首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Climate change may affect the sediment generation and transportation processes and the consequent sediment flux in a river. The sensitivity of suspended sediment flux to climate change in the Longchuanjiang catchment is investigated with Artificial Neural Networks (ANNs). ANNs were calibrated and validated using sediment flux data from 1960 to 1990 during which the influence from human activities was relatively stable. The established ANN is used to predict the responses of sediment flux to 25 hypothetical climate scenarios, which were generated by adjusting the baseline temperature up to − 1, 1, 2 and 3 °C and by scaling the baseline precipitation by +/ 10% and +/ 20%. The results indicated when temperature remains unchanged, an increase in rainfall will lead to a rise in sediment flux; when rainfall level remains unchanged, an increase in temperature is likely to result in a decrease in sediment flux. Same percentage of changes in rainfall and temperature are likely to trigger higher responses in wetter months than in drier months. However, it is the combination of the change in temperature and rainfall that determines the change of sediment flux in a river. Higher sediment flux is expected to appear under wetter and warmer climate, when higher transport capacity is accompanied by higher erosion rate.  相似文献   

2.
El'gygytgyn (Chukotka, Arctic Russia) is a well‐preserved impact structure, mostly excavated in siliceous volcanic rocks. For this reason, the El'gygytgyn structure has been investigated in recent years and drilled in 2009 in the framework of an ICDP (International Continental Scientific Drilling Program) project. The target rocks mostly consist of rhyodacitic ignimbrites and tuffs, which make it difficult to distinguish impact melt clasts from fragments of unshocked target rock within the impact breccia. Several chemical and petrologic attempts, other than dating individual clasts, have been considered to distinguish impact melt from unshocked volcanic rock of the targets, but none has proven reliable. Here, we propose to use cathodoluminescence (imaging and spectrometry), whose intensity is inversely correlated with the degree of shock metamorphism experienced by the investigated lithology, to aid in such a distinction. Specifically, impact melt rocks display low cathodoluminescence intensity, whereas unshocked volcanic rocks from the area typically show high luminescence. This high luminescence decreases with the degree of shock experienced by the individual clasts in the impact breccia, down to almost undetectable when the groundmass is completely molten. This might apply only to El'gygytgyn, because the luminescence in volcanic rocks might be due to devitrification and recrystallization processes of the relatively old (Cretaceous) target rock with respect to the young impactites (3.58 Ma). The alteration that affects most samples from the drill core does not have a significant effect on the cathodoluminescence response. In conclusion, cathodoluminescence imaging and spectra, supported by Raman spectroscopy, potentially provide a useful tool for in situ characterization of siliceous impactites formed in volcanic target.  相似文献   

3.
Within the context of present and future in situ missions to Mars to investigate its habitability and to search for traces of life, we studied the habitability and traces of past life in ∼3.5 Ga-old volcanic sands deposited in littoral environments an analogue to Noachian environments on Mars. The environmental conditions on Noachian Mars (4.1-3.7 Ga) and the Early Archaean (4.0-3.3 Ga) Earth were, in many respects, similar: presence of liquid water, dense CO2 atmosphere, availability of carbon and bio-essential elements, and availability of energy. For this reason, information contained in Early Archaean terrestrial rocks concerning habitable conditions (on a microbial scale) and traces of past life are of relevance in defining strategies to be used to identify past habitats and past life on Mars.One such example is the 3.446 Ga-old Kitty’s Gap Chert in the Pilbara Craton, NW. Australia. This formation consists of volcanic sediments deposited in a coastal mudflat environment and is thus a relevant analogue for sediments deposited in shallow water environments on Noachian Mars. Two main types of habitat are represented, a volcanic (lithic) habitat and planar stabilized sediment surfaces in sunlit shallow waters. The sediments hosted small (<1 μm in size) microorganisms that formed colonies on volcanic particle surfaces and in pore waters within the volcanic sediments, as well as biofilms on stabilised sediment surfaces. The microorganisms included coccoids, filaments and rare rod-shaped organisms associated with microbial polymer (EPS). The preserved microbial community was apparently dominated by chemotrophic organisms but some locally transported filaments and filamentous mat fragments indicate that possibly photosynthetic mats formed nearby. Both microorganisms and sediments were silicified during very early diagenesis.There are no macroscopic traces of fossilised life in these volcanic sediments and sophisticated instrumentation and specialized sample preparation techniques are required to establish the biogenicity and syngenicity of the traces of past life. The fact that the traces of life are cryptic, and the necessity of using sophisticated instrumentation, reinforces the challenges and difficulties of in situ robotic missions to identify past life on Mars. We therefore recommend the return of samples from Mars to Earth for a definitive search for traces of life.  相似文献   

4.
The signal detected by the Baksan Underground Scintillation Telescope comprises five events over a period of 9.1 s. Data from all detectors (Kamiokande II, IMB, Baksan, and LSD) are used to estimate the energy carried away from the stellar core in the form of electron antineutrinos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号