首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
A seismic gap on the Anninghe fault in western Sichuan,China   总被引:10,自引:0,他引:10  
Through integrated analyses of time-varying patterns of regional seismicity, occurrence background of strong and large historical earthquakes along active faults, and temporal-spatial distribution of accu- rately relocated hypocenters of modern small earthquakes, this paper analyzes and discusses the im- plication of a 30-year-lasting seismic quiescence in the region along and surrounding the Anninghe and Zemuhe faults in western Sichuan, China. It suggests that the seismic quiescence for ML≥4.0 events has been lasting in the studied region since January, 1977, along with the formation and evaluation of a seismic gap of the second kind, the Anninghe seismic gap. The Anninghe seismic gap has the background of a seismic gap of the first kind along the Anninghe fault, and has resulted from evident fault-locking and strain-accumulating along the fault during the last 30 years. Now, two fault sections either without or with less small earthquakes exist along the Anninghe fault within the An- ninghe seismic gap. They indicate two linked and locked fault-sections, the northern Mianning section and the Mianning-Xichang section with lengths of 65 km and 75 km and elapsed time from the latest large earthquakes of 527 and 471 years, respectively. Along the Anninghe fault, characteristics of both the background of the first kind seismic gap and the seismicity patterns of the second seismic gap, as well as the hypocenter depth distribution of modern small earthquakes are comparable, respectively, to those appearing before the M=8.1 Hoh Xil earthquake of 2001 and to those emerging in the 20 years before the M=7.1 Loma Prieta, California, earthquake of 1989, suggesting that the Anninghe seismic gap is tending to become mature, and hence its mid- to long-term potential of large earthquakes should be noticeable. The probable maximum magnitudes of the potential earthquakes are estimated to be as large as 7.4 for both the two locked sections of the Anninghe fault.  相似文献   

2.
In October and November 2002, the Molise region (southern Italy) was struck by two moderate magnitude earthquakes within 24 hours followed by an one month long aftershocks sequence. Soon after the first mainshock (October 31st, 10.32 UTC, Mw 5.7), we deployed a temporary network of 35 three-component seismic stations. At the time of occurrence of the second main event (November 1st, 15.08 UTC, Mw 5.7) the eight local stations already installed allowed us to well constrain the hypocentral parameters. We present the location of the two mainshocks and 1929 aftershocks with 2 < ML < 4.2. Earthquake distribution reveals a E-trending 15 km long fault system composed by two main segments ruptured by the two mainshocks. Aftershocks define two sub-vertical dextral strike-slip fault segments in agreement with the mainshock fault plane solutions. P- and T-axes retrieved from 170 aftershocks focal mechanisms show a coherent kinematics: with a sub-horizontal NW and NE-trending P and T-axes, respectively. For a small percentage of focal mechanisms (∼ 10%) a rotation of T axes is observed, resulting in thrust solutions. The Apenninic active normal fault belt is located about 80 km westward of the 2002 epicentral area and significant seismicity occurs only 20-50 km to the east, in the Gargano promontory. Seismic hazard was thought to be small for this region because neither historical earthquake are reported in the Italian seismic catalogue or active faults were previously identified. In this context, the 2002 seismic sequence highlights the existence of trans-pressional active tectonics in between the extensional Apenninic belt and the Apulian foreland.  相似文献   

3.
Introduction Strong and large earthquakes are prepared and generated on specific segments of active fault zones, especially on the asperity parts of the zones (Aki, 1984; Wiemer, Wyss, 1997; Wyss, et al, 2000). Therefore, both the faulting-behavior identification and the rupture segmentation mainly based on the method of active tectonics are always important aspects in active fault research (DING, et al, 1993). The purposes of the two aspects of research focus on determining fault units tha…  相似文献   

4.
The integration of terrain computer modeling with field methods may provide a powerful mechanism for understanding active faults geometry, kinematics and long-term fault behavior. Radar interferometry was used on ERS tandem images to create a geocoded DEM (InSAR-DEM) with a nominal 20-m spatial-resolution of the central Apennines axial zone, a seismically active area characterized by historical destructive earthquakes with M 7. The potential was tested of InSAR-DEM application to the Fucino and Sulmona basin boundary faults, which have well-defined seismological, paleoseismological and/or geological evidence for their having seismogenic sources. In particular, slope maps extracted from the InSAR-DEM were used for fault scarps detection, whether on carbonate bedrock (fault scarp type 2) or affecting continental deposits within the basin (fault scarp type 1), and compared with the available geological and new field data. In order to assess the DEM accuracy and to evaluate morphometric parameters related to the long-term slip-rates of the faults, a set of topographic profiles was extracted from the InSAR-DEM and compared with analogous profiles derived from the available topographic map (i.e., 1/25,000, with 25 m contour interval). In particular, the use of InSAR-DEM analyses showed its better results, with respect to the standard topography, for urban/agricultural gently sloped areas where fault scarps affected unconsolidated and particularly soft sediments (e.g., Fucino basin fault systems), while in severely sloped carbonate ridge and forested areas low coherences and layover effects made InSAR-DEM application problematic. A maximum value of 1.1 ± 0.2 mm yr–1 slip-rate was obtained for the Fucino boundary fault. Finally, the recognized en-échelon pattern of the Sulmona basin boundary fault, provided a segmentation model for this structure corroborated by geological-structural field data.  相似文献   

5.
The central part of the Apulia region, in southern Italy, has been generally considered practically free from significant level of seismicity, but historical documentation, geological indicators and recent instrumental observations suggest that the activity of local minor tectonic structures could have been masked (and partly also induced) by that of major seismogenic structures located in the neighbouring regions. A revision of the central Apulia seismicity characteristics was conducted considering its space and time distribution, energy release rate and focal mechanisms, in view of possible hazard implications. To better constrain the seismicity rates inferable from the set of available historical data, special attention was paid to the declustering of a catalogue of low energy events (magnitude < 3.5) instrumentally detected in about 20 years: a new declustering procedure, useful for cases like to the one at hand, was purposely devised taking into account the peculiarity of local seismicity characteristics and the limitations of the available database. The results obtained by combining instrumental and historical data show that this area is affected by a rather sporadic seismicity, likely associated to a general tensional regime and possibly stimulated by the interaction with Apenninic and northern Apulia seismogenic activity. Even though less energetic, the local seismicity contributes to increase the moderately damaging shaking probability due to the activity of seismic sources located in the near areas, so to justify the adoption of at least a minimum level of caution in relation to the local definition of seismic protection measures.  相似文献   

6.
Following the increase in seismic activity which occurred near Isernia (Molise, Central Italy) in January 1986, a digital seismic network of four stations with three-component, short-period seismometers, was installed in the area by the Osservatorio Vesuviano. The temporary network had an average station spacing of about 8–10 km and, in combination with permanent local seismic stations, allowed the accurate determination of earthquake locations during an operating period of about one month. Among the 1517 detected earthquakes, 170 events were selected with standard errors on epicentre and depth not greater than respectively 0.5 and 1.5 km. The most frequent focal depths ranged between 4 and 8 km, while the epicentres distribution covered a small area NE of Isernia of about 10 km2. A main rupture zone could not be clearly identified from the spatial distribution of the earthquakes, suggesting a rupture mechanism involving heterogeneous materials. The activity was characterized by low energy levels, the largest earthquake, on January 18, 1986, havingM D =4.0. The time sequence of events and pattern of seismic energy release revealed a strong temporal clustering of events, similar to the behaviour commonly associated with seismic swarms.  相似文献   

7.
On September 6, 2002, a ML = 5.6 earthquake, occurring some tens of kilometres offshore from the Northern Sicilian coast (Southern Tyrrhenian Sea), slightly damaged the city of Palermo and surroundings (degree 6 in the European Macroseismic Scale 1998). The macroseismic investigation of the shock and a detailed study of effects of the main earthquakes which affected Palermo in the past have been performed in order to evaluate the seismic response of the city. Moreover, the comparison of the recent event, which is instrumentally constrained, with historical earthquakes allows us to infer new insights on the seismogenic sources of the area, that seem located offshore in the Tyrrhenian sea.In the last 500 years, Palermo has never been completely destroyed but has suffered effects estimated between intensities 6 and 8 EMS-98 many times (1693, 1726, 1751, 1823, 1940, 1968, 2002). The damage scenarios of the analysed events have shown that damage distribution is strongly conditioned by soil response in the different parts of the city and by a high building vulnerability, mainly in the historical centre and in the south-eastern zone of the modern city. As a matter of fact, Palermo has always suffered greater effects than those reported for other nearby localities. The hazard assessment obtained using observed site intensities has shown that the probability of occurrence for intensity 8 (the strongest intensity observed in Palermo) exceeds 99% for 550 years, while the estimated mean return period is 152 ± 40 years. These results, in connection with building vulnerability due to the urban expansion before the introduction of seismic code, suggest that the city is exposed to a relatively high seismic risk.This paper has not been submitted elsewhere in identical or similar form, nor will it be during the first 3 months after its submission to Journal of Seismology.  相似文献   

8.
The results of stratigraphic and tephrostratigraphic analyses of several pyroclastic levels, collected along the coastal sector of the Cilento region (southern Italy), are presented. Some of these levels are here described for the fist time, others, already known in literature, were reconsidered in order to better understand their stratigraphic position and to point out the possible volcanic sources.  相似文献   

9.
Structural observations carried out on the volcanic Island of Pantelleria show that the tectonic setting is dominated by NNE trending normal faults and by NW-striking right-lateral strike-slip faults with normal component of motion controlled by a ≈N 100°E oriented extension. This mode of deformation also controls the development of the eruptive fissures, dykes and eruptive centres along NNE–SSW belts that may thus represent the surface response to crustal cracking with associated magma intrusions. Magmatic intrusions are also responsible for the impressive vertical deformations that affect during the Late Quaternary the south-eastern segment of the island and producing a large dome within the Pantelleria caldera complex. The results of the structural analysis carried out on the Island of Pantelleria also improves the general knowledge on the Late Quaternary tectonics of the entire Sicily Channel. ESE–WNW directed extension, responsible for both the tectonic and volcano-tectonic features of the Pantelleria Island, also characterizes, at a greater scale, the entire channel as shown by available geodetic and seismological data. This mode of extension reactivates the older NW–SE trending fault segments bounding the tectonic troughs of the Channel as right-lateral strike-slip faults and produces new NNE trending pure extensional features (normal faulting and cracking) that preferentially develop at the tip of the major strike-slip fault zones. We thus relate the Late Quaternary volcanism of the Pelagian Block magmatism to dilatational strain on the NNE-striking extensional features that develop on the pre-existing stretched area and propagate throughout the entire continental crust linking the already up-welled mantle with the surface.  相似文献   

10.
Geomorphic and trench investigations are used toanalyze the seismic potential of the Aremogna-CinqueMiglia fault, an active N- to NW-trending, W-facingnormal fault located in Central Apennines. Wereconstructed a complex 16 km-long, as much as 6m-high, fault scarp that displaces late Holocenesediments in the Aremogna and Cinque Miglia basins.The complex surface expression of the fault, withdouble sub-parallel scarp sections, a change in strikeof about 40° and local complexity showingimportant horizontal component, appears to becontrolled by the presence of older tectoniclineaments. We opened two trenches across the faultscarp, used a quarry exposure, and reinterpreted atrench opened by Frezzotti and Giraudi (1989), to findthe geological evidence for three Holocene surfacefaulting earthquakes on the Aremogna-Cinque Migliafault. Based on radiocarbon dating and stratigraphicand climatic considerations timing of the events isconstrained between 800 B.C. and 1030 A.D., between3735 and 2940 B.C., and between 3540 and 5000 B.C.. The most recent event is not reported in the twomillennia-long Italian Catalogues of HistoricalSeismicity. We suggest that the most recent eventcould be one of the Middle Age earthquakes of unknownorigin for which several felt reports exist in Rome.Moreover, we also consider the hypothesis that one ofthe shocks of the ambiguous September 1349 earthquakesequence could be the Aremogna-Cinque Miglia mostrecent event. Anyway, based on historicalconsideration we indicate A.D. 1349 as the youngestpossible age for this event. Finally, we suggest theAremogna-Cinque Miglia fault is part of the easternsecondary Apennines seismogenic belt. The faultparameters we obtain for this fault (i.e., recurrence interval longer than 2000 yr, verticallong-term slip rate of 0.3–0.5 mm/yr and m 6.5–6.8 forthe event) can be used as a first hand reference tocharacterize the seismic behavior of other faultsalong this section of the Apennines.  相似文献   

11.
The Matera Horst (“Murgia materana”) is included in the Apulian plateau, basically formed by Mesozoic shallow-water carbonates. The zone is located in a present-day temperate belt and form a flat-topped morphostructural large element inside the foreland area of the southern Apennines. This horst is bordered by high-angle faults and surrounded by downthrown blocks covered by Plio-Quaternary marine and alluvial sediments. The structural high experienced several morphological cycles from Miocene to Quaternary. In particular, three evolutionary stages can be recognized at least. The first stage is currently represented by relics of a flat erosional landscape at the top of the relieves. The second one is testified by gentle slopes with wide glacis at the foothills, locally covered by coarse waste deposits. During the third stage a series of marine terraces formed and a drainage system developed creating both bland valleys and well-defined channels and gorges. The latter streams deeply carve the Cretaceous limestone of the Matera Horst for they represent the morphological response to the tectonic uplift of the area and clearly post-date the former features. Since the fluvial net took place on Pleistocene covers, later widely eroded, it is possible to conclude that the major part of the Matera Horst drainage system represents a good example of superimposition. However, low order streams and segments of major rivers appear to be structurally controlled, as suggested by comparison with the fracture system. Further, also open synclines and gently steeped flexures may locally exert a driving control on minor streams. These apparently conflicting genetic hypotheses can be explained by the role of exhumation of inherited structures of the bedrock in add to a constant interplay between tectonics, erosion and drainage evolution during Quaternary times.  相似文献   

12.
To better understand the mechanics of subduction and the process of breaking a mature seismic gap, we study seismic activity along the western New Britain subduction segment (147°E–151°E, 4°S–8°S) through earthquakes withm b 5.0 in the outer-rise, the upper area of subducting slab and at intermediate depths to 250 km, from January 1964 to December 1990. The segment last broke fully in large earthquakes of December, 28, 1945 (M s =7.9) and May 6, 1947 (M s =7.7.), and its higher seismic potential has been recognized byMcCann et al., (1979). Recently the segment broke partially in two smaller events of February, 8, 1987 (M s =7.4) and October 16, 1987 (M s =7.4), leaving still unbroken areas.We observe from focal mechanisms that the outer-rise along the whole segment was under pronounced compression from the late 60's to at least October 1987 (with exception of the tensional earthquake of December 11, 1985), signifying the mature stage of the earthquake cycle. Simultaneously the slab at intermediate depths below 40 km was under tension before the earthquake of October 16, 1987. That event, with a smooth rupture lasting 32 sec, rupture velocity of 2.0 km/sec, extent of approximately 70 km and moment of 1.2×1027 dyne-cm, did not change significantly the compressive state of stress in the outer-rise of that segment. The earthquake did not fill the gap completely and this segment is still capable of rupturing either in an earthquake which would fill the gap between the 1987 and 1971 events, or in a larger magnitude event (M s =7.7–7.9), comparable to earthquakes observed in that segment in 1906, 1945 and 1947.  相似文献   

13.
Resistivity structure of a seismic gap along the Atotsugawa Fault, Japan   总被引:1,自引:0,他引:1  
Seismicity along the Atotsugawa Fault, located in central Japan, shows a clear heterogeneity. The central segment of the fault with low-seismicity is recognized as a seismic gap, although a lot of micro-earthquakes occur along this fault. In order to elucidate the cause of the heterogeneity in seismicity, the electrical resistivity structure was investigated around the Atotsugawa Fault by using the magnetotelluric (MT) method. The regional geoelectrical strikes are approximately parallel to the fault in a low-frequency range. We constructed two-dimensional resistivity models across the fault using TM-mode MT responses to minimize three-dimensional effects on the modeling process. A smooth inversion algorithm was used, and the static-shifts on the apparent resistivity were corrected in the inversion process.A shallow, low resistivity zone along the fault is found from the surface to a depth of 1-2 km in the best-fit model across the high-seismicity segment of the fault. On the other hand, the corresponding low resistivity zone along the low-seismicity segment is limited to a shallower depth less than 1 km. The low resistivity zone along the Atotsugawa Fault is possibly due to fluid in the fracture zone; the segment with higher levels of seismicity may have higher fluid content in the fault zone compared with the lower seismicity segment. On a view of the crustal structure, a lateral resistivity variation in a depth range of 3-12 km is found below the fault trace in the high-seismicity segment, while a resistive layer of wide extent is found at a depth of about 5 km below the fault trace in the low-seismicity segment. The resistive layer is explained by less fluid condition and possibly characterized as high rigidity. Differences in the resistivity structures between low and high-seismicity segments of the fault suggest that the seismic gap in the central part of the Atotsugawa Fault may be interpreted as a locked segment. Thus, MT is an effective method in evaluating a cause and future activity of seismic gaps along active faults.The lower crust appears as a conductive zone beneath the low-seismicity segment, less conductive beneath the high-seismicity segment. Fluid is inferred as a preferable cause of the conductive zone in this study. It is suggested that the conductive lower crust beneath the low-seismicity segment is recognized where fluid is trapped by an impermeable layer in the upper crust. On the other hand, fluid in the lower crust may upwell to the surface along the high-seismicity segment of the fault.  相似文献   

14.
Statistical estimates of earthquake magnitudes are unreliable when based onvery few historical data. Additional sources of information, such asgeological data, are then necessary to update estimates of seismicityparameters. The Bayesian probability theory is a tool to combine priorinformation of seismicity obtained from geological data with historicalobservations. This theory is tested in the case of the Inner Messiniakosfault zone, southern Greece, for the estimation of the probability ofoccurrence of strong earthquakes. Prior estimates of seismicity aredeveloped from slip rate measurements, obtained from offsets of geologicalformations, on the basis of both onshore and offshore neotectonic data.The analysis emphasizes the importance of the input seismicity parameters,particularly the significance of the upper bound magnitude in the estimationof the seismic potential of active faults.  相似文献   

15.
We present the results of a study of the subsurface tectonic features of the Basso Molise, Western Gargano and Northern Capitanata regions (Southern Italy) aimed at the identification of the source of the disastrous 1627 Gargano earthquake. In the maximum-damage area of this earthquake we have recognised a normal fault, here called the Apricena Fault, which has been identified as the fault that caused the seismic event. The Apricena Fault, striking WNW-ESE and dipping towards SSW, extends in the subsurface for about 30 kilometres from Serracapriola to Santa Maria di Stignano cutting through the whole Quaternary sequence. Other important tectonic structures trending WNW-ESE recognized in the area belong to an inactive Pleistocene strike-slip-fault system that is linked to the Mattinata Fault and to its offshore continuation in the Gondola-Grifone structural high. The Mattinata Fault and the Gondola-Grifone High form a quite complex structural feature whose kinematic behaviour is still matter of debate in the regional geological literature. NW-SE structural features recognized in the area are extensional faults whose activity was probably related to the late flexure-hinge retreat of the Adria plate margin during the Late Pliocene-Early Pleistocene eastward migration of the thrust belt-foredeep-foreland system.  相似文献   

16.
本文根据地震和地震构造等资料,研究华北地区公元1300年以来MS≥6.5级地震的发震断裂的基本参数.利用1966年以来隆尧、海城、渤海和唐山等有仪器记录的地震的相关参数进行回归分析得出了地震烈度Ⅷ度区长轴长度与余震区长轴长度的回归关系式及震级与震源体破裂长度的回归关系式.用余震区长轴长度代替震源体的破裂长度,从而给出各次地震的震源断层破裂长度.利用地震测深的地壳结构构造剖面、地震序列的震源分布、壳内低速层和地壳上部的构造、盆地构造与居里面分布和已知地震震源分布等资料推断了震源破裂的上下界.基于一定的合理假定推导出了断层滑动角的估计方法,并应用于本研究区,得出了各次事件的断层滑动角.  相似文献   

17.
The application of a newly developed physics-based earthquake simulator to the active faults inferred by aeromagnetism in southern Calabria has produced a synthetic catalog lasting 100 ky including more than 18,000 earthquakes of magnitude ≥?4.0. This catalog exhibits temporal, spatial and magnitude features, which resemble those of the observed seismicity. As an example of the potential use of synthetic catalogs, a map of the peak ground acceleration (PGA) for a given exceedance probability on the territory under investigation has been produced by means of a simple attenuation law applied to all the events reported in the synthetic catalog. This map was compared with the existing hazard map that is presently used in the national seismic building regulations. The comparison supports a strong similarity of our results with the values given in the present Italian seismic building code, despite the latter being based on a different methodology. The same similarity cannot be recognized for the comparison of our present study with the results obtained from a previous study based on our same methodology but with a different geological model.  相似文献   

18.
1654年礼县8级地震的发震区地处新构造活动强烈的青藏高原东北缘,位于南北地震带中北段,发育多条活动断裂。礼县8级地震发生在黄土覆盖区,距今约370年,受自然侵蚀与人类活动的影响,其地表破裂带和次生灾害现在已经难以分辨。为此,文章收集整理了1970年以来的地震台网和流动台网观测资料,基于地震层析成像方法,经过联合反演计算,研究1654年礼县8级地震的发震构造。研究根据岷县—礼县—两当一线的小震活动分布,推测存在"岷县—礼县—两当断裂",可能是1654年礼县8级地震的发震断裂,但仍需野外地质工作的进一步研究。  相似文献   

19.
2016年12月—2018年4月间布设于汶川、芦山地震之间地震空段的密集监测台阵(LmsSGA)提供了密集的观测数据.通过拾取地震走时、初始定位,计算地方震级,得到了完备性震级为0级的地震目录.更加完备的地震目录为地震空段及周围地震活动的时空分布特征和孕震风险性评估提供了丰富的信息.重定位结果显示地震主要集中于龙门山断裂带深度为5~20 km的孕震层内.地震活动频繁的汶川、芦山主震区,震源的空间分布模式与其早期余震相似,说明两次大地震的区域仍处于缓慢的应力调整阶段.青藏高原物质东向挤出受宝兴、彭灌杂岩阻挡,在两个杂岩体西北侧地震活动频繁.地震活动性分布显示汶川—茂县、映秀—北川断裂上存在一个清晰的长约30 km,宽约20 km的地震活动"空白"区域,与其下方因部分熔融而产生的低速体分布一致,我们推测熔融体的加温作用是导致空段内极低的地震活动性的主要原因.监测时段内仍观测到降雨变化率和地震数量呈反相关关系,再次证实了汶川—芦山地震间地震空段及邻区内季节性降雨对地震活动性存在一定调节作用.综合分析S波速度模型、历史强震活动及b值,我们推断地震空段东部的彭灌断裂中段及周围部分隐伏断层存在发生强震的风险.  相似文献   

20.
During explosive eruptions the deposition of fine-grained volcanic ash fallout reduces soil permeability, favouring runoff of meteoric water and thus increasing the occurrence of catastrophic floods. A fully dynamic, two-dimensional model was used to simulate flooding scenarios in the Vesuvian area following an explosive volcanic eruption. The highest risk occurs in the catchment area of the Acerra-Nola Plain N and NE of Vesuvius. This plain has a population of 70,000 living in low-lying areas. This catchment area is vulnerable to ash fall because it lies downwind of the dominant synoptic circulation and it lacks a natural outflow toward the sea. Our numerical simulations predict dangerous scenarios, even in quiescent periods, during extreme rain events (return periods of 200 years have been considered), and a significant increase in the extent of the flooded areas due to renewed volcanic activity. Based on these simulations a hazard zonation has been proposed. Editorial responsibility: A Woods  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号