首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Avalanche prediction in Scotland: II. Development of a predictive model   总被引:1,自引:0,他引:1  
The paper presents a method for predicting avalanche activity from meteorological data which is suitable for Scottish snow conditions. Two main types of avalanche are distinguished. Direct-action avalanches are the result of fresh snow accumulation and may release after approximately 200 mm of fresh snow has fallen over a period of a few days. They become extremely likely if a further 100 mm falls in a single day. Climax avalanches are the result of strength loss in the snow cover, due either to thawing or persistent cold. Thaws may produce an avalanche after only three or four days with maximum temperatures around 2°C. Alternatively, if maximum temperatures remain below ?4°C for over a week, and especially if cold weather persists for two weeks, slab avalanches of dry snow are likely to occur. Between these two types are several possible avalanche situations in which fresh snow accumulation is combined with high or low temperatures. Topography plays a passive role, and determines where avalanche activity is most likely. Free faces, smooth surfaces and slopes in the lee of major storms respond most rapidly to the onset of avalanche conditions.  相似文献   

2.
Hazardous snow avalanches in Glacier National Park, Montana, are associated with a variety of meteorologic conditions: heavy snow; heavy snows followed by a rise in air temperature to above freezing; a rise in air temperature to above freezing, without precipitation; and rain in association with above-freezing air temperatures. Years of major, widespread avalanching may be recognized by examination of historical information and tree-ring data. Avalanche types include slab avalanches, wet snow avalanches, and dry loose snow avalanches. February is the peak avalanche month. Intraannual seasonalities of avalanche trigger mechanisms and type of avalanche are related. The presence of sun crusts in some cases provides unstable stratigraphic planes in the snowpack over which freshly deposited snow may glide. Destructive windblasts also occur in association with some avalanches. Insufficient data from east of the Continental Divide precluded a comparison of avalanche type and trigger mechanisms from the western and eastern portions of Glacier National Park. The general avalanche climate is more similar to that reported from the southern Canadian cordillera than to continental locations such as the mountains of Colorado. [Key words: Snow avalanches; avalanche trigger mechanisms; avalanche types; avalanche seasonality; Glacier National Park, Montana; northern Rocky Mountains; hazard planning.]  相似文献   

3.
ABSTRACT

Statistical relationships between weather conditions and the release of snow avalanches in the low-elevation coastal valleys of the northern Gaspé Peninsula are still poorly validated. As such, we explored climate–avalanche relationships through classification tree algorithms applied to tree-ring reconstructions of avalanche events. In order to assess the contribution of local factors on avalanche activity, avalanche regimes on east- and west-facing slopes were analyzed and compared. The results showed that avalanches on east-facing slopes appear to be primarily related to large cumulative snowfall in January, February, and March. On west-facing slopes, avalanches are mainly due to episodic snowfall and warming temperatures. However, both sides of the valleys showed the potential for the release of large avalanches in November and December, which is earlier than expected by the literature. Indeed, the weather variability at that time of the year (temperature oscillation around 0ºC) appears to favor the formation of an early, unstable snowpack and subsequent triggering of avalanches, such as the wet slab avalanche recorded by a time-lapse camera in November 2014. This camera provided a useful insight on the capacities of classification-tree models to link the yearly resolution of tree-ring data with weather triggers at different timescales.  相似文献   

4.
One of the main controls on the net mass change of land‐terminating Arctic glaciers is the magnitude and distribution of snow accumulation. In Dickson Land, region of Svalbard with the greatest distance to the sea, the issue has not been receiving much scientific attention for decades. In this paper, new snow accumulation data are presented from Svenbreen in Dickson Land from end‐of‐winter surveys. The measured winter balance was 0.42 ± 0.15 m w.e. in 2010, 0.50 ± 0.10 m w.e. in 2011 and 0.62 ± 0.10 cm w.e. in 2012. Snow depth and water equivalent have been analysed in the background of altitude, slope and aspect extracted from the digital elevation model of the glacier. On steep northern slopes (>15°) accumulation was the highest, whereas it was decreased on southern slopes with moderate inclination (9–12°). Elevation, which on many glaciers proved to be highly correlated with snow depth, explained only 17–34% of snow depth variability due to complex interplay between local climate and geometry of a small valley.  相似文献   

5.
The snow thermodynamic multi-layer model SNOWPACK was developed to address the risk of avalanches by simulating the vertical properties of snow. Risk and stability assessments are based on the simulation of the vertical variability of snow microstructure, as well as on snow cohesion parameters. Previous research has shown systematic error in grain size simulations (equivalent optical grain size) over several areas in northern Canada. To quantify the simulated errors in snow grain size and uncertainties in stability, the snow specific surface area (SSA) was measured with a laser-based instrument. Optical grain size was retrieved to validate the optical equivalent grain radius from SNOWPACK. The two study plots are located in Glacier National Park, BC, and Jasper National Park, AB, Canada. Profiles for density and stratigraphic analysis were obtained as well as grain size profiles, combined with snow micropenetrometer (SMP) measurements. Density analysis showed good agreement with the simulated values (R2 = 0.76). Optical grain size analysis showed systematic overestimation of the modeled values, in agreement with the current literature. The error in SSA evolution for a rounding environment was mostly constant, whereas error for conditions driven by a temperature gradient was linked to the size of the facetted grains.  相似文献   

6.
利用MODIS和Landsat TM/ETM+遥感数据,得出研究区的积雪面积,同时结合精伊公路规划图及地形图,分析了公路沿线可能存在风吹雪和雪崩的危险区,并提出相应的防治措施。结果表明:研究区近5年来11月到次年3月是积雪最丰富时期,9月、10月、4月和5月积雪较少。近5年来积雪呈增加趋势,最大积雪时间集中在2009—2010年积雪季。MODIS积雪数据精度在积雪面积越大时,精度越高;积雪面积越小时,精度越低。精伊公路东线走廊K60以上路段和西线走廊K100以上路段风吹雪对公路影响较大;精伊公路北段的雪崩的可能性很小;东线走廊K60~K77段和西线走廊K90~K110段有一定的雪崩灾害;西线走廊K58~K90段有较大的雪崩危害。并提出防治措施。  相似文献   

7.
Abstract An analysis of ten‐minute albedo variations, recorded on Haut Glacier d'Arolla, Switzerland, over an 11 day period in the 1999 ablation season is presented. Most of the short‐term (<1 day) albedo variability is caused by variations in cloud cover, while solar zenith angle variations in the range 25° to 75° are of minor importance, probably due to the predominantly cloudy conditions during the measurement period. A new method to calculate albedo variation as a function of cloud cover is developed. Short‐term albedo variations are expressed by the ratio of the measured albedo to the daily albedo ‘minimum’, defined as the albedo under cloud‐free conditions when the solar zenith angle is <50°. Variations in cloud cover are quantified by the ratio of the measured incoming shortwave radiation flux to the theoretical direct‐beam shortwave radiation flux. The resulting relationships are successful, explaining 83% and 87–90% of short‐term albedo variation on snow and ice respectively, and may be incorporated into albedo parameterizations already used in numerical energy balance melt models, without the need for additional data. Simulations with a glacier energy balance model suggest that melt rates are overestimated by between 1 and 3 mm water equivalent per day if a correction is not made for the increase in albedo under cloudy conditions. Other causes of albedo variation are identified and evidence is found for the removal of fine debris from the glacier surface by intense rainfall, leading to an albedo increase. The implications for energy balance models and satellite‐derived albedo measurements are discussed.  相似文献   

8.
One main argument for modeling socio-ecological systems is to advance the understanding of dynamic correlations between various human and environmental factors, including impacts and responses to environmental change. We explore the shift in skier distribution among ski resorts taking into account the behavioral adaptation of individuals due to the impact of climate change on snow conditions. This analysis is performed at a regional scale by means of a coupled gravity and georeferenced agent-based model. Four different scenarios are considered. Two scenarios assume an increase of winter mean temperature of +2°C and +4°C, respectively, taking into account only natural snow conditions. Two additional scenarios add the effect of snowmaking to enhance the natural snow depth and extend the skiing season in the +2°C and +4°C base scenarios. Results show differing vulnerability levels, allowing the classification of ski resorts into three distinct groups: (1) highly vulnerable ski resorts with a strong reduction in visitors attendance for all climate change scenarios, characterized by unfavorable geographical and attractiveness conditions, making it difficult to ensure snow availability in the future; (2) low vulnerability ski resorts, with moderate reduction in season length during a high climate change scenario but no reduction (or even an increase) in a low one, characterized by ski resorts with a medium capacity and attractiveness to ensure enough snow conditions and capture skiers from other ski resorts; and (3) resilient ski resorts, with good conditions to ensure future snow-reliable seasons and outstanding attractiveness, allowing them to offer longer ski seasons than their competitors and potentially attracting skiers from other closed or marginal resorts. Ski resorts included in this last group increase their skier attendance in all climate change scenarios. Although similar studies in the literature foretell a significant reduction of the ski market in the near future, another probable effect outlined in this study is a redefinition of this market due to a redistribution of skiers, from vulnerable ski resorts to more resilient ones.  相似文献   

9.
A very large surface inversion, which would not have been detected at the official recording height of 2 m above the mire surface, was recorded at the snow surface of an earth hummock in Lapland. The maximum inversion was 35 °C, and the monthly temperature departure was 7.8 °C in December 1992. The characteristics of the surface inversion are compared with conditions during another winter when no long inversion periods occurred. The presence of this surface inversion may explain the formation of new permafrost in pounus, even when official records showed no unusually low temperatures.  相似文献   

10.
Abstract

Peary caribou is the northernmost designatable unit for caribou species, and its population has declined by about 70% over the last three generations. The Committee on the Status of Endangered Wildlife in Canada identified difficult grazing conditions through the snow cover as being the most significant factor contributing to this decline. This study focuses on a spatially explicit assessment tool using snow model simulations (Swiss SNOWPACK model driven in an off-line mode by spatialized meteorological forcing data generated by the Canadian Regional Climate Model) to characterize snow conditions for Peary caribou grazing in the Canadian Arctic. The life cycle of Peary caribou has been subdivided into three critical periods: summer foraging and fall breeding (July–October), winter foraging (November–March), and spring calving (April–June). Winter snow conditions are analyzed and snow simulations compared to Peary caribou island counts to identify a snow parameter that could potentially act as a proxy for grazing conditions and explain fluctuations in Peary caribou numbers. This analysis concludes that caribou counts are affected by simulated snow density values >300 kg m?3. A software tool mapping possibly favorable and unfavorable grazing conditions based on snow is proposed at a regional scale across the Canadian Arctic Archipelago. Specific output examples are given to show the utility of the tool, mapping pixels with cumulative snow thickness above densities of 300 kg m?3, where cumulative seasonal thicknesses >7000 cm are considered unfavorable.  相似文献   

11.
Abstract

Recent studies have shown that northern vegetation has been growing in relation to a warming climate over the last four decades, especially across the transition zone between tundra and taiga. Shrub growth affects snow properties and the surface energy budget, which must be better studied to quantify shrub-snow-climate feedbacks. The objective of this research is to improve the characterization of the impact of shrubs on snow evolution, from its accumulation to its melt, using in-situ and satellite measurements. The research is presented for the Umiujaq site, Nunavik, representative of the low Arctic–Subarctic transition zone. Snow depth, measured along numerous transects spanning different land cover types is found to increase by a factor 2.5–3 between tundra and forest, while snow density decreases. This illustrates the trapping effect of vegetation well. Complementary, continuous snow depth measurements using weather stations from two sites (tundra with low shrubs and a small clearing with shrubs within the forest) show different site-dependent behaviors. Spatial analysis from high-resolution Pleiades images combined with Landsat (Normalized Difference Snow Index) and MODIS (Fractional Snow Cover) images suggest a slight delay in melt over open and dense forest areas compared to tundra and dense high shrubs.  相似文献   

12.
In this study temporal trends of 14 climate and snow parameters related to ski conditions were analyzed for 11 ski stations located in the central Pyrenees (Spain and Andorra). We also investigated whether there was a temporal association for the analyzed parameters, such that the occurrence in a particular year of good (or bad) climate or snow conditions as represented by one parameter was similarly reflected by the other parameters. The lack of reliable climate and snow measurements was overcome by the use of simulated climate data retrieved from a high resolution hindcast simulation available for the period 1960–2006. These data were also used as inputs for an energy and mass snow energy model to obtain snow series. The results showed trends in ski reliability parameters for the 1960–2006 period. The number of days having a snowpack deeper than 30 cm and 100 cm showed declines at low and mid altitudes. The start of the ski season appears progressively delayed for all stations, and the ski season shortened. The frequency of rainy days increased at 3 stations and decreased at 8, while the frequency of days having heavy snowfall increased at 8 stations and declined at 3. Days having potential for snowmaking declined at all stations. The number of days having a wind-chill < −20 °C also decreased markedly, as overall did the number of days having a wind speed greater than 80th percentile. The main findings from the assessment of temporal associations between climate and snow parameters were positive correlations between snow depth and windy conditions. Seasons having a higher frequency of very cold days had a lower frequency of heavy snowfall and rainy days. Thus, the adverse effects on the ski industry of lesser snow availability may have been partially negated by the occurrence of fewer days of closure because of high winds, or other adverse meteorological factors.  相似文献   

13.
In this paper we use a satellite‐derived data set to explore spatial and temporal variations of snow extent across Northern Hemisphere continents during the last three decades. These weekly visible‐wavelength satellite maps of Northern Hemisphere snow extent produced by the National Oceanic and Atmospheric Administration constitute the longest consistently‐derived satellite record of any environmental variable. We document the considerable intra‐annual variability of snow extent, and show that during each month, fluctuations over relatively small areas are responsible for the majority of the year‐to‐year variability. Regions that cover less than 6% of Northern Hemisphere lands north of 20°N explain 62% Ã Â Ã Â 92% of the interannual variance across the continents. On average, snow was more extensive across both Eurasia and North America from the 1970s to middle 1980s than during the late 1980s to late 1990s. During late winter, spring and summer, snow extent has decreased since the middle 1980s, while during fall to middle winter, snow extent has remained relatively constant. Accurate information on continental snow extent is critical for weather and hydrologic forecasting; for understanding hemispheric‐scale atmospheric circulation, thermal variations, and regional snow extent; and for using snow as a credible indicator of climate variability and change.  相似文献   

14.
中日合作雪崩动力学研究在我国天山西部进行。结果表明,雪崩前锋速度7.1m/s,雪崩冲和是雪崩雪高度的函数,其最大冲击力为88.7kPa,出现在雪崩雪1.45m高度,雪崩雪分为两层:上层为雪云,下层为密雪流。密雪流表现呈现下倾形态向下运动。  相似文献   

15.
大阿尔玛京卡河流域的雪崩与治理   总被引:1,自引:0,他引:1  
大阿尔玛京卡河流域危险主要出现在中山森林-草原带和高山雪冰带。受局地气候、地貌与环境的综合作用,流域雪崩规模小、路程短,多见全程雪崩;雪崩类型单调,以干、湿雪崩占统治地位,在90%以上,雪崩发生地点集中,而且每年都有出现,只有数量上的差异性。在西风气流的控制下,冬季积雪层的变质过程具温度梯度变质特征。积雪层负温梯度大,雪层深霜的发育和生长迅速,呈出“干寒型”积雪的基本特征。雪崩对道路、居民点和建筑  相似文献   

16.
对南极沿海伯尔顿盐湖浮游桡足类双刺镰状水蚤(Drepanopus bispinosus)种群生态进行了全年连续观察和研究,结果表明,该水蚤为一年一代,其个体发育周期,雄性约为10~12个月,雌性约为12~18个月。种群密度随季节不同而差异较大,其成体高密度期约在6~9月份,幼体高密度期大约在11~12月份,主要为无节幼体,桡足幼体Ⅰ期的高密度期出现在1月份。该水蚤繁殖期大约从6月至翌年1月,期间出现两次生殖高峰,7~8月为前一高峰期,所出现的无节幼体受环境因子主要是湖中食物和含氧量不足的影响而不能继续发育至桡足幼体Ⅰ期以上的阶段,后一高峰大约在10~12月,所出期的无节幼体能继续发育至桡足幼体各期直至成体。伯尔顿湖双刺镰状水蚤种群生态特征及其出现两次生殖高峰的现象,可能与该湖环境的季节变化有关。  相似文献   

17.
Climate and snowpack characteristics of avalanches vary spatially across the western United States, distinguishing three regions. The coastal mountain renges have warmer, denser snow; interior (continental) ranges have colder, less-dense snow; and intermountain ranges have intermediate characteristics. Avalanche character of Alta, Utah, is related to eastern Pacific 700-mb height anomalies for December, January, and March, but not for February. Avalanche conditions around Alta do not always relate to localized pressure gradient winds for December and February.  相似文献   

18.
Prominent longitudinal features are often reported on the surfaces of mass movement deposits. However, the genesis and implications of these have not hitherto been considered, and herein we present preliminary observations of their occurrence both in the field and in the laboratory. Elongated ridges are often oriented (sub-) parallel to the flow direction and aligned radially from the source due to debris spreading. They are particularly prominent in large (> 106m3) rock avalanches emplaced onto deformable substrates and are also found in the proximal reaches of volcanic debris avalanches. Flowbands, which are longer and thinner expressions of longitudinal ridges, are continuous along the entire flow length and are observed in rock avalanches emplaced onto glaciers, in snow and some ice avalanches, in pyroclastic flows and some block-and-ash flows, in ejecta sheets, in extraterrestrial landslides, and in some volcanic debris avalanches. Other volcanic debris avalanches and the distal areas of rock avalanches often display hummocks that are aligned radially from the source; we propose that these aligned hummocks are remnants of longitudinal ridges. The formation of elongate ridges (and their expressions as flowbands, aligned hummocks, or distal lobes and digits) in qualitatively-similar fashion in both laboratory and field environments suggests they represent an intrinsic tendency of granular flows in a wide range of situations.  相似文献   

19.
This paper presents new data on the extent of and controls on paraglacial reworking of glacigenic drift by debris flows and snow avalanches at eight localities in western Norway. At sites around Jostedalsbreen, gully density is in the order of c. 10-100 gullies per km. Drift slopes at the sites in the Jotunheim massif are generally much less extensively modified by paraglacial processes (gully density nowhere exceeds 8 km-1 in either site). Factors controlling paraglacial drift modification include gradient, sediment availability and water supply. Gully density generally exceeds 20 gullies per km where drift is steeper than c. 30° and thicker than c. 10 m, and where the void ratio of unreworked sediment exceeds c. 0.35. Widespread gullying is also favoured at sites of high and focused water input, in particular where melting snow and ice are involved. A significant implication of these findings concerns the preservation of glacigenic sediments and landforms in different paraglaciated landscapes. Understanding the detailed constraints on paraglacial processes is essential for realistically assessing the geomorphological significance of paraglaciation in a range of environments.  相似文献   

20.
China is distinguished by a prominent monsoonal climate in the east of the country, a continental arid climate in the northwest and a highland cold climate on the Qinghai-Tibet Plateau. Because of the long history of Chinese civilization, there are abundant and well-dated documentary records for climate variation over the whole of the country as well as many natural archives (e.g., tree-rings, ice cores, stalagmites, varved lake sediments and corals) that enable high-resolution paleoclimatic reconstruction. In this paper, we review recent advances in the reconstruction of climate and extreme events over the last 2000 years in China. In the last 10 years, many new reconstructions, based on multi-proxies with wide spatial coverage, have been published in China. These reconstructions enable us to understand the characteristics of climate change across the country as well as the uncertainties of regional reconstructions. Synthesized reconstructed temperature results show that warm intervals over the last 2000 years occurred in AD 1–200, AD 551–760, AD 951–1320, and after AD 1921, and also show that cold intervals were in AD 201–350, AD 441–530, AD 781–950, and AD 1321–1920. Extreme cold winters, seen between 1500 and 1900, were more frequent than those after 1950. The intensity of regional heat waves, in the context of recent global warming, may not in fact exceed natural climate variability seen over the last 2000 years. In the eastern monsoonal region of China, decadal, multi-decadal and centennial oscillations are seen in rainfall variability. While the ensemble mean for drought/flood spatial patterns across all cold periods shows a meridional distribution, there is a tri-pole pattern with respect to droughts south of 25°N, floods between 25° and 30°N, and droughts north of 30°N for all warm periods. Data show that extreme drought events were most frequent in the periods AD 301–400, AD 751–800, AD 1051–1150, AD 1501–1550, and AD 1601–1650, while extreme flood events were frequent in the periods AD 101–150, AD 251–300, AD 951–1000, AD 1701–1750, AD 1801–1850, and AD 1901–1950. Between AD 1551–1600, extreme droughts and flood events occurred frequently. In arid northwest China, climate was characterized by dry conditions in AD 1000–1350, wet conditions in AD 1500–1850, and has tended to be wet over recent decades. On the northeastern Qinghai-Tibet Plateau, centennial-scale oscillations in precipitation have occurred over the last 1000 years, interrupted by several multi-decadal-scale severe drought events. Of these, the most severe were in the 1480s and 1710s. In southwest China, extreme droughts as severe as those seen in Sichuan and Chongqing in 2006 are known to have occurred during historical times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号