首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weighing black holes with warm absorbers   总被引:1,自引:0,他引:1  
We present a new technique for determining an upper limit for the mass of the black hole in active galactic nuclei showing warm absorption features. The method relies on the balance of radiative and gravitational forces acting on outflowing warm absorber clouds. It has been applied to six objects: five Seyfert 1 galaxies: IC 4329a, MCG-6-30-15, NGC 3516, NGC 4051 and NGC 5548; and one radio-quiet quasar: MR 2251-178. We discuss our result in comparison with other methods. The procedure could also be applied to any other radiatively driven optically thin outflow in which the spectral band covering the major absorption is directly observed.  相似文献   

2.
We reanalyse the ASCA and BeppoSAX data of MCG–6-30-15, using a double-zone model for the iron line profile. In this model, the X-ray source is located around ≈10 Schwarzschild radii and the regions interior and exterior to the X-ray source produce the line emission. We find that this model fits the data with a similar reduced χ 2 to the standard single-zone model. Thus we show that the presence of a broad iron line feature does not necessarily require that the X-ray source be located close to the last stable orbit or in the disc rotation axis.
Within the framework of this model, the best-fitting inclination angle of the source     for the intermediate-intensity ASCA data set is compatible with that determined by earlier modelling of optical lines. The observed variability of the line profile with intensity can be explained as variations of the X-ray source size. That several active galactic nuclei with broad lines have the peak centroid near 6.4 keV can be explained under certain conditions.
We also show that the simultaneous broad-band observations of this source by BeppoSAX rule out the Comptonization model which was an alternative to the standard inner-disc one. We thereby strengthen the case that line broadening occurs as a result of the strong gravitational influence of a black hole.  相似文献   

3.
We investigate the properties of fluorescent iron lines that arise as a result of the illumination of a black hole accretion disc by an X-ray source located above the disc's surface. We study in detail the light-bending model of the variability of the lines, extending previous work on the subject. We indicate that the bending of photon trajectories to the equatorial plane (a distinct property of the Kerr metric) is the most feasible effect underlying the reduced variability of the lines observed in several objects. A model involving an X-ray source with a varying radial distance, located within a few central gravitational radii around a rapidly rotating black hole, close to the disc's surface, may explain both the elongated red wing of the line profile and the complex variability pattern observed in MCG–6-30-15 by XMM–Newton . We also point out that illumination by radiation that returns to the disc (following the previous reflection) contributes significantly to the formation of the line profile in some cases. As a result of this effect, the line profile always has a pronounced blue peak (which is not observed in the deep minimum state in MCG–6-30-15), unless the reflecting material is absent within the innermost 2–3 gravitational radii.  相似文献   

4.
The central engines of active galactic nuclei (AGN) contain cold, dense material as well as hot X-ray-emitting gas. The standard paradigm for the engine geometry is a cold thin disc sandwiched between hot X-ray coronae. Strong support for this geometry in Seyferts comes from the study of fluorescent iron line profiles, although the evidence is not ubiquitously airtight. The thin disc model of line profiles in AGN and in X-ray binaries should still be benchmarked against other plausible possibilities. One proposed alternative is an engine consisting of dense clouds embedded in an optically thin, geometrically thick X-ray-emitting engine. This model is also motivated by studies of geometrically thick engines such as advection-dominated accretion flows (ADAFs). Here we compute the reprocessed iron line profiles from dense clouds embedded in geometrically thick, optically thin X-ray-emitting discs near a Schwarzschild black hole. We consider a range of cloud distributions and disc solutions, including ADAFs, pure radial infall and bipolar outflows. We find that such models can reproduce line profiles similar to those from geometrically thin, optically thick discs and might help alleviate some of the problems encountered from the latter. Thus, independent of thin discs, thick disc engines can also exhibit iron line profiles if embedded dense clouds can survive long enough to reprocess radiation.  相似文献   

5.
The relativistic beaming model has been successfully used to explain many of the observational properties of active galactic nuclei. In this model the total emission is formed by two components, one beamed, one unbeamed. However, the exact contribution from each component in unresolved sources is still not clear. In the radio band, the core and extended emissions are clearly separated. We adopt the method proposed by Kembhavi to separate the two contributions in the X-ray emissions in a sample of 19 gamma-ray loud blazars. It is clearly shown that the beamed emission dominates the X-ray flux and the unbeamed X-ray emission is correlated with the extended radio emission of the considered objects. We also find that the ratio of the beamed to the unbeamed X-ray luminosity is correlated with the X-ray spectral index, an effect that should be a consequence of the underlying X-ray emission mechanism.  相似文献   

6.
We present an X-ray spectral analysis of a sample of eight bona fide Seyfert 2 galaxies, selected on the basis of their high [O  iii ] λ 5007 flux, from the Ho et al. spectroscopic sample of nearby galaxies. We find that, in general, the X-ray spectra of our Seyfert 2 galaxies are complex, with some of our objects having spectra different from the 'typical' spectrum of X-ray selected Seyfert 2 galaxies. Two (NGC 3147 and 4698) show no evidence for intrinsic absorption. We suggest that this is a result of the fact that when the torus suppresses the intrinsic medium and hard energy flux, underlying emission from the host galaxy, originating in circumnuclear starbursts, and scattering from warm absorbers contributes in these energy bands more significantly. Our ASCA data alone cannot discriminate whether low-absorption objects are Compton-thick active galactic nuclei (AGNs) with a strong scattered component or lack an obscuring torus. The most striking example of our low absorption Seyfert 2 is NGC 4698. Its spectrum could be explained by either a dusty warm absorber or a lack of broad-line clouds so that its appearance as a Seyfert 2 is intrinsic and not a result of absorption.  相似文献   

7.
We present a study of the spectral variability of the Seyfert I galaxy MCG–6-30-15 based on the two long XMM–Newton observations from 2000 and 2001. The X–ray spectrum and variability properties of the 2001 data have previously been well described with a two-component model consisting of a variable power-law and a much less variable reflection component, containing a broad relativistic iron line from the accretion disc around a rapidly rotating Kerr black hole. The lack of variability of the reflection component has been interpreted as an effect of strong gravitational light bending very close to the central black hole. Using an improved reflection model, we fit the two-component model to time-resolved spectra of both observations. Assuming that the photon index of the power law is constant, we reconfirm the old result and show that this does not depend on the time-scale of the analysis.  相似文献   

8.
9.
We report on an analysis in the  3–10 keV  X-ray band of the long 1999 ASCA observation of MCG–6-30-15. The time-averaged broad iron K line is well described by disc emission near a Schwarzschild black hole, confirming the results of earlier analyses on the ASCA 1994 and 1997 data. The time-resolved iron-line profile is remarkably stable over a factor of 3 change in source flux, and the line and continuum fluxes are uncorrelated. Detailed fits to the variable iron-line profile suggest that the active region (parametrized by the best-fitting inner and outer radii of the accretion disc) responsible for iron-line emission actually narrows with increasing flux to a region around  4–5 r g  . In contrast with the iron line, the power-law continuum exhibits significant variability during the 1999 observation. Time-resolved spectral analysis reveals a new feature in the well-known photon index (Γ) versus flux correlation: Γ appears to approach a limiting value of  Γ∼2.1  at high flux. Two models are proposed to explain both the new feature in the Γ versus flux correlation and the uncorrelated iron-line flux: a phenomenological two power-law model, and the recently proposed 'thundercloud' model of Merloni & Fabian . Both models are capable of reproducing the data well, but because they are poorly constrained by the observed Γ versus flux relation, they cannot at present be tested meaningfully by the data. The various implications and the physical interpretation of these models are discussed.  相似文献   

10.
An explanation for the soft X-ray excess in active galactic nuclei   总被引:1,自引:0,他引:1  
We present a large sample of type 1 active galactic nuclei (AGN) spectra taken with XMM–Newton , and fit them with both the conventional model (a power law and blackbody) and the relativistically blurred photoionized disc reflection model of Ross & Fabian. We find that the disc reflection model is a better fit. The disc reflection model successfully reproduces the continuum shape, including the soft excess, of all the sources. The model also reproduces many features that would conventionally be interpreted as absorption edges. We are able to use the model to infer the properties of the sources, specifically that the majority of black holes in the sample are strongly rotating, and that there is a deficit in sources with an inclination >70°. We conclude that the disc reflection model is an important tool in the study of AGN X-ray spectra.  相似文献   

11.
We present a systematic analysis of the X-ray spectral properties of a sample of 22 'narrow-line' Seyfert 1 galaxies for which data are available from the ASCA public archive. Many of these sources, which were selected on the basis of their relatively narrow H β linewidth (FWHM ≤2000 km s−1), show significant spectral complexity in the X-ray band. Their measured hard power-law continua have photon indices spanning the range 1.6–2.5 with a mean of 2.1, which is only slightly steeper than the norm for 'broad-line' Seyfert 1s. All but four of the sources exhibit a soft excess, which can be modelled as blackbody emission ( T bb≈100–300 eV) superposed on the underlying power law. This soft component is often so strong that, even in the relatively hard bandpass of ASCA , it contains a significant fraction, if not the bulk, of the X-ray luminosity, apparently ruling out models in which the soft excess is produced entirely through reprocessing of the hard continuum.
Most notably, six of the 22 objects show evidence for a broad absorption feature centred in the energy range 1.1–1.4 keV , which could be the signature of resonance absorption in highly ionized material. A further three sources exhibit 'warm absorption' edges in the 0.7–0.9 keV bandpass. Remarkably, all nine 'absorbed' sources have H β linewidths below 1000 km s−1, which is less than the median value for the sample taken as a whole. This tendency for very narrow linewidths to correlate with the presence of ionized absorption features in the soft X-ray spectra of NLS1s, if confirmed in larger samples, may provide a further clue in the puzzle of active galactic nuclei.  相似文献   

12.
We examine the proposal that the H  i 'high-velocity' clouds (HVCs) surrounding the Milky Way and other disc galaxies form by condensation of the hot galactic corona via thermal instability. Under the assumption that the galactic corona is well represented by a non-rotating, stratified atmosphere, we find that for this formation mechanism to work the corona must have an almost perfectly flat entropy profile. In all other cases, the growth of thermal perturbations is suppressed by a combination of buoyancy and thermal conduction. Even if the entropy profile were nearly flat, cold clouds with sizes smaller than  10 kpc  could form in the corona of the Milky Way only at radii larger than  100 kpc  , in contradiction with the determined distances of the largest HVC complexes. Clouds with sizes of a few kpc can form in the inner halo only in low-mass systems. We conclude that unless even slow rotation qualitatively changes the dynamics of a corona, thermal instability is unlikely to be a viable mechanism for formation of cold clouds around disc galaxies.  相似文献   

13.
We study a phenomenological model for the continuum emission of Seyfert galaxies. In this quasi-spherical accretion scenario, the central X-ray source is constituted of a hot spherical plasma region surrounded by spherically distributed cold dense clouds. The cold material is radiatively coupled with the hot thermal plasma. Assuming energy balance, we compute the hard X-ray spectral slope Γ and the reflection amplitude R . This simple model enables us to reproduce both the range of observed hard X-ray spectral slopes and the reflection amplitude R . It also predicts a correlation between R and Γ that is very close to what is observed. Most of the observed spectral variations from source to source would be caused by differences in the cloud covering fraction. If some internal dissipation process is active in the cold clouds, darkening effects may provide a simple explanation for the observed distributions of reflection amplitudes, spectral slopes and ultraviolet to X-ray flux ratios.  相似文献   

14.
Suzaku observations of Markarian 335: evidence for a distributed reflector   总被引:1,自引:0,他引:1  
We report on a 151-ks net exposure Suzaku observation of the narrow-line Seyfert 1 galaxy Mrk 335. The 0.5–40 keV spectrum contains a broad Fe line, a strong soft excess below about 2 keV and a Compton hump around 20–30 keV. We find that a model consisting of a power law and two reflectors provides the best fit to the time-averaged spectrum. In this model, an ionized, heavily blurred, inner reflector produces most of the soft excess, while an almost neutral outer reflector (outside ∼ 40 r g) produces most of the Fe line emission. The spectral variability of the observation is characterized by spectral hardening at very low count rates. In terms of our power-law + two-reflector model it seems like this hardening is mainly caused by pivoting of the power law. The rms spectrum of the entire observation has the curved shape commonly observed in active galactic nuclei, although the shape is significantly flatter when an interval which does not contain any deep dip in the light curve is considered. We also examine a previous 133-ks XMM–Newton observation of Mrk 335. We find that the XMM–Newton spectrum can be fitted with a similar two-reflector model as the Suzaku data and we confirm that the rms spectrum of the observation is flat. The flat rms spectra, as well as the high-energy data from the Suzaku PIN detector, disfavour an absorption origin for the soft excess in Mrk 335.  相似文献   

15.
The X-ray quasi-periodic oscillation (QPO) seen in RE J1034+396 is so far unique amongst active galactic nuclei (AGN). Here, we look at another unique feature of RE J1034+396, namely its huge soft X-ray excess, to see if this is related in any way to the detection of the QPO. We show that all potential models considered for the soft energy excess can fit the 0.3–10 keV X-ray spectrum, but the energy dependence of the rapid variability (which is dominated by the QPO) strongly supports a spectral decomposition where the soft excess is from low-temperature Comptonization of the disc emission and remains mostly constant, while the rapid variability is produced by the power-law tail changing in normalization. The presence of the QPO in the tail rather than in the disc is a common feature in black hole binaries (BHBs), but low-temperature Comptonization of the disc spectrum is not generally seen in these systems. The main exception to this is GRS 1915+105, the only BHB which routinely shows super-Eddington luminosities. We speculate that the super-Eddington accretion rates lead to a change in disc structure, and that this also triggers the X-ray QPO.  相似文献   

16.
We find a significant anticorrelation between the hard X-ray photon index Γ and the Eddington ratio   L bol/ L Edd  for a sample of low-ionization nuclear emission-line regions and local Seyfert galaxies, compiled from literature with Chandra or XMM–Newton observations. This result is in contrast with the positive correlation found in luminous active galactic nuclei (AGN), while it is similar to that of X-ray binaries (XRBs) in the low/hard state. Our result is qualitatively consistent with the spectra produced from advection-dominated accretion flows (ADAFs). It implies that the X-ray emission of low-luminosity active galactic nuclei (LLAGN) may originate from the Comptonization process in ADAF, and the accretion process in LLAGN may be similar to that of XRBs in the low/hard state, which is different from that in luminous AGN.  相似文献   

17.
We report the detection of hard X-ray emission components in the spectra of six nearby, giant elliptical galaxies observed with the ASCA satellite. The systems studied, which exhibit strong dynamical evidence for supermassive black holes in their nuclei, are M87, NGC 1399 and NGC 4696 (the dominant galaxies of the Virgo, Fornax and Centaurus clusters, respectively) and NGC 4472, 4636 and 4649 (three further giant ellipticals in the Virgo cluster). The ASCA data for all six sources provide clear evidence for hard emission components, which can be parametrized by power-law models with photon indices in the range Γ=0.6–1.5 (mean value 1.2) and intrinsic 1–10 keV luminosities of 2×1040–2×1042 erg s−1. Our results imply the identification of a new class of accreting X-ray source, with X-ray spectra significantly harder than those of binary X-ray sources, Seyfert nuclei or low-luminosity active galactic nuclei, and bolometric luminosities relatively dominated by their X-ray emission. We discuss various possible origins for the hard X-ray emission and argue that it is most likely to be due to accretion on to the central supermassive black holes, via low radiative efficiency accretion flows coupled with strong outflows. In the case of M87, our detected power-law flux is in good agreement with a previously reported measurement from ROSAT High Resolution Imager observations, which were able to resolve the jet from the nuclear X-ray emission components. We confirm previous results showing that the use of multiphase models in the analysis of the ASCA data leads to determinations of approximately solar emission-weighted metallicities for the X-ray gas in the galaxies. We also present results on the individual element abundances in NGC 4636.  相似文献   

18.
The fluorescent iron K α emission-line profile provides an excellent probe of the innermost regions of active galactic nuclei. Fe  xxv and Fe  xxvi in diffuse plasma above the accretion disc can affect the X-ray spectrum by iron K α resonant absorption. This in turn can influence the interpretation of the data and the estimation of the accretion disc and black hole parameters. We embark on a fully relativistic computation of this effect and calculate the iron line profile in the framework of a specific model in which rotating, highly ionized and resonantly absorbing plasma occurs close to the black hole. This can explain the features seen in the iron K α line profile recently obtained by Nandra et al. for the type 1 Seyfert galaxy NGC 3516. We show that the redshift of this feature can be mainly gravitational in origin and accounted for without the need to invoke fast accretion of matter on to the black hole. New X-ray satellites such as XMM , ASTRO-E and Chandra provide excellent opportunities to test the model against high-quality observational data.  相似文献   

19.
A number of recent results from X-ray observations of active galactic nuclei involving the Fe K α line (reduction of line variability compared with the X-ray continuum variability, the X-ray 'Baldwin effect') were attributed to the presence of a hot, ionized skin of an accretion disc, suppressing emission of the line. The ionized skin appears as a result of the thermal instability of X-ray irradiated plasma. We test this hypothesis by computing the Thomson thickness of the hot skin on top of the αP tot Shakura–Sunyaev disc, by simultaneously solving the vertical structure of both the hot skin and the disc. We then compute a number of relations between observable quantities, e.g. the hard X-ray flux, amplitude of the observed reprocessed component, relativistic smearing of the K α line and rms variability of the hard X-rays. These relations can be compared with present and future observations. We point out that this mechanism is unlikely to explain the behaviour of the X-ray source in MCG–6-30-15, where there are a number of arguments against the existence of a thick hot skin, but it can work for some other Seyfert 1 galaxies.  相似文献   

20.
We report results on the broad iron emission line of the Seyfert galaxy MCG–6-30-15, obtained from the second long ASCA observation in 1997. The time-averaged profile of the broad line is very similar to that seen with ASCA in 1994, so confirming the detailed model fit then obtained. A bright flare is seen in the light curve, during which the continuum was soft. At that time the emission line peaks around 5 keV and most of its emission is shifted below 6 keV with no component detected at 6.4 keV  (  This can be interpreted as the result of an extraordinarily large gravitational redshift owing to a dominant flare occurring very close to the black hole at a radius of  ≲5  .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号