首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
The Pyoza River area in the Arkhangelsk district exposes sedimentary sequences suitable for study of the interaction between consecutive Valdaian ice sheets in Northern Russia. Lithostratigraphic investigations combined with luminescence dating have revealed new evidence on the Late Pleistocene history of the area. Overlying glacigenic deposits of the Moscowian (Saalian) glaciation marine deposits previously confined to three separate transgression phases have all been connected to the Mikulinian (Eemian) interglacial. Early Valdaian (E. Weichselian) proglacial, lacustrine and fluvial deposits indicate glaciation to the east or north and consequently glacier damming and meltwater run-off in the Pyoza area around 90–110 ka BP. Interstadial conditions with forest-steppe tundra vegetation and lacustrine and fluvial deposition prevailed at the end of the Early Valdaian around 75–95 ka BP. A terrestrial-based glaciation from easterly uplands reached the Pyoza area at the Early to Middle Valdaian transition around 65–75 ka BP and deposited glaciofluvial strata and subglacial till (Yolkino Till). During deglaciation, laterally extensive glaciolacustrine sediments were deposited in ice-dammed lakes in the early Middle Valdaian around 55–75 ka BP. The Barents–Kara Sea ice sheet deposited the Viryuga Till on the lower Pyoza from northerly directions. The ice sheet formed the Pyoza marginal moraines, which can be correlated with the Markhida moraines further east, and proglacial lacustrine deposition persisted in the area during the first part of the Middle Valdaian. Glacio-isostatic uplift caused erosion followed by pedogenesis and the formation of a deflation horizon in the Middle Valdaian. Widely dispersed periglacial river plains were formed during the Late Valdaian around 10–20 ka BP. Thus, the evidence of a terrestrial-based ice sheet from easterly uplands in the Pyoza area suggests that local piedmont glaciers situated in highlands such as the Timan Ridge or the Urals could have developed into larger, regionally confined ice sheets. Two phases of ice damming and development of proglacial lakes occurred during the Early and Middle Valdaian. The region did not experience glaciation during the Late Valdaian.  相似文献   

2.
Marine and fluvial terrace sequences near the Waitakere Ranges on the North Island of New Zealand have been surveyed, yielding an inventory of 13 fluvial and 12 marine terrace levels. Based on sparse tephra age control and correlation with the global palaeoclimatic record, rates of regional Quaternary uplift have been reconstructed. Between 1000 ka and 345 ka the time-averaged uplift rate was 0.072 mm a− 1, between 345 ka and 50 ka it increased to 0.278 mm a− 1, accelerating to 0.42 mm a− 1 since 50 ka. The fluvial terrace sequence did not yield clear sedimentary records or other datable material. However, although others have disputed the existence of marine terraces in this study region, a pattern of accelerating regional uplift, superimposed onto glacio-eustatic sea-level changes, is substantiated as the only possible mechanism for maintaining the considerable relief and the active denudation processes inland. The observed uplift is similar to that in other regions where the uplift has been attributed to coupling between surface processes and lower-crustal flow, making this a likely mechanism in the North Island of New Zealand. Regarding the fluvial terrace sequence, the proposed general model is of an actively incising river, carving out on average one strath terrace every ~ 16,000 years. The incision phases are reactivated by sea-level lowering and interrupted by net aggradation events due to landslides triggered by cyclones and/or fires within the catchment; volcanic ash falls also cause transient increases in sediment supply.  相似文献   

3.
A set of 13 new unspiked K–Ar dates has been obtained for the Quaternary basaltic volcanism in the Kula area of western Turkey, providing improved age control for the fluvial deposits of the Gediz River that underlie these basalt flows. This dating is able, for the first time, to resolve different ages for the oldest basalts, assigned to category β2, that cap the earliest Gediz deposits recognised in this area, at altitudes of 140 to 210 m above present river level. In particular, the β2 basalt capping the Sarnıç Plateau is dated to 1215 ± 16 ka (± 2σ), suggesting that the youngest underlying fluvial deposits, 185 m above present river level, are no younger than marine oxygen isotope stage (MIS) 38. In contrast, the β2 basalt capping the adjacent Burgaz Plateau is dated to 1014 ± 23 ka, suggesting that the youngest underlying fluvial deposits, 140 m above present river level, date from MIS 28. The staircase of 11 high Gediz terraces capping the latter plateau is thus dated to MIS 48-28, assuming they represent consecutive 40 ka Milankovitch cycles, although it is possible that as many as two cycles are missing from this sequence such that the highest terrace is correspondingly older. Basalt flows assigned to the β3 category, capping Gediz terraces 35 and 25 m above the present river level, have been dated to 236 ± 6 ka and 180 ± 5 ka, indicating incision rates of 0.15 mm a− 1, similar to the time-averaged rates since the eruptions of the β2 basalts. The youngest basalts, assigned to category β4, are Late Holocene; our K–Ar results for them range from zero age to a maximum of 7 ± 2 ka.This fluvial incision is interpreted using numerical modelling as a consequence of uplift caused by a regional-scale increase in spatial average erosion rates to 0.1 mm a− 1, starting at 3100 ka, caused by climate deterioration, since when a total of 410 m of uplift has occurred. Parameters deduced on this basis from the observed disposition of the Early Pleistocene Gediz terraces include the local effective viscosity of the lower crust, which is 2 × 1018 Pa s, the Moho temperature of 660 °C, and the depth of the base of the brittle upper crust, which is 13 km. The thin lithosphere in this area results in high heat flow, causing this relatively shallow base of the brittle upper crust and the associated relatively thick lower-crustal layer, situated between depths of 13 and 30 km. It estimated that around 900 ka, at the start of the 100 ka Milankovitch forcing, the spatial average erosion rate increased slightly, to 0.12 mm a− 1; the associated relatively sluggish variations in uplift rates are as expected given the relatively thick lower-crustal layer.This modelling indicates that the growth of topography since the Pliocene in this study region has not involved a steady state. The landscape was significantly perturbed by the Middle Pliocene increase in erosion rates, and has subsequently adjusted towards—but not reached—a new steady state consistent with these increased erosion rates. It would not be possible to constrain what has been occurring from the Middle to Late Pleistocene or even the Early Pleistocene uplift response alone; information regarding the starting conditions is also essential, this being available in this region from the older geological record of stacked fluvial and lacustrine deposition. This result has major implications for the rigorous modelling of uplift histories in regions of rapid erosion, where preservation of information to constrain the starting conditions is unlikely.  相似文献   

4.
Owing to the very gently sloping nature of the flood plain in the lower White Nile valley, which is underlain by a former lake-bed, the depositional record in that area is unusually well preserved. In Egypt and along the Blue Nile phases of erosion have destroyed segments of the sedimentary record, but the White Nile sequence is a good proxy for both the main Nile and the Blue Nile. During the last 15 ka, at least, times of high flow in the Blue Nile and main Nile were synchronous with those in the White Nile.Not all the White Nile flood deposits have been preserved but calibrated radiocarbon dates obtained on fossil freshwater and amphibious Pila shells and fish bones indicate that White Nile levels were high around 14.7–13.1 ka, 9.7–9.0 ka, 7.9–7.6 ka, 6.3 ka and 3.2–2.8 ka. The Blue Nile record is more fragmentary and that of the main Nile even more so except for the Holocene Nile delta. Calibrated radiocarbon ages for high Blue Nile flows indicate very high flood levels towards 13.9–13.2 ka, 8.6 ka, 7.7 ka and 6.3 ka.Incision by the Blue Nile and main Nile has caused progressive incision in the White Nile amounting to at least 4 m since the terminal Pleistocene  15 ka ago and at least 2 m over the past 9 ka. The Blue Nile seems to have cut down at least 10 m since  15 ka and at least 4 m since 9 ka. The time-transgressive and relatively late inception of plant domestication in the Nile valley may partly reflect this history of incision. Nile incision would propagate upstream into the White Nile valley, draining previously swampy areas along the valley floor, which would then become accessible to cultivation.  相似文献   

5.
We obtained the high-resolution record of terrestrial biomarkers (C29 and C31 n-alkanes) for the last 26,000 years from Oki Ridge in the south Japan Sea that enabled us to discuss millennial scale climate changes. Our sampling resolution for the biomarker during the major deglaciation period (10–19.5 cal ka BP) is 300 years and for the elemental analyses (total organic carbon and total nitrogen) is as good as ca 200 years. The estimated mass accumulation rate of these molecules during the last glacial period is substantially higher than during the Holocene. They also exhibited two distinct peaks at 17.6 cal ka BP and 11.4 cal ka BP, which are coincident with Heinrich Event 1 and the latest stage of the Younger Dryas, respectively. The unique oceanographic setting of the Japan Sea tends to preferentially preserve organic material of aeolian origin. The nature of our biomarker record in fact suggests a strong aeolian signal, and hence their flux to the Japan Sea potentially reflects the climate conditions of the dust source regions and transport intensity. Our results are consistent with previously reported monsoon variations based on other proxies that is indicative of a strong linkage between North Atlantic climate and Asian monsoon intensity.  相似文献   

6.
Modelling of uplift histories in the Upper and Middle Thames valleys has revealed an important difference, in the form of additional early post-Anglian uplift in the Middle Thames, attributed to an Anglian (~ 440 ka) glacio-isostatic effect. Terraces in the Upper Thames around Oxford seem unaffected by glacio-isostasy and their heights show regional uplift of ~ 35–40 m since the Anglian. The result of the glacio-isostasy is that Anglian terraces are significantly higher above the valley floor in the Middle Thames (up to 55 m) than in the Upper Thames. Recognition of this displacement of Middle Thames terraces has solved long-standing problems of correlation between this area and the Upper Thames: the pre-Anglian (Cromerian Complex) age of the Sugworth Channel deposits, indicated by biostratigraphy, is no longer a difficulty, whereas the Hanborough Terrace is now thought to be of Anglian age, albeit incorporating pre-Anglian faunal remains and perhaps with a significant early post-Anglian component. These findings have implications for the understanding of the effects of Middle Pleistocene glacio-isostasy and of landscape evolution on the periphery of glaciated regions.  相似文献   

7.
New crater size-shape data were compiled for 221 fresh lunar craters and 152 youthful mercurian craters. Terraces and central peaks develop initially in fresh craters on the Moon in the 0–10 km diameter interval. Above a diameter of 65 km all craters are terraced and have central peaks. Swirl floor texture is most common in craters in the size range 20–30 km, but it occurs less frequently as terraces become a dominant feature of crater interiors. For the Moon there is a correlation between crater shape and geomorphic terrain type. For example, craters on the maria are more complex in terms of central peak and terrace detail at any given crater diameter than are craters in the highlands. These crater data suggest that there are significant differences in substrate and/or target properties between maria and highlands. Size-shape profiles for Mercury show that central peak and terrace onset is in the 10–20 km diameter interval; all craters are terraced at 65 km, and all have central peaks at 45 km. The crater data for Mercury show no clear cut terrain correlation. Comparison of lunar and mercurian data indicates that both central peaks and terraces are more abundant in craters in the diameter range 5–75 km on Mercury. Differences in crater shape between Mercury and the Moon may be due to differences in planetary gravitational acceleration (gMercury=2.3gMoon). Also differences between Mercury and the Moon in target and substrate and in modal impact velocity may contribute to affect crater shape.  相似文献   

8.
This paper addresses the influence of external forcing (changes in tectonics, sea level and climate) on the downstream and long-term (103–105 years) evolution of sediment composition along a fluvial longitudinal profile. The River Meuse served as a case study for a semi 2-D forward-modelling approach to simulate the downstream sediment transport in the 200- to 0-ka period. This has been related to bulk geochemical properties of the tributary catchments to quantify the bulk composition of the sediment load in the main river. The model was used to test the hypothesis that long-term fluvial dynamics influences sediment composition.The simulation exercise showed that long-term fluvial dynamics can yield systematic temporal changes in fluvial sediment composition, especially in high-relief areas. We tested a scenario of minimal discharges and maximum hillslope erosion during cold glacial periods (weathering-limited sediment supply), alternating with maximal discharges and minimal hillslope erosion during prolonged interstadials or interglacials (transport-limited sediment supply). This scenario largely reproduced the timing and direction of measured changes in the bulk and clay geochemistry of fine-grained sediments, which were deposited in the River Meuse lower reach from 13 to 0 ka. However, it failed to reproduce the measured amplitude of change, which was five to six times larger than the modelled amplitude. This suggests that climate-dependent changes in weathering intensity of rocks and saprolite in the source areas were more important and that aeolian inputs from outside the drainage basin have co-determined the sediment composition.  相似文献   

9.
We correlate Upper Pleistocene glacial and fluvial deposits of the Cinca and Gállego River valleys (south central Pyrenees and Ebro basin, Spain) using geomorphic position, luminescence dates, and time-related trends in soil development. The ages obtained from glacial deposits indicate glacial periods at 85 ± 5 ka, 64 ± 11 ka, and 36 ± 3 ka (from glacial till) and 20 ± 3 ka (from loess). The fluvial drainage system, fed by glaciers in the headwaters, developed extensive terrace systems in the Cinca River valley at 178 ± 21 ka, 97 ± 16 ka, 61 ± 4 ka, 47 ± 4 ka, and 11 ± 1 ka, and in the Gállego River valley at 151 ± 11 ka, 68 ± 7 ka, and 45 ± 3 ka. The times of maximum geomorphic activity related to cold phases coincide with Late Pleistocene marine isotope stages and Heinrich events. The maximum extent of glaciers during the last glacial occurred at 64 ± 11 ka, and the terraces correlated with this glacial phase are the most extensive in both the Cinca (61 ± 4 ka) and Gállego (68 ± 7 ka) valleys, indicating a strong increase in fluvial discharge and availability of sediments related to the transition to deglaciation. The global Last Glacial Maximum is scarcely represented in the south central Pyrenees owing to dominantly dry conditions at that time. Precipitation must be controlled by the position of the Iberian Peninsula with respect to the North Atlantic atmospheric circulation system. The glacial systems and the associated fluvial dynamic seem sensitive to 1) global climate changes controlled by insolation, 2) North Atlantic thermohaline circulation influenced by freshwater pulses into the North Atlantic, and 3) anomalies in atmospheric circulation in the North Atlantic controlling precipitation on the Iberian Peninsula. Our scenario of glacial and fluvial evolution during the Late Pleistocene in northern Spain could be extrapolated to other glaciated mountainous areas in southern Europe.  相似文献   

10.
The history (45–0 ka BP) of the aquatic vegetation composition of the shallow alpine Lake Luanhaizi from the NE Tibetan Plateau is inferred from aquatic plant macrofossil frequencies and aquatic pollen and algae concentrations in the sediments. C/N (range: 0.3–100), δ13C (range: −28 to −15‰), and n-alkane measurements yielded further information on the quantitative composition of sedimentary organic matter. The inferred primary production of the former lake ecosystem has been examined in respect of the alternative stable state theory of shallow lakes [Scheffer, M., 1989. Alternative stable states in eutrophic, shallow freshwater systems: a minimal model. Hydrobiological Bulletin 23, 73–83]. Switches between clear and turbid water conditions are explained by a colder climate and forest decline in the catchment area of Lake Luanhaizi. The macrofossil-based reconstruction of past water depth and salinity ranges, as well as other organic matter (OM) proxies allowed climatic inferences of the summer monsoon intensity during the late Quaternary. Around 45 ka BP, conditions similar to or even moister than present-day climate occurred. The Lake Luanhaizi record is further evidence against an extensive glaciation of the Tibetan Plateau and its bordering mountain ranges during the Last Glacial Maximum. Highest lake levels and consequently a strong summer monsoon are recorded for the early Holocene period, while gradually decreasing lake levels are reconstructed for the middle and late Holocene.  相似文献   

11.
We utilize a regional climate model with detailed land surface processes (RegCM2) to simulate East Asian monsoon climates at 0 ka, 6 ka and 21 ka BP, and evaluate the changes in hydrology process, including vapor transportation, precipitation, evapotranspiration and runoff in the eastern and western China during these periods. Results indicate that the Tibetan Plateau climate presents a wet–cold status during the LGM while it exhibits a wet–warm climate at 6 ka BP. The LGM wetter climate over the Tibetan Plateau mainly results from the increased vapor inflow through its south boundary, while the increase in the vapor import over the Tibetan Plateau at 6 ka BP mostly sources from its west boundary. The increase in the LGM runoff over the Tibetan Plateau is mainly caused by the decrease in evapotranspiration, while the increase in runoff at the 6 ka BP mainly by the enhanced precipitation. Eastern China (including southern China) presents a dry status during the LGM, which precipitation and runoff decreases significantly due largely to weakened Asian summer monsoon that results in the decreased vapor inflow through the south boundary of eastern China. The variation pattern in the hydrological cycle in eastern China is contrary to that in western China during the LGM. The increase in precipitation and runoff at 6 ka BP in eastern China is tightly related to the strong Asian summer monsoon that leads to increased vapor import through the south boundary. Long term decrease trend in precipitation and runoff in northern China since the last 20 000 years may be attributed to the steady increase in vapor export through the east boundary as a result of the changes of East Asian monsoon and the adjustments of local atmospheric circulations in this area.  相似文献   

12.
Unspiked K–Ar dating makes the age of the Çakmaközü basalt in eastern Turkey 1818 ± 39 ka (± 2σ). This basalt overlies a staircase of four terraces of the River Murat, a Euphrates tributary, each separated vertically by  20 m. We deduce from the relationship with the basalt that these fluvial deposits aggraded during successive  40 ka climate cycles around the Pliocene–Pleistocene boundary (probably MIS 72-66). The incision and rock uplift at  0.5 mm a− 1, thus indicated, are roughly consistent with the  500 m of entrenchment of this  1.8 Ma Murat palaeo-valley into a former lake basin since the Mid-Pliocene climatic optimum. We infer that the  130 m of incision in this locality since  1.8 Ma dramatically underestimates the associated rock uplift, estimated as  600 m. The  1100 m of rock uplift and  800 m of surface uplift thus estimated since the Mid-Pliocene indicate (assuming Airy isostatic equilibrium)  5 km of thickening of the continental crust, from  37 km to the present 42 km. Eastern Anatolia was thus at a much lower altitude in the Mid-Pliocene than at present, consistent with the low-relief lacustrine palaeo-environment. We infer that the subsequent development of topography and excess crustal thickness are being caused by coupling between surface processes and induced flow in the lower crust: climate change following the Mid-Pliocene climatic optimum resulted in faster erosion that has drawn mobile lower crust beneath the study region.  相似文献   

13.
The properties of OH megamaser galaxies in the radio continuum are discussed. Many radio sources in OH megamaser galaxies exhibit relatively flat (α ≥ −0.5) radio spectra between frequencies of 1.49 and 8.44 GHz along with high brightness temperatures (Tb ≥ 104 K). In these galaxies the line and radio continuum fluxes are not correlated. The continuum radio emission of OH megamasers is predominantly nonthermal and is associated either with an active nucleus or with compact star formation. The thermal component of the radio emission from these galaxies can be neglected. The observed flat radio spectra and high brightness temperatures imply the existence of an active galactic nucleus, although some megamasers may be associated with compact star formation.__________Translated from Astrofizika, Vol. 48, No. 2, pp. 281–290 (May 2005).  相似文献   

14.
The North Taymyr ice-marginal zone (NTZ) is a complex of glacial, glaciofluvial and glaciolacustrine deposits, laid down on the northwestern Taymyr Peninsula in northernmost Siberia, along the front of ice sheets primarily originating on the Kara Sea shelf. It was originally recognised from satellite radar images by Russian scientists; however, before the present study, it had not been investigated in any detail. The ice sheets have mainly inundated Taymyr from the northwest, and the NTZ can be followed for 700–750 km between 75°N and 77°N, mostly 80–100 km inland from the present Kara Sea coast.The ice-marginal zone is best developed in its central parts, ca. 100 km on each side of the Lower Taymyr River, and has there been studied by us in four areas. In two of these, the ice sheet ended on land, whereas in the two others, it mainly terminated into ice-dammed lakes. The base of the NTZ is a series of up to 100-m-high and 2-km-wide ridges, usually consisting of redeposited marine silts. These ridges are still to a large extent ice-cored; however, the present active layer rarely penetrates to the ice surface. Upon these main ridges, smaller ridges of till and glaciofluvial material are superimposed. Related to these are deltas corresponding to two generations of ice-dammed lakes, with shore levels at 120–140 m and ca. 80 m a.s.l. These glacial lakes drained southwards, opposite to the present-day pattern, via the Taymyr River valley into the Taymyr Lake basin and, from there, most probably westwards to the southern Kara Sea shelf.The basal parts of the NTZ have not been dated; however, OSL dates of glaciolacustrine deltas indicate an Early–Middle Weichselian age for at least the superimposed ridges. The youngest parts of the NTZ are derived from a thin ice sheet (less than 300 m thick near the present coast) inundating the lowlands adjacent to the lower reaches of the Taymyr River. The glacial ice from this youngest advance is buried under only ca. 0.5 m of melt-out till and is exposed by hundreds of shallow slides. This final glaciation is predated by glacially redeposited marine shells aged ca. 20,000 BP (14C) and postdated by terrestrial plant material from ca. 11,775 and 9500 BP (14C)–giving it a last global glacial maximum (LGM; Late Weichselian) age.  相似文献   

15.
Ocean Drilling Program Leg 188, Prydz Bay, East Antarctica is part of a larger initiative to explore the Cenozoic history of the Antarctic Ice Sheet through direct drilling and sampling of the continental margins. In this paper, we present stable isotopic results from Ocean Drilling Program (ODP) Site 1167 located on the Prydz Channel Trough Mouth Fan (TMF), the first Antarctic TMF to be drilled. The foraminifer-based δ18O record is interpreted along with sedimentary and downhole logging evidence to reconstruct the Quaternary glacial history of Prydz Bay and the adjacent Lambert Glacier Amery Ice Shelf System (LGAISS). We report an electron spin resonance age date of 36.9±3.3 ka at 0.45 m below sea floor and correlate suspected glacial–interglacial cycles with the global isotopic stratigraphy to improve the chronology for Site 1167. The δ18O record based on planktonic (Neogloboquadrina pachyderma (s.)) and limited benthic results (Globocassidulina crassa), indicates a trend of ice sheet expansion that was interrupted by a period of reduced ice volume and possibly warmer conditions during the early–mid-Pleistocene (0.9–1.38 Ma). An increase in δ18O values after 900 ka appears to coincide with the mid-Pleistocene climate transition and the expansion of the northern hemisphere ice sheet. The δ18O record in the upper 50 m of the stratigraphic section indicates as few as three glacial–interglacial cycles, tentatively assigned as marine isotopic stages (MIS) 16–21, are preserved since the Brunhes/Matuyama paleomagnetic reversal (780 ka). This suggests that there is a large unconformity near the top of the section and/or that there may have been few extreme advances of the ice sheet since the mid-Pleistocene climate transition resulting in lowered sedimentation rates on the Prydz Channel TMF. The stable isotopic record from Site 1167 is one of the few available from the area south of the Antarctic Polar Front that has been linked with the global isotopic stratigraphy. Our results suggest the potential for the recovery of useful stable isotopic records in other TMFs.  相似文献   

16.
IUE ultraviolet spectral recording for a low excitating planetary nebula NGC 6369 is obtained. The very strong doublet 2800 Mgii in emission as well as not less strong absorption line 2852 Mgi are discovered in the spectrum of this nebula. It is shown that the resonance line 2852 Mgi may originate only in a neutral envelope, around the nebula, consisting of neutral hydrogen, neutral magnesium, and dust particles (Hi+Mgi). The importance of this absorption line as a powerful indicator of the discovery of neutral envelopes around the planetary nebulae is outlined.The possibility of the existence of one more envelope—transition zone—immediately contacting with the bright that is ionized part of nebula (Hii+Mgii) is also shown. The transition zone consists of neutral hydrogen, ionized magnesium, and dust particles (Hi+Mgii), main parameters of this zone are also obtained (Table IV).The temperature of the central star of this nebula is obtained for the first time:T *=48000 K. Continuous background in the interval 2600–3000 Å is identified with Balmer continuum with electron temperatureT e =12500 K.  相似文献   

17.
Beach and shoreface sediments deposited in the more than 800-km long ice-dammed Lake Komi in northern European Russia have been investigated and dated. The lake flooded the lowland areas between the Barents–Kara Ice Sheet in the north and the continental drainage divide in the south. Shoreline facies have been dated by 18 optical stimulated luminescence (OSL) dates, most of which are closely grouped in the range 80–100 ka, with a mean of 88±3 ka. This implies that that the Barents–Kara Ice Sheet had its Late Pleistocene maximum extension during the Early Weichselian, probably in the cold interval (Rederstall) between the Brørup and Odderade interstadials of western Europe, correlated with marine isotope stage 5b. This is in strong contrast to the Scandinavian and North American ice sheets, which had their maxima in isotope stage 2, about 20 ka. Field and air photo interpretations suggest that Lake Komi was dammed by the ice advance, which formed the Harbei–Harmon–Sopkay Moraines. These has earlier been correlated with the Markhida moraine across the Pechora River Valley and its western extension. However, OSL dates on fluvial sediments below the Markhida moraine have yielded ages as young as 60 ka. This suggests that the Russian mainland was inundated by two major ice sheet advances from the Barents–Kara seas after the last interglacial: one during the Early Weichselian (about 90 ka) that dammed Lake Komi and one during the Middle Weichselian (about 60 ka). Normal fluvial drainage prevailed during the Late Weichselian, when the ice front was located offshore.  相似文献   

18.
A two-layer model of a satellite interior with a rocky core with a density 3–3.4 g cm-3 and with a H2O mantle with a density 0.94–1.2 g cm-3 is applied for the icy satellites. The case of Mimas is discussed separately. A comparison of the results with these obtained for more complicated models as applied for Jupiter and Saturn icy satellites has been carried out. This comparison shows that the two-layer model offers a reasonable approximation and, therefore, it can be applied for the satellites of Uranus. We obtained the dimensionless core radii 0.55–0.74, 0.45–0.68, 0.59–0.67, 0.55–0.65, and dimensionless core masses 0.42–0.72, 0.26–0.63, 0.47–0.61, 0.41–0.57, for Ariel, Umbriel, Titania, and Oberon, respectively.Institute of Geophysics of Warsaw University, Warszawa, Poland.  相似文献   

19.
The temperature profile of the KTB pilot drillhole, T(z)KTB-PH,is distinctly nonlinear: a temperature deficit ΔT (relative to a linear temperature-depth profile) is especially pronounced in the depth range 500–3500 m. The depth dependence of the deficit, Δ(z) is compared to be anticipated effect of surface paleoclimatic variations, ΔTpc(z), at the drillsite on the temperature profile. The latter can be calculated from available paleo-climatic models. If ΔTpc(z) is added to T(z)KTB-PH, a nearly linear temperature-depth curve results with an average geothermal gradient of 27.9°C/km. This, together with an average vertical thermal conductivity of 3.0 W/mK, estimated from KTB drillcore data, implies a heat flow density at the KTB site of 84 mW/m2. This modelled value is in good agreement with heat flow determinations in the adjacent Eger graben structure (Western Bohemian massif).  相似文献   

20.
Recent studies in the Arkhangelsk region, northwest Russia, have identified at least three consecutive tills all associated with the last Valdaian (Weichselian) glaciation. The Scandinavian ice sheet deposited a Late Valdaian till (ca. 17 ka BP), whereas two tills were deposited in the Early–Middle Valdaian by the Barents/Kara Sea ice sheet (ca. 45–60 ka BP) and an older ice sheet with an eastern centre (ca. 74 ka BP). This article expands on previous stratigraphical work on the discrimination of regional till units by a combination of compositional characteristics and directional properties. Tills associated with the Scandinavian ice sheet were deposited by a glacier advancing from west or northwest, transporting predominantly material from the Fennoscandian shield and the White Sea area. The Barents/Kara Sea ice sheet moved from the north and northeast, whereas the oldest ice advance came from the east–southeast. Although, the two oldest tills both contain material with an eastern provenance, the Viryuga Till is dominated more by local carbonate-rich material. This study demonstrates that detailed investigation of till units facilitate the distinction of glacial events imperative for the reconstructing of the last glaciation in northern Russia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号