共查询到20条相似文献,搜索用时 15 毫秒
1.
Man-yu Dong Yuan Jiang Da-yong Zhang Zheng-fang Wu 《Theoretical and Applied Climatology》2013,111(3-4):693-701
Daily mean air temperatures from 81 meteorological stations in Northeast China were analyzed for the spatiotemporal change of the climatic growing season during the period 1960–2009. Our results showed that latitude strongly influenced the spatial patterns of the mean start (GSS), end (GSE), and length (GSL) of the growing season. For the area studied, a significant increasing trend in GSL during 1960–2009 was detected at a significance level of 0.01, especially after the early 1980s. The area-average GSL has extended 13.3 days during the last 50 years, mainly due to the advanced GSS evident in the spring (7.9 days). The variations of GSS and GSE were closely correlated with the monthly mean temperature (T mean) of April and October, respectively, while GSL was closely related to the monthly minimum temperatures (T min) of spring (March to April) and autumn (September to October). The distributions of the trends in growing season parameters (GSS, GSE, and GSL) showed great spatial variability over Northeast China. Significant relationships between altitude and the trend rates of the GSS and GSL were detected, while geographic parameters had little direct effect on the change in GSE. This extended growing season may provide favorable conditions for agriculture and forest, and improve their potential production. 相似文献
2.
Gao Feng Chen Xiaoling Yang Wenfu Wang Wenwen Shi Lijiang Zhang Xiaolong Liu Yaomeng Tian Yaofei 《Theoretical and Applied Climatology》2022,148(3-4):955-966
Theoretical and Applied Climatology - Under the background of global warming, an analysis of the trend and variability of rainfall time series on various timescales is very important for... 相似文献
3.
This study investigated the spatial–temporal patterns and trends of potential evapotranspiration (ET0) and aridity index (AI) over Southwest China during 1960–2013 based on daily temperature, precipitation, wind speed, sunshine duration, total solar radiation, and relative humidity data from 108 meteorological stations. The Penman–Monteith model, Mann–Kendall (M–K) test, moving t test, and Morlet wavelet method were used. The results indicated that ET0 and AI across the region displayed decreasing trends, but the former was significant. After 2000, regionally average trends in ET0 and AI increased rapidly, indicating that droughts increased over Southwest China in recent years. Spatially, the changes of ET0 and AI were dissimilar and not clustered, either. Temporally, both ET0 and AI displayed obvious abrupt change points over different timescales and that of AI was during the winter monsoon period. Significant periodic variations with periods of 27, 13, and 5 years were found in ET0, but only of 13 and 5 years existed in AI. Correlation analysis revealed that the sunshine duration and wind speed were the dominant factors affecting ET0 and that AI showed strong negative correlation with precipitation. The findings of this study enhance the understanding of the relationship between climate change and drought in Southwest China, while the mechanism controlling the variation in drought requires further study. 相似文献
4.
Frictional torque is an important mean for momentum exchange between the atmosphere and earth, and significantly influences the variation in atmospheric angular momentum. Using NCEP-NCAR reanalysis data for the period 1948–2011, we examined the spatial and temporal patterns of frictional torque. It was found that the globally integrated frictional torque turned from positive to negative in 1972, suggesting that angular momentum was transferred from the earth to the atmosphere before 1972, but from the atmosphere to the earth thereafter. The global frictional torque steadily declined from 1948 to 1994, but has been increasing since 1995. It was also found that the global frictional torque is mainly determined by the wind systems in the mid and low latitudes of the Southern Hemisphere (SH), where large changes in frictional torque occurred during the study period. Westerly wind increased continuously in the midlatitudes after 1948, while easterly wind decreased in the tropics of the SH after the 1980s. 相似文献
5.
Feng-qing Jiang Ru-Ji Hu Shao-Ping Wang Yan-Wei Zhang Li Tong 《Theoretical and Applied Climatology》2013,111(1-2):133-148
The spatial–temporal variability of the precipitation extremes defined by eight precipitation indices based on daily precipitation dataset was analyzed using the linear regression method and the Mann–Kendall test. The results indicate that increasing trends in the precipitation amount, rainy days, and the intensity of the extreme precipitation were identified at above 70 % of the total rain stations considered in this study, with more than 30 % of them were significant, while most stations show notable decreasing trend in the annual maximum consecutive no-rain days. Significantly increasing trends of the precipitation extremes are observed mainly in the northern Xinjiang and the north of the southern Xinjiang. Most extreme precipitation indices show a potential regime shift starting from the middle of 1980s. The magnitude of the trends is compatible with their pattern of spatial stability. The generally increasing trends in precipitation extremes are found in this study. 相似文献
6.
Qiang Zhang Jianfeng Li Vijay P. Singh Chong-Yu Xu Yungang Bai 《Theoretical and Applied Climatology》2012,110(1-2):229-244
Using daily precipitation data spanning 1960–2005 from 51 meteorological stations in Xinjiang province, China, spatial and temporal changes in consecutive maximum wet days in the year, summer, and winter were investigated. Fifteen precipitation extreme indices, which reflect the attributes of consecutive maximum wet days, were defined, and the modified Mann–Kendall test was applied to detect the tendencies, and changes in the indices were evaluated through linear regression with the F test. Results showed that: (1) two consecutive wet days occurred most frequently in the year and summer, and the fractional contributions and precipitation intensities decreased as the duration increased; in winter, one wet day had the maximum possibility, fractional contributions decreased and intensities increased as the duration increased. (2) The possibility of consecutive wet days which had short durations reduced, while those of long durations increased; annual fractional contributions of short durations decreased, while those of long durations increased; summer and winter fractional contribution of all durations decreased first and then increased; the intensities of all durations increased. (3) The wet tendency was identified in Xinjiang; the wet trend in Southern Xinjiang was more significant than Northern Xinjiang in summer, while in winter the wet tendency in Northern Xinjiang was more pronounced. 相似文献
7.
8.
9.
Wind speed variations are influenced by both natural climate and human activities. It is important to understand the spatial and temporal distributions of wind speed and to analyze the cause of its changes. In this study, data from 26 meteorological stations in the Jing–Jin–Ji region of North China from 1961 to 2017 are analyzed by using the Mann–Kendall(MK) test. Over the study period, wind speed first decreased by-0.028 m s-1 yr-1(p 0.01) in1961–1991, and then increased by 0.002 m s1-yr1-(p 0.05) in 1992–2017. Wind speed was the highest in spring(2.98 m s-1), followed by winter, summer, and autumn. The largest wind speed changes for 1961–1991 and1992–2017 occurred in winter(-0.0392 and 0.0065 m s-1 yr1-, respectively); these values represented 36% and 58%of the annual wind speed changes. More than 90.4% of the wind speed was concentrated in the range of 1–5 m s-1,according to the variation in the number of days with wind speed of different grades. Specifically, the decrease in wind speed in 1961–1991 was due to the decrease in days with wind speed of 3–5 m s-1, while the increase in wind speed in 1992–2017 was mainly due to the increase in days with wind speed of 2–4 m s-1. In terms of driving factors,variations in wind speed were closely correlated with temperature and atmospheric pressure, whereas elevation and underlying surface also influenced these changes. 相似文献
10.
Changes in precipitation exert an enormous impact on human life, and it is of vital importance to study regular patterns of meteorological and hydrological events. In order to explore the changing spatial and temporal patterns of precipitation amounts, precipitation extremes and precipitation concentration in Jiangxi province in southeast China between 1960 and 2008, several precipitation indices series were analysed using the Mann–Kendall test in this study. Our results indicate remarkable differences among the stations with negative and positive precipitation trends at the annual, seasonal and monthly scales, significant increasing trends are mainly found during January, August, winter and summer, while significant decreasing trends mostly are observed during October and autumn. For precipitation extremes, most precipitation indices suggest that both the intensity and the days of extreme precipitation are increasing; the mean precipitation amount, especially, on a wet day shows a significant positive trend. When it comes to precipitation concentration, the monthly rainfall heterogeneity shows an insignificant downward trend, while the contribution of the days with greatest rainfall displays an insignificant upward trend. Furthermore, the long-range persistence is detected for changing process of precipitation amount, extreme precipitation and precipitation concentration using the Rescaled Range Analysis. 相似文献
11.
In this study, the trends and periodicity in climate extremes are examined in Hunan Province over the period 1960–2013 on the basis of 27 extreme climate indices calculated from daily temperature and precipitation records at 89 meteorological stations. The results show that in the whole province, temperature extremes exhibit a warming trend with more than 50% stations being statistically significant for 7 out of 16 temperature indices, and the nighttime temperature increases faster than the daytime temperature at the annual scale. The changes in most extreme temperature indices show strongly coherent spatial patterns. Moreover, the change rates of almost all temperature indices in north Hunan are greater than those of other regions. However, the statistically significant changes in indices of extreme precipitation are observed at fewer stations than in extreme temperature indices, forming less spatially coherent patterns. Positive trends in indices of extreme precipitation show that the amount and intensity of extreme precipitation events are generally increasing in both annual and seasonal scales, whereas the significant downward trend in consecutive wet days indicates that the precipitation becomes more even over the study period. Analysis of changes in probability distributions of extreme indices for 1960–1986 and 1987–2013 also demonstrates a remarkable shift toward warmer condition and increasing tendency in the amount and intensity of extreme precipitation during the past decades. The variations in extreme climate indices exhibit inconstant frequencies in the wavelet power spectrum. Among the 16 temperature indices, 2 of them show significant 1-year periodic oscillation and 7 of them exhibit significant 4-year cycle during some certain periods. However, significant periodic oscillations can be found in all of the precipitation indices. Wet-day precipitation and three absolute precipitation indices show significant 1-year cycle and other seven provide significant power at the 4-year period, which are mainly found during 1970–1980 and after 1992. 相似文献
12.
13.
Zhang Han Zhao Junhu Huang Bicheng Zang Naihui Yang Jie Feng Guolin 《Theoretical and Applied Climatology》2022,148(3-4):1529-1543
Theoretical and Applied Climatology - In this paper, the spatial and temporal characteristics of convective precipitation (CP) and large-scale precipitation (LSP) in southern China during... 相似文献
14.
Recent trends in seasonal cycles in China are analyzed, based on a homogenized dataset of daily temperatures at 541 stations during the period 1960–2008. Several indices are defined for describing the key features of a seasonal cycle, including local winter/summer (LW/LS) periods and local spring/autumn phase (LSP/LAP). The Ensemble Empirical Mode Decomposition method is applied to determine the indices for each year. The LW period was found to have shortened by 2–6 d (10 yr)-1, mainly due to an earlier end to winter conditions, with the LW mean temperature having increased by 0.2°C–0.4°C (10 yr)?1, over almost all of China. Records of the most severe climate extremes changed less than more typical winter conditions did. The LS period was found to have lengthened by 2–4 d (10 yr)?1, due to progressively earlier onsets and delayed end dates of the locally defined hot period. The LS mean temperature increased by 0.1°C–0.2°C (10 yr)-1 in most of China, except for a region in southern China centered on the mid-lower reaches of the Yangtze River. In contrast to the winter cases, the warming trend in summer was more prominent in the most extreme records than in those of more typical summer conditions. The LSP was found to have advanced significantly by about 2 d (10 yr)-1 in most of China. Changes in the autumn phase were less prominent. Relatively rapid changes happened in the 1980s for most of the regional mean indices dealing with winter and in the 1990s for those dealing with summer. 相似文献
15.
Evapotranspiration is an important flux term in the water cycle that integrates atmospheric demand and surface conditions. Using the FAO Penman–Monteith method, we calculated monthly reference evapotranspiration (ET0) for 119 stations during 1961–2004 over Yunnan Province (YP), southwest China. Linear trend analysis shows that area-averaged annual and seasonal ET0 rates declined, with most remarkable decreases during pre-monsoon (?1.5 mm decade?1, Mar–May) and monsoon (?0.6 mm decade?1, Jun–Aug) seasons. Most of the stations with negative trends were concentrated in the eastern and northern parts of YP. Over the 44–year period, wind speed (WS), relative sunshine duration (SD) and relative humidity (RH) all showed decreasing trends, whereas maximum temperature (TMX) increased slightly. Multivariate regression analysis indicated that the variability of ET0 rates is most sensitive to the variations of SD, followed by RH, TMX and WS. The temporal evolution of these contributing factors was not stable during the study period, with an increasing contribution of SD and a decreasing contribution of TMX after the 1970s. Temporally changing contributions of climatic variables to ET0 should be taken into account when evapotranspiration rates are calculated with equations that rely on parameterization of climatic variables. Linking the changing contributions of climatic variables to ET0 rates to circulation features may help to better understand how ET0 responds to regional climatic change. 相似文献
16.
A. Burgueño M. D. Martínez C. Serra X. Lana 《Theoretical and Applied Climatology》2010,102(1-2):213-226
Amount and time distributions, X and Y, of daily rain amounts in Europe along the second half of 20th century have been studied from 267 rain gauge records. Different geographical features, such as latitude, vicinity to Mediterranean Sea or the Atlantic Ocean or altitude above sea level, cause the averages of daily rain and annual number of rainy days to vary within a wide range. The largest daily percentiles of amount and time distributions are reached at latitudes south of 50°N and in southwestern Norway. The amount of distribution, X, is well-modelled by the exponential function, with parameters derived from probability graphs. Time distributions, Y, are well-fitted by Pearson type III (Gamma) and Weibull models, their parameters being estimated by L-moments. Normalised rainfall curves (NRC) have been modelled by the analytical function $ X = Y \cdot \exp \left\{ { - b{{\left( {1 - Y} \right)}^c}} \right\} $ , with b and c parameters depicting spatial variability. Alternatively, the beta distribution also describes quite well the empirical NRCs, with parameters estimated by statistical moments. The coordinates of the average daily amount (X r , Y r ) and the values of X * and Y * , which are defined as the fraction of rain amount for a half of rainy days and the fraction of number of rainy days accounting for a half of total rain amount, respectively, depict very similar spatial distribution throughout Europe. In fact, X r and X * keep a linear relationship, as well as Y r and Y * , the four coordinates depending on the coefficient of variation of daily rain amounts. A similar linear relationship is found for the pair (X * , Y * ). Finally, the Average Linkage algorithm applied to the coordinates X r , Y r , X * and Y * characterising every one of the 267 NRCs permits to group the rain gauges into several spatial clusters, each of them related to a different normalised daily pluviometric regime. 相似文献
17.
18.
19.
Theoretical and Applied Climatology - The variation and trend in the frequency and duration of four types of high-impact weather (HIW) events were examined using daily surface climate data and... 相似文献