首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Upper crustal strike-slip duplexes provide an excellent opportunity to address the fundamental question of fault zone development and strain partitioning in an evolving system. Detailed field mapping of the Mesozoic Atacama fault system in the Coastal Cordillera of Northern Chile documents the progressive development of second- and third-order faults forming a duplex at a dilational jog between two overstepping master faults: the sinistral strike-slip, NNW-striking, Jorgillo and Bolfin faults. These are constituted by a meter-wide core of foliated S-C ultracataclasite and cataclasite, flanked by a damage zone of protocataclasite, splay faults and veins. Lateral separation of markers along master faults is on the order of a few kilometers. Second-order, NW-striking, oblique-slip subsidiary fault zones do not show foliated ultracataclasite; lateral sinistral separations are in the range of  10 to 200 m with a relatively minor normal dip-slip component. In turn, third-order, east–west striking normal faults exhibit centimetric displacement. Oblique-slip (sinistral–normal) fault zones located at the southern termination of the Bolfin fault form a well-developed imbricate fan structure. They exhibit a relatively simple architecture of extensional and extensional-shear fractures bound by low displacement shear fractures. Kinematic analysis of fault slip data from mesoscopic faults within the duplex area, document that the NW-striking and the EW-striking faults accommodate transtension and extension, respectively. Examination of master and subsidiary faults of the duplex indicates a strong correlation between total displacement and internal fault structure. Faults started from arrays of en echelon extensional/extensional-shear fractures that then coalesced into throughgoing strike-slip faults. Further displacement leads to the formation of discrete bands of cataclasite and ultracataclasite that take up a significant part of the total displacement. We interpret that the duplex formed by progressive linkage of horsetail-like structures at the southern tip of the Bolfin fault that joined splay faults coming from the Jorgillo and Coloso faults. The geometry and kinematics of faults is compared with that observed in analog models to gain an insight into the kinematic processes leading to complex strike-slip fault zones in the upper crust.  相似文献   

2.
Natural fractures are characterized by rough surfaces and complex fluid flows. A large distribution of apertures (residual voids) within their walls and the presence of contact points (in situ normal loads) produce heterogeneous flows (channeling). The resulting permeabilities, porosities or fluid–rock exchange surfaces cannot be realistically modeled by parallel and smooth plate models. Four natural fractures are sampled at different depths and degrees of alteration in the Soultz sandstone and granite (EPS1 drillhole, Soultz-sous-Forêts, Bas-Rhin, France). The fracture surfaces are measured with mechanical profilometry and maps of asperity heights (XYZ). Resulting local apertures (XYe) are then calculated. A statistical study of the surface profiles (XZ) show that the fractures are more or less rough and tortuous according to the types of alteration. Altered samples are characterized by smoother surfaces of fractures. Such differences imply that (i) the average fracture aperture is not representative for the whole fracture and that (ii) the different local apertures should be integrated in hydraulic and mechanical models. A hydraulic model (finite difference calculations) of fluid flow, taking into account the elastic closure (Hertz contact theory) of fractures with depth, is used. Maps of contact points and relative local loads within the fracture planes are compared to flow maps. They show different channeling of fluid flows. Strongly altered fractures are characterized by homogeneous fluxes despite the presence of numerous contact zones during the closure of fracture. By contrast, fresh fractures develop, increasing fluid flow channels with depth.Fracture closure (increasing normal stress) does not systematically increase the channeling of fluid flow. There is evidence for a general smoothing out of the irregularities of the fracture walls due to precipitation of secondary minerals, indicating that the cubic law can be commonly valid, also at great crustal depth but this validity depends on the degree of fracture alteration. Mineralogical and geochemical observations, thus, should be taken into account to perform more accurate permeability calculations and models of fluid circulation in fracture networks.  相似文献   

3.
This paper presents a fracture mapping (FM) approach combined with the extended finite element method (XFEM) to simulate coupled deformation and fluid flow in fractured porous media. Specifically, the method accurately represents the impact of discrete fractures on flow and deformation, although the individual fractures are not part of the finite element mesh. A key feature of FM‐XFEM is its ability to model discontinuities in the domain independently of the computational mesh. The proposed FM approach is a continuum‐based approach that is used to model the flow interaction between the porous matrix and existing fractures via a transfer function. Fracture geometry is defined using the level set method. Therefore, in contrast to the discrete fracture flow model, the fracture representation is not meshed along with the computational domain. Consequently, the method is able to determine the influence of fractures on fluid flow within a fractured domain without the complexity of meshing the fractures within the domain. The XFEM component of the scheme addresses the discontinuous displacement field within elements that are intersected by existing fractures. In XFEM, enrichment functions are added to the standard finite element approximation to adequately resolve discontinuous fields within the simulation domain. Numerical tests illustrate the ability of the method to adequately describe the displacement and fluid pressure fields within a fractured domain at significantly less computational expense than explicitly resolving the fracture within the finite element mesh. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A detailed field study of 39 centimetre- to metre-scale relay ramps from two outcrops was performed to investigate the development of a linkage criterion for segmented normal faults. We analysed the displacement distribution and the geometry of fault arrays containing three types of relay ramp: open, linked, and fully breached, in order to identify which parameters are relevant to fault linkage, and to establish a linkage criterion. Each relay ramp geometry has a specific graphical field on a relay displacementseparation diagram. The field including all the linked geometries (initiation of linkage) separates open and fully breached relay ramps and is interpreted as a value of relay displacement to separation ratio for which faults link during their overlap. A ‘linkage threshold’, in each studied fault system, is defined as the best-fit linear trend of linked relays. We discuss the scaling and the variability of the linkage criterion using published datasets from a wide variety of settings and scales. The observed linkage threshold is linear, with a slope value varying less than one order of magnitude. This suggests that linking relay ramps have self-similar geometries from centimetre- to kilometre-scale and that normal fault linkage is governed by similar fault interaction across a broad range of scales. The linkage criterion, which can be an effective tool to estimate relay ramp geometry at depth or at the earth surface, could therefore be used to improve investigations in determining fluid entrapment or in the evaluation of potential surface of seismic ruptures.  相似文献   

5.
Mineralogical, fluid inclusion and geochemical studies were made on two intra-granitic gold deposits (Grovelas and Penedono), together with a deposit linked to sub-vertical structures in silicified metasediments at Três-Minas, and several intra-metamorphic occurrences at Vila Pouca de Aguiar. They all possess similar mineral assemblages, deformational state, fluid flow characteristics, ore fluid composition and have comparable PT conditions. Three successive crystallisation stages are recorded during the formation of gold-bearing structures independent of their location or host rocks (granites or metasediments). They are:Stage 1 — the development of milky quartz veins that formed primarily after the emplacement of peraluminous two-mica granites (315–310 Ma) at PT conditions reflecting high temperature and low pressure. They are similar to those from pluton induced metamorphism (P=300–350 MPa and T=500–550°C). No clear evidence was found for gold deposition during this stage.Stage 2 — during orogenic uplift and repeated tectonic reactivation a clear quartz was deposited in the early milky quartz veins (Stage 1) at PT conditions between 100 and 300 MPa and 300 and 450°C. Local sulphide deposition (arsenopyrite II and pyrite II) occurred in clear quartz, but was never massive. The fluids percolating within the granite were mainly aqueous-carbonic and reflect equilibrium with the metamorphic host rocks. They are very similar to those found in metamorphic environments. No evidence for the involvement of magmatic fluids was found.Stage 3 — intense microfissuring of the earlier vein infillings occurred, associated with the main episode of gold deposition. The PT conditions were <100 MPa and <300°C based on aqueous fluid inclusions. Native gold and electrum crystallised together with sulphides (galena, chalcopyrite and bismuthinite), native Bi and sulphosalts (Pb–Bi–Ag dominated). The fractures frequently contain chlorite (± sericite) especially where they crosscut earlier sulphides (arsenopyrite).These processes and fluid types are similar in both the granites and metamorphic host rocks. Therefore, the gold ores appear to be the result of successive periods of fluid circulation, in this case related to the uplift of the Variscan basement in response to high heat flow and the intrusion of granites. Without exception, these fluids have been re-equilibrated with the metamorphic rocks. However magmatic fluids are absent; the granites thus act passively as heat engines for fluid circulation.  相似文献   

6.
Fluid inclusions and clay mineralogy of the Permo-Triassic rocks from the Espina and Espadà Ranges (SE Iberian Chain, Spain) have been investigated to establish their relationship with hydrothermal fluid circulation during the Alpine Orogeny. Primary fluid inclusions in quartz-filled tension gashes in Permo-Triassic sandstones reveal maximum temperatures around 230 °C and very constant salinities of 8.5% wt. eq. NaCl. Secondary fluid inclusions found in quartz from the Santonian Ba–Cu–Hg deposits show similar compositional and thermodynamic characteristics, denoting an Alpine recrystallization. Clay mineral composition of Permo-Triassic mudrocks is characterized by pyrophyillite, indicating low-grade metamorphic conditions. Field observations and experimental data suggest that the crystallization of quartz in tension gashes, the formation of secondary fluid inclusions and the development of the metamorphism are contemporaneous and related to fluid circulation during the Alpine compression. Fluid flow took place along the Hercynian fault system that was reactivated during the Mesozoic rift stage and inverted during the Alpine deformation.  相似文献   

7.
This paper investigates the two‐dimensional flow problem through an anisotropic porous medium containing several intersecting curved fractures. First, the governing equations of steady‐state fluid flow in a fractured porous body are summarized. The flow follows Darcy's law in matrix and Poiseuille's law in fractures. An infinite transversal permeability is considered for the fractures. A multi‐region boundary element method is used to derive a general pressure solution as a function of discharge through the fractures and the pressure and the normal flux on the domain boundary. The obtained solution fully accounts for the interaction and the intersection between fractures. A numerical procedure based on collocation method is presented to compute the unknowns on the boundaries and on the fractures. The numerical solution is validated by comparing with finite element solution or the results obtained for an infinite matrix. Pressure fields in the matrix are illustrated for domains containing several interconnected fractures, and mass balance at the intersection points is also checked. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The co-seismic deformations produced during the September 27, 2003 Chuya earthquake (Ms = 7.5) that affected the Gorny Altai, Russia, are described and discussed along a 30 km long segment. The co-seismic deformations have manifested themselves both in unconsolidated sediments as R- and R′-shears, extension fractures and contraction structures, and in bedrock as the reactivation of preexisting schistosity zones and individual fractures, as well as development of new ruptures and coarse crushing zones. It has been established that the pattern of earthquake ruptures represents a typical fault zone trending NW–SE with a width reaching 4–5 km and a dextral strike–slip kinematics. The initial stress field that produced the whole structural pattern of co-seismic deformations during the Chuya earthquake, is associated with a transcurrent regime with a NNW–SSE, almost N–S, trending of compressional stress axis (σ1), and a ENE–WSW, almost E–W, trending of tensional stress axis (σ3). The state of stress in the newly-formed fault zone is relatively uniform. The local stress variations are expressed in insignificant deviation of σ1 from N–S to NW–SE or NE–SW, in short-term fluctuations of relative stress values in keeping their spatial orientations, or in a local increase of the plunge angle of the σ1. The geometry of the fault zone associated with the Chuya earthquake has been compared with the mechanical model of fracturing in large continental fault zones with dextral strike–slip kinematics. It is apparent that the observed fracture pattern corresponds to the late disjunctive stage of faulting when the master fault is not fully developed but its segments are already clearly defined. It has been shown that fracturing in widely different rocks follows the common laws of the deformation of solid bodies, even close to the Earth surface, and with high rates of movements.  相似文献   

9.
The Jinding Zn–Pb deposit occurs in Cretaceous and Paleocene siliciclastic rocks (mainly sandstones) in the Meso-Cenozoic Lanping basin, western Yunnan, China. With a reserve of approximately 200 Mt of ore containing 6.1% Zn and 1.3% Pb, Jinding is the largest sandstone-hosted Zn–Pb deposit in the world. Most previous studies assumed that the mineralizing fluids were derived from within the basin (including meteoric recharge), and the fluid flow was driven by topographic relief under a hydrostatic regime. In contrast, we propose that the mineralizing system was strongly overpressured based on observations of hydraulic fractures and fluid inclusion data. Numerical modeling results indicate that the overpressures could not have been produced by normal sediment compaction. Thrust faulting and input of mantle-derived fluids are likely responsible for the building-up of the high overpressures. The special hydrodynamic regime and potential contribution of mantle-derived fluids to the mineralizing system distinguish Jinding from other known sedimentary basin-related Pb–Zn deposits.  相似文献   

10.
Deep-rooted enigmatic piercement structures in sedimentary basins, including ‘mud volcanoes’, ‘shale diapirs’, ‘salt diapirs’, and ‘asphalt volcanoes’, range in size from less than 1 km2, surface area, up to 64 km2, and have often an unknown depth of penetration due to incomplete imaging. We propose that they form a family associated with fluid flow. Our argument is based partly on their inferred location (above deep faults) and on the chemical analysis of emitted products, which includes liquid clays, brines and other substances from salt diapirs, and asphalt and light oils from the asphalt volcanoes. We explain these compositions by chemical alteration caused partly by supercritical water, a phase of water existent at high pressure and temperature, locally and temporarily achieved at depths generally beyond 10 km below surface, i.e., at the sediment–crust boundary. Our hypothesis overcomes some of the problems with interpreting fluid flow products, which are otherwise very difficult to explain. In case this hypothesis can be further verified, the family could perhaps be called ‘hydrothermally associated piercement structures’.  相似文献   

11.
Gold-bearing veins within the Liese zone of the Pogo deposit display a two-stage evolutionary history that records temporal variation in kinematics, fluid chemistry and temperature. Several stacked shallow northwest-dipping shear veins are developed at Pogo, and collectively comprise the Liese Zone. Veins consist of: (1) early, narrow biotite-bearing shear veins; (2) white quartz veins with pyrite-arsenopyrite bands, referred to as main stage quartz veins, that have sericite-Fe-Mg carbonate alteration envelopes and which exploit the early shear veins; and (3) extension veins that form as steeper offshoots from the main stage veins. The presence and orientation of oblique fabrics developed in the older biotite-bearing shear veins are indicative of top-to-the-south displacement under ductile to semi-brittle conditions at higher temperatures. In contrast, the orientation of the extension veins and local sigmoidal shapes indicate a component of top-to-the-northwest normal displacement on the main stage veins in their present orientation, and brittle to semi-brittle conditions of formation. Dolomite-sericite alteration surrounding main stage veins may represent late to post-mineral hydrothermal fluid exploitation of vein margins during ongoing normal displacement along vein systems. All types of veining overprint 107–106 Ma, post-metamorphic granitic dykes. Molybdenite in main stage quartz assemblages has returned Re-Os ages of 104.2±1.1 Ma, significantly older than 96 to 91 Ma 40Ar/39Ar ages obtained from vein alteration assemblages that may reflect thermal resetting during post-mineral fault related hydrothermal activity, magmatism and/or retrograde cooling of the lithologic sequence. Unlike typical mesothermal shear vein hosted gold systems, Pogo is temporally and tectonically separated from metamorphic deformation events, and has a comparable kinematic and geometric architecture to Cretaceous plutonic gold deposits in the region. We interpret the deposit to have formed during a regional Cretaceous extensional event during multi-stage exploitation of extensional fault surfaces by hydrothermal fluid from a cooling magmatic source.Editorial handling: S.G. Hagemann  相似文献   

12.
Groundwater movement and availability in crystalline and metamorphosed rocks is dominated by the secondary porosity generated through fracturing. The distributions of fractures and fracture zones determine permeable pathways and the productivity of these rocks. Controls on how these distributions vary with depth in the shallow subsurface (<300 m) and their resulting influence on groundwater flow is not well understood. The results of a subsurface study in the Nashoba and Avalon terranes of eastern Massachusetts (USA), which is a region experiencing expanded use of the fractured bedrock as a potable-supply aquifer, are presented. The study logged the distribution of fractures in 17 boreholes, identified flowing fractures, and hydraulically characterized the rock mass intersecting the boreholes. Of all fractures encountered, 2.5% are hydraulically active. Boreholes show decreasing fracture frequency up to 300 m depth, with hydraulically active fractures showing a similar trend; this restricts topographically driven flow. Borehole temperature profiles corroborate this, with minimal hydrologically altered flow observed in the profiles below 100 m. Results from this study suggest that active flow systems in these geologic settings are shallow and that fracture permeability outside of the influence of large-scale structures will follow a decreasing trend with depth.  相似文献   

13.
The Gubbio fault is an active normal fault defined by an important morphological scarp and normal fault focal mechanism solutions. This fault truncates the inherited Miocene Gubbio anticline and juxtaposes Mesozoic limestones in the footwall against Quaternary lacustrine deposits in the hanging wall. The offset is more than 2000 m of geological throw accumulated during a poly-phased history, as suggested by previous works, and has generated a complex zone of carbonate-rich fault-related structures. We report the results of a multidisciplinary study that integrates detailed outcrop and petrographic analysis of two well-exposed areas along the Gubbio fault zone, geochemical analysis (fluid inclusions, stable isotopes, and trace elements) of calcite-sealed fault-related structures and fault rocks, and biostratigraphic controls. Our aims are: (i) the characterization of the deformation features and their spatial–temporal relationships, and (ii) the determination of the P/T conditions and the fluid behaviour during deformation to achieve a better understanding of fluid–rock interaction in fault zones.We show that few of the observed structures can be attributed to an inherited shortening phase while the most abundant structures and fault rocks are related to extensional tectonics. The outcropping extensional patterns formed at depths less than 2.5–3 km, in a confined fluid system isolated from meteoric water, and the fault structures are the response to a small amount of cumulated displacement, 12–19% of the total geological throw.  相似文献   

14.
A Lagrangian perturbation method is applied to develop a method of moments for reactive solute flux through a three-dimensional, nonstationary flow field. The flow nonstationarity may stem from medium nonstationarity, finite domain boundaries, and/or fluid pumping and injecting. The reactive solute flux is described as a space–time process where time refers to the solute flux breakthrough in a control plane at some distance downstream of the solute source and space refers to the transverse displacement distribution at the control plane. The analytically derived moments equations for solute transport in a nonstationary flow field are too complicated to solve analytically; therefore, a numerical finite difference method is implemented to obtain the solutions. This approach combines the stochastic model with the flexibility of the numerical method to boundary and initial conditions. The approach provides a tool to apply stochastic theory to reactive solute transport in complex subsurface environments. Several case studies have been conducted to investigate the influence of the physical and chemical heterogeneity of a medium on the reactive solute flux prediction in nonstationary flow field. It is found that both physical and chemical heterogeneity significantly affect solute transport behavior in a nonstationary flow field. The developed method is also applied to an environmental project for predicting solute flux in the saturated zone below the Yucca Mountain Project area, demonstrating the applicability of the method in practical environmental projects.  相似文献   

15.
The April 3, 1998 Mw = 5.1 Gualdo Tadino earthquake (central Italy) was the last significant event in the 6-month-long Umbria–Marche seismic crisis. This event and its aftershocks occurred in an area where active faulting produces no striking geological and geomorphological effects. In this study, we investigated the ruptured fault using detailed seismological data and a re-processed and re-interpreted seismic reflection profile. Aftershock location and focal mechanisms were used to constrain the geometry and kinematics of the ruptured fault and a comparison was made with the subsurface image provided by the seismic profile. We found that the 1998 Gualdo Tadino earthquake occurred on a WSW-dipping, normal fault, with a length of about 8 km and a relatively gentle dip (30°–40°), confined between 3.5 and 7 km in depth. Kinematics of the mainshock and aftershocks revealed a NE-trending extension, in agreement with the regional stress field active in the Northern Apennines belt. The Mw = 5.1 earthquake originated above the top of the basement and ruptured within the sedimentary cover, which consists of an evaporites–carbonates multilayer. We hypothesised that the active fault does not reach the surface (blind normal fault).  相似文献   

16.
排采过程中,煤粉随着运载流体在支撑裂缝中运移,容易导致裂隙堵塞,造成煤储层渗透率和支撑裂缝导流能力的降低,为探究团聚型压裂液性质对煤粉运移产生的影响及作用机理,选取准南煤田乌鲁木齐河东矿区煤样为研究对象,以蒸馏水、活性水压裂液(1.5%KCl)、团聚型压裂液(1.5%KCl+0.05%AN)为运载流体,通过单相流驱替状态下煤粉产出物理模拟实验,获取驱替流速为100、200、300 mL/min时的煤粉产出量和支撑裂缝导流能力伤害率,结果表明:气体驱替流速为100 mL/min时3种运载流体煤粉累计产出量均呈现线性增长趋势,支撑裂缝的导流能力伤害率变化范围较小(0.6%~8.1%);气体驱替流速为200 mL/min时,随着支撑裂缝中煤粉沉积,运移通道缩小,各运载流体出粉量先达到最大值随后减少,团聚型压裂液裂缝导流能力伤害率较小,其导流能力伤害率累计值分别与蒸馏水和活性水压裂液导流能力伤害率相差分别达到24.4%和3.1%;气体驱替流速为300 mL/min时:煤粉出粉量达到最大值的时间提前,运载流体为团聚型压裂液支撑裂缝导流能力伤害率最小,其导流能力伤害率累计值与蒸馏水和活性水压裂液导流能力伤害率相差分别达到64.8%和14.9%。因此驱替流速较低时,煤粉产出量较少且导流能力伤害率较低。结合静置沉降实验和直剪实验,揭示了团聚型压裂液对煤粉运移的作用机理:煤粉运移过程中团聚型压裂液能够通过表面活性剂的亲水基和亲油基改变溶液与煤粉界面状态,增强煤粉润湿性,使煤粉颗粒在运移过程中聚集沉降;通过增加其液桥力使黏聚力增大,抑制沉降的煤粉发生相对移动,从而减少悬浮煤粉颗粒的数量,有效降低煤粉产出量和支撑裂缝导流能力伤害率,进而减少卡钻、修井的发生概率,实现对煤粉的有效防控。   相似文献   

17.
A fluid inclusion study on metamorphic minerals of successive growth stages was performed on highly deformed paragneisses from the Nestos Shear Zone at Xanthi (Central Rhodope), in which microdiamonds provide unequivocal evidence for ultrahigh-pressure (UHP) metamorphism. The correlation of fluid inclusion density isochores and fluid inclusion reequilibration textures with geothermobarometric data and the relative chronology of micro- and macro-scale deformation stages allow a better understanding of both the fluid and metamorphic evolution along the PTd path. Textural evidence for subduction towards the NE is recorded by the orientation of intragranular NE-oriented fluid inclusion planes and the presence of single, annular fluid inclusion decrepitation textures. These textures occur within quartz “foam” structures enclosed in an earlier generation of garnets with prolate geometries and rarely within recrystallized matrix quartz, and reequilibrated both in composition and density during later stages of exhumation. No fluid inclusions pertaining to the postulated ultrahigh-pressure stage for microdiamond-bearing garnet–kyanite–gneisses have yet been found. The prolate shape of garnets developed during the earliest stages of exhumation that is recorded structurally by (L  S) tectonites, which subsequently accommodated progressive ductile SW shearing and folding up to shallow crustal levels. The majority of matrix kyanite and a later generation of garnet were formed during SW-directed shear under plane-strain conditions. Fluid inclusions entrapped in quartz during this stage of deformation underwent density loss and transformed to almost pure CO2 inclusions by preferential loss of H2O. Those inclusions armoured within garnet retained their primary 3-phase H2O–CO2 compositions. Reequilibration of fluid inclusions in quartz aggregates is most likely the result of recrystallization along with stress-induced, preferential H2O leakage along dislocations and planar lattice defects which results in the predominance of CO2 inclusions with supercritical densities. Carbonic fluid inclusions from adjacent kyanite–corundum-bearing pegmatoids and, the presence of shear-plane-parallel fluid inclusion planes within late quartz boudin structures consisting of pure CO2-fluid inclusions with negative crystal shapes, bear witness of the latest stage of deformation by NE-directed extensional shear.This study shows that the textures of early fluid inclusions that formed already during the prograde metamorphic path can be preserved and used to derive information about the kinematics of subduction that is difficult to obtain from other sources. The textures of early inclusions, together with later generations of unaltered primary and secondary inclusions in metamorphic index minerals that can be linked to specific deformation stages and even PT conditions, are a welcome supplement for the reconstruction of a rather detailed PTd path.  相似文献   

18.
R. T. van Balen  T. Skar 《Tectonophysics》2000,320(3-4):331-345
The Halten Terrace is a structural element of the Meso-Cenozoic mid-Norwegian margin. The pore fluid pressure distribution in the faulted Jurassic formations on the Halten Terrace is characterized by significant lateral variations. In general, the fluid overpressure increases stepwise across faults from east to west, from zero (hydrostatic fluid pressure) to about 30 MPa. Fault-bounded pressure cells can therefore best explain the fluid pressure distribution. The results of analyses of log-derived porosities indicate that the high overpressure in the westernmost pressure cell was built up recently. However, despite the high sedimentation rates during Plio-Pleistocene, the high overpressure cannot be explained by local mechanical compaction. Alternative explanations for the high overpressure proposed by other authors are based on pore fluid volume increase (e.g. hydrocarbon generation). We propose that the high overpressure is caused by fluid flow from the deep Rås Basin to the western part of the Halten Terrace, through fractures in the Mesozoic, deep seated Klakk Fault Complex. Opening of fractures in this fault zone by seismic and static mechanisms is possible in the present-day intraplate stress field, which is characterized by a NW–SE oriented maximum horizontal stress direction. During Miocene, the maximum horizontal stress was E–W oriented, which implies a stress rotation during Pliocene. The E–W orientation of the maximum horizontal stress has impeded the initiation and opening of fractures in the N–S striking Klakk Fault Complex during Miocene. Fluid flow from the Rås Basin through faults of the Klakk Fault Complex can therefore have occured since Pliocene. Thus, the rotation of the intraplate stress directions can explain why the build-up of overpressure on the western part of the Halten Terrace occured recently, as indicated by the results of porosity analyses. Understanding the overpressure evolution of the Halten Terrace is important for exploration in that area, as hydrocarbons have been found in the hydrostatic pressure cells, whereas they are absent in the high overpressure cells.  相似文献   

19.
This study presents a modified geotechnical model of subsurface cavities and fractures that are associated with foundation and pilling problems. The topographical model was used to automatically extract minimum surface curvature, slope, and pits. The image processing shows that more than fourteen regional faults, trending NE, SW, and WNW affect the Kuala Lumpur limestone bedrock and the surface topography from South to North. These fractures often show higher probability of piling and constructions problems. The faults are tensional, low lying, and wrench of length 10–20 km. Opencast ex-mining pond floors (bathymetry) are good indicators of subsurface fractures and cavities that affect the limestone bedrock. The LANDSAT image (band one) shows that the fractures of opencast ex-mining pond floors have the same trend as the regional faults. These techniques can help geotechnical engineers to predict subsurface fractures and cavities, especially in areas adjacent to ex-mining ponds. In brief, most of the subsurface cavities and ex-mining ponds, for example the Phong Fatt pond, are located on and along fault zones.  相似文献   

20.
This study evaluates the Late Ordovician glaciofluvial deposits of the Sarah Formation and equivalent outcroppings in north, central, and southwestern Saudi Arabia. The Sarah Formation also covers a wide area in the subsurface and is considered as an important target for unconventional tight gas reservoir. Defining the fracture types, nature, and distribution in outcrop scale might help to establish a successful fracture simulation model and behavior for the Sarah tight gas reservoir in the subsurface. This study investigates fracture characteristics for the Sarah Formation at Sarah paleochannel outcrops. The study revealed three sets of fractures, which have EW, NS, and SE-NW directions, and these fractures vary from open, resistive, and filled to resistive fractures. The closed fractures are filled with ferruginated iron oxides and gypsum. The filled fractures (the thrust boundary) are found in the study area at the SE-NW strike fracture set, while open and resistive fractures are found mainly at S-N and E-W fracture sets, respectively. The syn-depositional filled fractures (iron oxides) are considered as the younger fracture sets while the open and resistive fractures are post-depositional fractures which may have resulted from uplift or tectonic movement. A general model representing the fracture pattern and the thrusting boundaries due to glacial movement was constructed. It has been noticed that the systematic occurrence of filled fractures (thrust boundaries) described the boundaries between different glacial events, which act as a fluid barrier (filled fractures) and decrease the reservoir quality. The finding of this study might be utilized as a guide and lead for exploration in the subsurface Sarah glacial deposits. It will also help to understand and speculate the nature pattern and distribution of fractures with the Sarah Formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号