首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we discuss four fundamental scientific problems of lunar research: (1) lunar chronology, (2) the internal structure of the Moon, (3) the lunar polar regions, and (4) lunar volcanism. After formulating the scientific problems and their components, we proceed to outlining a list of technical solutions and priority lunar regions for research. Solving the listed problems requires investigations on the lunar surface using lunar rovers, which can deliver a set of analytical equipment to places where geological conditions are known from a detailed analysis of orbital information. The most critical research methods, which can answer some of the key questions, are analysis of local geological conditions from panoramic photographs, determination of the chemical, isotopic, and mineral composition of the soil, and deep seismic sounding. A preliminary list is given of lunar regions with high scientific priority.  相似文献   

2.
Spectophotometric catalog of the Sternberg Astronomical Institute is described briefly. The catalog includes energy distribution data for 900 stars in the range 3200–7600Å and 250 stars in the range 3200–7600Å with 50Å step. The main scientific results obtained on the basis of the catalog are presented.  相似文献   

3.
The first radio astronomical investigations in the Lebedev Physical Institute are described. Some details of the large radio telescopes construction in Pushchino Radio Astronomy Observatory as well as the most significant scientific results obtained with them are quoted in the paper, too. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The astronomical investigations in the present Tadjikistan (USSR) are carried out by the Institute of Astrophysics of the Academy of Sciences of Tadjik SSR. The main scientific fields of investigation are meteors, comets, and variable stars. The Institute has two observational stations: the Gissar observatory with photographic and radar meteor patrols, a 70 cm telescope, a 40 cm Zeiss astrograph, etc., and the Sanglok observatory with the Ritchey-Chrétien 1 m telescope.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

5.
In the summer of 1609, Galileo Galilei started to improve upon the Dutch spyglass. Only a few months were needed to increase the magnifying power of the instrument up to 30 times. This transformation allowed Galileo to perform astronomical observations destined to change the traditional Universe. At present, the Institute and Museum of History of Science of Florence is conducting a research programme on the lenses of early telescopes. Historical research is combined with scientific analyses conducted by the National Institute of Applied Optics in Arcetri, the National Institute of Nuclear Physics in Florence, and the Glass Experimental Station in Murano. The shape and composition of the lenses are studied by applying different techniques. Moreover, the composition of early lenses and scientific glass objects are compared. Finally, Galileo’s observations are checked with an optical replica of Galileo’s telescope held at the Astrophysical Observatory in Arcetri.  相似文献   

6.
In this paper we describe a new computing system array, designed, built and now used at the Space Astrophysics and Planetary Institute (IAPS) in Rome, Italy, for the INTEGRAL Space Observatory scientific data analysis. This new system has become necessary in order to reduce the processing time of the INTEGRAL data accumulated during the more than 9 years of in-orbit operation. In order to fulfill the scientific data analysis requirements with a moderately limited investment the starting approach has been to use a ??cluster?? array of commercial quad-CPU computers, featuring the extremely large scientific and calibration data archive on line.  相似文献   

7.
Abstract The principal data about the fall and the distribution of the fragments of the Bur-Gheluai, Bur Acaba, Somalia (CN = EO436,024) meteorite are collected. A complete individual, weighing 744.2 g, preserved in the Geological Institute, Agricultural Dept., University of Perugia, Italy, is described in some detail. Crust morphology, mineralogical composition and structure are studied. Optical data are established by microscopical analysis of eight thin sections and two polished surfaces. Compared with electron-probe analysis, they are found in good agreement. Bur-Gheluai is an holocrystalline, olivine-bronzite chondrite, with evident features of recrystal-lization and metamorphism.  相似文献   

8.
The first scientific results of the analysis of the X-ray spectra of flares and active regions in the solar corona obtained by Polish-led spectrometers RESIK and DIOGENESS onboard the CORONAS-F satellite are presented. The instruments were designed and made in the Solar Physics Division of the Space Research Center of the Polish Academy of Sciences (SRC PAS, Wroclaw, Poland). The Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (IZMIRAN, Russia) and the Astronomical Institute of the Czech Academy of Sciences also participated in designing the DIOGENESS spectrometer, while IZMIRAN (Russia), Mullard Space Science Laboratory (MSSL, Great Britain), Rutherford Appleton Laboratory (RAL, Great Britain), and Naval Research Laboratory (NRL, United States) contributed to the development of the RESIK spectrometer. In the paper, we give spectra obtained in a number of previously unstudied spectral ranges and a preliminary identification of new spectral lines. The results for the shifts of the X-ray spectral lines observed with the use of a so-called dopplerometer configuration are also presented. Methods for determining the abundances of the rare elements in the solar corona, including chlorine, potassium, and argon, are described.  相似文献   

9.
10.
The basic science of astronomy and, primarily, its branch responsible for studying the Solar System, face the most important practical task posed by nature and the development of human civilization—to study space hazards and to seek methods of counteracting them. In pursuance of the joint Resolution of the Federal Space Agency (Roscosmos) and the RAS (Russian Academy of Sciences) Space Council of June 23, 2010, the RAS Institute of Astronomy in collaboration with other scientific and industrial organizations prepared a draft concept of the federal-level program targeted at creating a system of space hazard detection and counteraction. The main ideas and astronomical content of the concept are considered in this article.  相似文献   

11.
The Square Kilometre Array(SKA) will be the world’s largest synthesis radio telescope, which is designed to answer major scientific questions such as those relating to the cosmic origin and fundamental forces in the universe. With the SKA entering into the phase of pre-construction, more than 100 institutes in about 20 countries including China have been involved in the associated key technology development.The Dish Verification Antenna China(DVA-C) is a concept prototype which has been built to meet the requirements of the SKA’s scientific goals. It utilizes a unique skin-and-rib structure with single-piece panel reflectors. This paper presents details on the design and measured performances of DVA-C, as well as the preliminary observational results. Current applications of the DVA-C are also introduced.  相似文献   

12.
Earth-based spacecraft tracking data have historically been processed with classical least squares filtering techniques both for navigation purposes and for physical constant determination. The small, stochastic non-gravitational forces acting on the spacecraft are described to motivate the use of sequential estimation as an alternative to the least squares fitting procedures. The stochastic forces are investigated both in terms of their effect on the tracking data and their influence on estimation accuracy. A flexiible sequential filter design which leaves the existing trajectory, variational equations, data observable and partial computations undisturbed is described. A detailed filter design is presented that meets the precision demands and flexibility requirements of deep space navigation and scientific problems, one which provides a high degree of numerical integrity and numerical analysis capability, facilitates the efficient computation of multiple solutions, and makes few demands on the supporting computational structure.This paper presents the results of one phase of research carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. NAS 7-100, sponsored by NASA.  相似文献   

13.
Beginning with his student days at school and college, the author describes his training at Cambridge with special emphasis on his mentor Fred Hoyle. His early experience of participating in a controversy at Cambridge played a major role in giving him the confidence to defend his scientific ideas. All through his later life he chose areas that were not part of mainstream research. These included the steady state theory and later the quasi steady state cosmology, action at a distance, noncosmological redshifts, quantum conformal cosmology, etc. After being a founding member of the Institute of Theoretical Astronomy(IOTA) at Cambridge, the author joined the Tata Institute of Fundamental Research(TIFR) in Mumbai and later moved to Pune to set up the Inter-University Centre for Astronomy and Astrophysics(IUCAA). He briefly reviews his own work and ends by pointing out the difficulties a non-conformist scientist faces in his professional life. In the conclusion, he mentions his interests in science popularization and science fiction for which he has won awards and appreciation, including UNESCO’s Kalinga Prize.  相似文献   

14.
This article introduces the new Indian 2 m telescope which has been designed by MT Mechatronics in a detailed conceptual design study for the Indian Institute of Astrophysics, Bangalore. We describe the background of the project and the science goals which shall be addressed with this telescope. NLST is a solar telescope with high optical throughput and will be equipped with an integrated Adaptive Optics system. It is optimized for a site with the kind of seeing and wind conditions as they are expected at a lake site in the Himalayan mountains. The telescope can also be used for certain night time applications. We also give the scientific rationale for this class of telescope (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The article gives a brief review of the scientific program of the unmanned studies of the Moon performed in the USSR in 1960s–1970s, most notably by the “Luna” Spacecraft. The main results obtained during this period are considered, in particular photographing of the far side of the Moon, mapping of the far side of the Moon, soft landing, remote (from the orbit of an artificial lunar satellite) and in situ (on the surface) studies of the lunar surface composition and circumlunar space, automated soil sampling, and delivery of surface samples to the Earth. Various institutes of the Russian Academy of Sciences played important role in the studies, including the Vernadskii Institute of Geochemistry and Analytical Chemistry and the Space Research Institute, established in 1965, where the Moon and Planets Department was established under the leadership of K.P. Florenskii. In the conclusion, the article considers some further issues of lunar studies and possibilities for lunar exploration. The challenging Moon exploration mission “Luna-Glob”, currently under development in Russia, is a potentially important step in the beginning of the process.  相似文献   

16.
The SOLAR-A spacecraft is to be launched by the Institute of Space and Astronautical Science, Japan (ISAS) in August, 1991. As a successor of HINOTORI, this mission is dedicated principally to the study of solar flares, especially of high-energy phenomena observed in the X- and gamma-ray ranges. The SOLAR-A will be the unique space solar observatory during the current activity maximum period (1989–1992). With a coordinated set of instruments including hard X-ray and soft X-ray imaging telescopes as well as spectrometers with advanced capabilities, it will reveal many new aspects of flares and help better understand their physics, supporting international collaborations with ground-based observatories as well as theoretical investigations. An overview of this mission, including the satellite, its scientific instruments, and its operation, is given in this paper. Also the scientific objectives are briefly discussed.After the launch the name of SOLAR-A has been changed to YOHKOH.  相似文献   

17.
The low frequency array (LOFAR) radiotelescope will be a powerful instrument for answering fundamental, unresolved scientific questions concerning solar system radio phenomena and related emissions from nearby stellar systems. This paper reviews the phenomena, emission mechanisms, open scientific questions, and LOFAR's capabilities. LOFAR will detect metric solar radio bursts in the corona and interplanetary medium, out to distances of order 10 solar radii, as well as Jovian radio emissions. Arguments are given that LOFAR may be sufficiently sensitive to detect stellar analoges of solar type II and III bursts, and may detect cyclotron-maser emissions from extra-solar planets. LOFAR may also aid space weather research, by passively detecting coronal mass ejections (CMEs) via scintillation and Faraday rotation effects, or by detecting radar signals bounced off CMEs and coronal density structures if a suitable solar radar is developed.  相似文献   

18.
In this paper we present the South America VLF NETwork (SAVNET), a new observing facility at very low frequencies. It has been recently installed at different locations spread over Latin America, in Brazil, Peru and Argentina. It consists of a network of seven Very Low Frequency (VLF) receivers with the main scientific objective of monitoring the solar activity on short (minutes to hours) and long (years) time scales. Other objectives include a better understanding of the spatial structure of the South Atlantic Magnetic Anomaly, the study of atmospheric phenomena and the search for genuine seismic-electromagnetic effects. After discussing the scientific goals, the details of the installation are presented as well as the first results recently obtained.  相似文献   

19.
Abstract— Asteroids and comets are of great scientific interest: their interior structure and composition, which are poorly known, provide information about conditions and processes that occurred during the early stages of solar system development. They are also of interest for social and economic reasons. Their proximity to Earth and abundance in the solar system make them potential sources of raw materials as well as a threat, as evidenced by past catastrophic impacts. Information on their composition and structure is therefore important to assess both the potential benefit of these objects and mitigate the potential risk they pose. This paper describes the use of radio reflection tomography for studying the interiors of asteroids and comets. We discuss technical issues regarding benefits and challenges of implementing a radio reflection tomography instrument and present potential solutions. This paper addresses a range of topics including (1) data collection scenarios, (2) data processing and inversion, and (3) instrument implementation. A “strawman” instrument capable of imaging the full interior of an asteroid or a comet with dimensions of a few kilometers is presented. Such an instrument can play a significant role in studying the near‐Earth objects, both for scientific and socio‐economic purposes.  相似文献   

20.
The European SMART-1 mission to the Moon, primarily a testbed for innovative technologies, was launched in September 2003 and will reach the Moon in 2005. On board are several scientific instruments, including the point-spectrometer SMART-1 Infrared Spectrometer (SIR). Taking into account the capabilities of the SMART-1 mission and the SIR instrument in particular, as well as the open questions in lunar science, a selection of targets for SIR observations has been compiled. SIR can address at least five topics: (1) Surface/regolith processes; (2) Lunar volcanism; (3) Lunar crust structure; (4) Search for spectral signatures of ices at the lunar poles; and (5) Ground truth and study of geometric effects on the spectral shape. For each topic we will discuss specific observation modes, necessary to achieve our scientific goals. The majority of SIR targets will be observed in the nadir-tracking mode. More than 100 targets, which require off-nadir pointing and off-nadir tracking, are planned. It is expected that results of SIR observations will significantly increase our understanding of the Moon. Since the exact arrival date and the orbital parameters of the SMART-1 spacecraft are not known yet, a more detailed planning of the scientific observations will follow in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号