated surface ruptures and are interpreted to reflect changes in the frequency and magnitude of large floods. These datasets indicate that tectonic activity controlled long-term sediment supply but climate governed the spatial and temporal patterns of range-front sedimentation. Mild intraplate tectonism appears to have influenced Plio-Quaternary sedimentation patterns across much of the southern Australian continent, including the geometry and extent of alluvial fans and sea-level incursions.  相似文献   

12.
The Nova Basin contains an upper Miocene to Pliocene supradetachment sedimentary succession that records the unroofing of the Panamint metamorphic core complex, west of Death Valley, California. Basin stratigraphy reflects the evolution of sedimentation processes from landslide emplacement during basin initiation to the development of alluvial fans composed of reworked, uplifted sections of the basin fill. 40Ar/39Ar geochronology of volcanic units in middle and lower parts of the sequence provide age control on the tectonic and depositional evolution of the basin and, more generally, insights regarding the rate of change of depositional environments in supradetachment basins. Our work, along with earlier research, indicate basin deposition from 11.38 Ma to 3.35 Ma. The data imply sedimentation rates, uncorrected for compaction, of ~100 m Myr−1 in the lower, high-energy part to ~1000 m Myr−1 in the middle part characterized by debris-flow fan deposition. The observed variation in sediment flux rate during basin evolution suggests that supradetachment basins have complex depositional histories involving rapid transitions in both the style and rate of sedimentation.  相似文献   

13.
Basement heat flow is one of the key unknowns in sedimentary basin analysis. Its quantification is challenging not in the least due to the various feedback mechanisms between the basin and lithosphere processes. This study explores two main feedbacks, sediment blanketing and thinning of sediments during lithospheric stretching, in a series of synthetic models and a reconstruction case study from the Norwegian Sea. Three types of basin models are used: (1) a newly developed one‐dimensional (1D) forward model, (2) a decompaction/backstripping approach and (3) the commercial basin modelling software TECMOD2D for automated forward basin reconstructions. The blanketing effect of sedimentation is reviewed and systematically studied in a suite of 1D model runs. We find that even for moderate sedimentation rates (0.5 mm year?1), basement heat flow is depressed by ~25% with respect to the case without sedimentation; for high sedimentation rates (1.5 mm year?1), basement heat flow is depressed by ~50%. We have further compared different methods for computing sedimentation rates from the presently observed stratigraphy. Here, we find that decompaction/backstripping‐based methods may systematically underestimate sedimentation rates and total subsidence. The reason for this is that sediments are thinned during lithosphere extension in forward basin models while there are not in backstripping/decompaction approaches. The importance of sediment blanketing and differences in modelling approaches is illustrated in a reconstruction case study from the Norwegian Sea. The thermal and structural evolution of a transect across the Vøring Basin has been reconstructed using the backstripping/decompaction approach and TECMOD2D. Computed total subsidence curves differ by up to ~3 km and differences in computed basement heat flows reach up to 50%. These findings show that strong feedbacks exist between basin and lithosphere processes and that resolving them require integrated lithosphere‐scale basin models.  相似文献   

14.
The Cameros Basin (North Spain) is a Late Jurassic‐Early Cretaceous extensional basin, which was inverted during the Cenozoic. It underwent a remarkable thermal evolution, as indicated by the record of anomalous high temperatures in its deposits. In this study, the subsidence and thermal history of the basin is reconstructed, using subsidence analysis and 2D thermal modelling. Tectonic subsidence curves provide evidence of the occurrence of two rapid subsidence phases during the syn‐extensional stage. In the first phase (Tithonian‐Early Berriasian), the largest accommodation space was formed in the central sector of the basin, whereas in the second (Early Barremian‐Early Albian), it was formed in the northern sector. These rapid subsidence phases could correspond to relevant tectonic events affecting the Iberian Plate at that time. By distinguishing between the initial and thermal subsidence and defining their relative magnitudes, Royden's (1986) method was used to estimate the heat flow at the end of the extensional stage. A maximum heat flow of 60–65 mW/m2 is estimated, implying only a minor thermal disturbance associated with extension. In contrast with these data, very high vitrinite reflectance, anomalously distributed in some case with respect to the typical depth‐vitrinite reflectance relation, was measured in the central‐northern sector of the basin. Burial and thermal data are used to construct a 2D thermal basin model, to elucidate the role of the processes involved in sediment heating. Calibration of the thermal model with the vitrinite reflectance (%Ro) and fluid inclusion (FI) data indicates that in the central and northern sectors of the basin, an extra heat source, other than a typical rift, is required to explain the observed thermal anomalies. The distribution of the %Ro and FI values in these sectors suggests that the high temperatures and their distribution are related to the circulation of hot fluids. Hot fluids were attributed to the hydrothermal metamorphic events affecting the area during the early post‐extensional and inversion stages of the basin.  相似文献   

15.
The Hartbeesfontein basin is one basin within the Late Archaean rift system of South Africa. This rift system has been recently compared to the Basin and Range province in western North America and may therefore be an ensialic extensional back-arc basin. Structurally, the Hartbeesfontein basin is a half-graben structure bounded to the south-east by a major, normal, listric fault and to the north-east and south-west by strike-slip (transfer?) fault zones. It is infilled by over 2000 m of diamictites, shales, lavas and chemical sediments. Initial basin formation appears to be accompanied by phreatomagmatic volcanic activity caused by the interaction between basic tholeiitic magmas rising along fractures and groundwater. Volcaniclastic debris from these eruptions was incorporated into laharic debris flows and deposited on basin marginal alluvial fans. At the same time a deep, permanent lake formed within the basin in which silts and muds accumulated. Major fissure eruptions of basic, tholeiitic lavas followed, their eruptive centres being apparently located along the strike-slip (transfer?) fault /ones. Initially, these fissure eruptions had high rates of magma discharge accompanied by intense fire fountaining that resulted in the rapid accumulation of aa type flows. Later lava discharge rates decreased and more quiescent pahoehoe type flows were erupted. Localized centres of acid volcanism within the basic lava pile were located along the south-western strike-slip fault zone. These acid volcanic rocks are interpreted as co-ignimbrite lag breccias and pyroclastic flow deposits and tuffs produced by the repeated formation and collapse of Plinian eruption columns. Towards the top of the basic lava pile, two breaks in volcanism permitted the formation of dolomitic playa lakes. Sedimentation in these lakes was terminated by further basic lava flows. At the top of the basin fill sequence is a thick, bedded chert interpreted as a magadiitic, alkaline playa lake fed by silica-rich hot springs located along the south-eastern edge of the basin. Quartzites and conglomerates deposited by braided rivers unconformably overlie the basin-fill sequence and probably represent a through flowing river system signifying termination of the Hartbeesfontein basin as a separate basin. The Hartbeesfontein basin and its fill demonstrate that a close relationship exists between fissure volcanism, sedimentation and basin evolution and that the strike-slip, transfer faults acted as the loci of volcanic activity.  相似文献   

16.
Sea‐level changes provide an important control on the interplay between accommodation space and sediment supply, in particular, for shallow‐water basins where the available space is limited. Sediment exchange between connected basins separated by a subaqueous sill (bathymetric threshold) is still not well understood. When sea‐level falls below the bathymetric level of this separating sill, the shallow‐water basin evolution is controlled by its erosion and rapid fill. Once this marginal basin is filled, the sedimentary depocenter shifts to the open marine basin (outward shift). With new accommodation space created during the subsequent sea‐level rise, sediment depocenter shifts backwards to the marginal basin (inward shift). This new conceptual model is tested here in the context of Late Miocene to Quaternary evolution of the open connection between Dacian and Black Sea basins. By the means of seismic sequence stratigraphic analysis of the Miocene‐Pliocene evolution of this Eastern Paratethys domain, this case study demonstrates these shifts in sedimentary depocenter between basins. An outward shift occurs with a delay that corresponds to the time required to fill the remaining accommodation space in the Dacian Basin below the sill that separates it from the Black Sea. This study provides novel insight on the amplitude and sedimentary geometry of the Messinian Salinity Crisis (MSC) event in the Black Sea. A large (1.3–1.7 km) sea‐level drop is demonstrated by quantifying coeval sedimentation patterns that change to mass‐flows and turbiditic deposits in the deep‐sea part of this main sink. The post‐MSC sediment routing continued into the present‐day pattern of Black Sea rivers discharge.  相似文献   

17.
At the geological time scale, the way in which the erosion of drainage catchments responds to tectonic uplift and climate changes depends on boundary conditions. In particular, sediment accumulation and erosion occurring at the edge of mountain ranges should influence the base level of mountain catchments, as well as sediment and water discharges. In this paper, we use a landform evolution model (LEM) to investigate how the presence of alluvial sedimentation at range fronts affects catchment responses to climatic or tectonic changes. This approach is applied to a 25 km × 50 km domain, in which the central part is uplifted progressively to simulate the growth of a small mountain range. The LEM includes different slope and river processes that can compete with each other. This competition leads to ‘transport‐limited’, ‘detachment‐limited’ or ‘mixed’ transport conditions in mountains at dynamic equilibrium. In addition, two end‐member algorithms (the channellized‐flow and the sheet‐flow regimes) have been included for the alluvial fan‐flow regime. The three transport conditions and the two flow algorithms represent six different models for which the responses to increase of rock uplift rate and/or cyclic variation of the precipitation rate are investigated. Our results indicate that addition of an alluvial apron increases the long‐term mountain denudation. In response to uplift, mountain rivers adapt their profile in two successive stages; first by propagation of an erosion wave and then by slowly increasing their channel gradients. During the second stage, the erosion rate is almost uniform across the catchment area at any one time, which suggests that dynamic equilibrium has been reached, although the balance between erosion and rock uplift rates has not yet been achieved. This second stage is initiated by the uplift of the mountain river outlets because of sedimentation aggradation at the mountain front. The response time depends on the type of water flow imposed on the alluvial fans domains (× by 1.5 for channelized flow regime and by 10 for the sheet flow one). Cyclic variations of precipitation rate generate cyclic incisions in the alluvial apron. These incision pulses create knick‐points in the river profile in the case of ‘detachment‐limited’ and ‘mixed’ river conditions, which could be mistaken for tectonically induced knick‐points. ‘Transport‐limited’ conditions do not create such knick‐points, but nevertheless trigger erosion in catchments. The feedbacks linked to sedimentation and erosion at range front can therefore control catchment incision or aggradation. In addition, random river captures in the range front trigger auto‐cyclic erosion pulses in the catchment, capable of generating incision–aggradation cycles.  相似文献   

18.
ABSTRACT. This paper examines triggering factors and geomorphic significance of slush flows in the Bíldudalur valley, northwestern Iceland. The area is prone to release slush flows from two confined gullies, and at least ten flows have been reported since the beginning of the twentieth century. Despite their short path (600 m) and their moderate magnitude (from 6000 to 8000 m3), slush flows in the Bíldudalur valley represent a serious threat for the local community that is situated within the runout and deposition zones. With the help of meteorological data, the release of known slush flows is examined, highlighting the role of heavy rainfall and rapid snow-melt during winter cyclonic activity. The geomorphological impact of slush flows is assessed through the characteristics of the landforms produced during the 1997 and 1998 slush-flow events. It appears that the most obvious characteristics of slush flows in the Bíldudalur valley are the entrainment and deposition of debris, spatially differentiated. Chaotic sedimentation occurs chiefly in the middle part of a clearly concave cone, even if the flows continue beyond the cone.  相似文献   

19.
The Kocaçay Basin (KÇB) is a key area in western Anatolia – a well‐known extended terrane where regional segmentation has received limited attention – for investigating strike‐slip faults kinematically linked to detachment faults. In this paper, we present results of an integrated sedimentologic, stratigraphic, and structural study of Miocene alluvial fan/fan‐delta/lacustrine deposits that accumulated in the KÇB, a NE‐trending basin with connections to the Menderes Metamorphic Core Complex (MCC). We mapped and evaluated most of the key faults in the KÇB, many for the first time, and recognised different deformation events in the study area near the E margin of the MCC. We also present field evidence for kinematic connections between low‐angle normal and strike‐slip faults which were developed in an intermittently active basement‐involved transfer zone in western Anatolia. We find that the KÇB contains a detailed record of Miocene transtensional sedimentation and volcanism that accompanied exhumation of the MCC. Structural data reveal that the basin was initially formed by transtension (D1 phase) and subsequently uplifted and deformed, probably as a result of early Pliocene wrench‐ to extension‐dominated deformation (D2 phase) overprinted by Plio‐Quaternary extensional tectonics (D3 phase). These results are consistent with progressive deformation wherein the axis of maximum extension remained in the horizontal plane but the intermediate and maximum shortening axes switched position in the vertical plane. Combining our results with published studies, we propose a new working hypothesis that the KÇB was a transtensional supradetachment basin during the Miocene. The hypothesis could provide new insights into intermittently active extension‐parallel zone of weakness in western Anatolia.These results also suggest that the termination of low‐angle normal fault systems within an extension parallel transfer zone may have resulted in a transtensional depressions which are different from classical supradetachment basins with respect to the sedimentation and deformational pattern of the basin infills.  相似文献   

20.
Understanding the relationships between sedimentation, tectonics and magmatism is crucial to defining the evolution of orogens and convergent plate boundaries. Here, we consider the lithostratigraphy, clastic provenance, syndepositional deformation and volcanism of the Almagro‐El Toro basin of NW Argentina (24°30′ S, 65°50′ W), which experienced eruptive and depositional episodes between 14.3 and 6.4 Ma. Our aims were to elucidate the spatial and temporal record of the onset and style of the shortening and exhumation of the Eastern Cordillera in the frame of the Miocene evolution of the Central Andes foreland basin. The volcano‐sedimentary sequence of the Almagro‐El Toro basin consists of lower red floodplain sandstones and siltstones, medial non‐volcanogenic conglomerates with localised volcanic centres and upper volcanogenic coarse conglomerates and breccia. Coarse, gravity flow‐dominated (debris‐flow and sheet‐flow) alluvial fan systems developed proximal to the source area in the upper and medial sequence. Growing frontal and intrabasinal structures suggest that the Almagro‐El Toro portion of the foreland basin accumulated on top of the eastward‐propagating active thrust front of the Eastern Cordillera. Synorogenic deposits indicate that the shortening of the foreland deposits was occurring by 11.1 Ma, but conglomerates derived from the erosion of western sources suggest that the uplift and erosion of this portion of the Eastern Cordillera has occurred since ca.12.5 Ma. An unroofing reconstruction suggests that 6.5 km of rocks were exhumed. A tectono‐sedimentary model of an episodically evolving thick‐skinned foreland basin is proposed. In this frame, the NW‐trending, transtensive Calama–Olacapato–El Toro (COT) structures interacted with the orogen, influencing the deposition and deformation of synorogenic conglomerates, the location of volcanic centres and the differential tilt and exhumation of the foreland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号