首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 49 毫秒
1.
含气量是影响煤层气井生产的关键参数,但是,多数煤层气井无法直接获得目标煤层含气量,且解吸法测定的低阶煤储层含气量误差较大。文章以大佛寺井田煤层含气量动态变化特征为研究目标,结合煤层气井排采数据对煤储层参数动态的同步反馈,采用“定体积法”分析煤层气井排采数据,进行4#煤储层实时含气量的动态反演。结果表明:(1)设定多个原始含气量,实时含气量随时间变化呈线性递减关系,且下降趋势一致,皆能得到实时含气量变化线性斜率相同的结果:产气量与含气量消耗同步,且与生产时间间隔无关。(2)分析1 d、3 d、5 d的不同时间步长,设定原始含气量分别为2 m3/t、3 m3/t、4 m3/t、5 m3/t、6 m3/t、8 m3/t时,煤储层实时含气量变化关系高度一致,认为煤层气井遵循“定体积”产气规律,即不存在压降漏斗的形成与扩展。(3)连续排采阶段,实时含气量与排采时间呈线性降低关系,排采间断前后两个阶段煤储层实时含气量线性降低速率不同:为-0.00546和 -0.00435;第二阶段较第一阶段实时含气量变化斜率减小,是因为排采过程产生煤粉,堵塞阻碍块煤的解吸作用,造成储层伤害,能够解吸的煤层体积缩小。  相似文献   

2.
勘探实践发现沁水盆地潘庄、潘河区块及鄂尔多斯盆地保德区块煤层气井累计产量远远大于原始计算的地质探明储量。该现象对体积法计算的煤层气资源储量提出了挑战,同时为全面“上储增效”提出了新的方向。在采用体积法计算煤层气储量时,含气面积、含气量的准确性以及煤岩密度与煤层厚度的非均质特征都会对储量参数的准确性产生影响。其中,由于取心测试过程的局限性,煤层含气量的数值常存在一定的误差。本次研究基于鄂尔多斯盆地和沁水盆地的煤层气井生产数据并结合等温吸附实验结果提出了计算储层临界最低含气量的方法(临界最低法)。将校正后的临界最低含气量与实测含气量(基于美国矿业局直接法(USBM)和史密斯-威廉姆斯法)进行对比,并剖析含气量测试损失量的地质控制机理。结果表明:在中低至中高煤阶(Ro=0.7%~2.1%)范围,临界最低法计算的含气量总体高于其它两种方法计算的含气量,临界最低法在中低煤阶至中高煤阶具有较强的适应性。在高煤阶(Ro=2.1%~2.8%)范围,临界最低法计算结果可以与取心测试结果相互验证。总体上,煤层含气量测试(USBM法)损失量受不同煤阶煤岩孔裂隙发育特征、煤体结构、含气饱和度及逸散时间的影响。含气量测试损失量与孔渗发育特征、构造煤发育程度、含气饱和度及逸散时间呈正相关。此外,针对未取心的煤层气井,可以采用钻井岩屑测试等温吸附参数进而利用临界最低法求取储层含气量,为煤层气进一步的勘探开发提供数据基础。  相似文献   

3.
4.
煤层气井排采动态主控地质因素分析   总被引:3,自引:0,他引:3  
沁水盆地寿阳区块和柿庄区块煤层气(CBM)井的排采动态在整体上表现出明显差异,而单一区块内部煤层气井的排采动态也存在较大差异。本文就两个区块的煤系地层沉积相、煤层渗透率、断裂构造、地应力类型和构造应力强度以及顶底板岩性组合类型等因素对排采动态的影响开展对比分析。基于静态地质条件和排采动态资料的综合研究表明:煤系地层沉积相、煤层渗透率、地应力类型和构造应力强度的差异是两个区块煤层气井排采动态差异的主要原因;单一区块内煤层气井的排采动态差异受控于局部断裂构造、地应力类型以及煤层顶底板岩性组合类型等局部因素;在煤层气开发选区和开发井位部署时,应综合考虑资源量、渗透率和多种局部地质因素的共同影响。  相似文献   

5.
煤层气井排采过程中易出现排采异常的问题,研究煤层气井排采异常识别对煤层气高效开发具有重要意义。总结了煤层气井常见排采异常类型,并选取了压力、产量、冲次、电流4个参数作为特征参数,基于模拟人类思维方式的产生式专家系统,通过分析4个特征参数与生产状态的对应关系,构建了12个煤层气井常见的产生式规则,并采用正向推理的方式设计了推理机,实现了煤层气井常见排采异常类型的有效识别。实例表明,用产生式规则推理技术来识别煤层气井排采异常类型,具有过程简单、结论准确的优点。  相似文献   

6.
煤层气井排采过程中各排采参数间关系的探讨   总被引:5,自引:1,他引:5  
煤层气井必须进行排水降压,才能达到产气的目的。而煤层气井的产气量又受控于储层特性并由排采时的各参数所制约,只有掌握产气量与这些参数的关系才能制定合理的开采工作制度。本文利用铁法DT3井资料研究了在供气条件具备时,排采中产气量、排水量、井口压力和液面深度间的关系,提出了井底压力的作用及估算方法,将有利于煤层气井生产过程的认识和合理开发。  相似文献   

7.
合理的排采工作制度是提高煤层气井产量和节约成本的关键。根据煤层气井压裂裂缝延伸特点和排采过程相态变化特点,结合压力传递模型及Langmuir吸附模型,得出了不同排采阶段的识别标识;根据KGD模型,结合压裂施工工艺参数,以及渗透率与孔隙度的关系,分别建立了水平最小、最大主应力方向上的渗透率预测模型;根据达西定律及排采过程中煤基质与裂隙的正负效应,建立了不同排采阶段物性参数变化模型;根据压力传递特点及气、水相对渗透率变化,最终建立了不同排采阶段、不同过程的排采强度预测模型。借助Visual Basic开发工具,研制了煤层气垂直井排采控制决策系统。晋城矿区潘庄井田应用表明,该系统具有一定的应用前景。  相似文献   

8.
煤层气排采动态参数及其相互关系   总被引:6,自引:1,他引:6  
排采制度是保证煤层气井生产排采成功的关键要素。以煤层气开发潘河试验区生产资料为依托,利用统计、对比的方法,对试验区排采过程中的产气量、产水量、套压和动液面等参数进行综合研究。结果表明,区内煤层气排采过程及其动态参数具有明显的阶段性特征;排采过程中,动液面深度和套压为正相关关系,二者可通过相互调整控制井底压力。根据各阶段排采动态参数的特征,提出了与各排采阶段相适应的排采制度。   相似文献   

9.
考虑应力敏感性的煤层气井排采特征   总被引:2,自引:0,他引:2  
与裂缝性砂岩气藏相比,煤层气藏是一种具有阶段性应力敏感特征的特殊裂缝性气藏。在煤层气排采初期, 有效水平应力起主导作用, 随着有效应力的增大,渗透率逐渐减小;当割理内部流体压力降低到解吸压力之后, 由于基质收缩,渗透率可得到一定程度恢复。所以,提高煤层气排采效果的重要举措,是尽可能提高煤层气压降-解吸的面积。在煤层气开采初期,不合理的高排采速率将引起近井地带渗透率降低,影响压降漏斗的传播,造成增排不增产的后果。通过岩心应力敏感实验,得到了岩心渗透率随有效应力的变化规律。以煤层气开采井为例,利用ECLIPSE E300三维双重孔隙介质多组份模拟器,证明了初期排采量并非越大越好,而是存在一个合理值。该结论可用于指导煤层气井的开采。  相似文献   

10.
排采制度是影响煤层气井产能的关键因素,尤其对于含气量较低的低煤阶煤层气井。为了确定低煤阶煤层气井排采初期的压降幅度,通过分析影响黄陇煤田煤储层渗透率变化的基质自调节作用和速敏效应,认为速敏效应是造成该区低煤阶煤储层在排采过程中渗透率变小的主要原因,提出以实验室煤岩心速敏实验数据和实验井生产统计数据为依据确定低煤阶煤层气井排采初期的压降幅度,得出了研究区煤层气井排采初期的临界压降幅度。  相似文献   

11.
排采管控方法对煤层气储层动态渗透率具有显著影响。基于煤层气井不同排采阶段渗透率的主控因素,以提高和改善渗透率为目标,提出了针对性的排采对策。井底流压大于原始储层压力时,降压速度为0.03~0.05 MPa/d,可降低压裂液和速敏伤害;井底流压在原始地层压力和解吸压力之间时,以小于0.03 MPa/d的速度降压,避免加剧储层\  相似文献   

12.
根据平顶山矿区两口煤层气合作井所获得的有关参数,针对合作井煤层天然气组分氮气含量偏高的问题,对测试样品进行了全面综合剖析,解释了平顶山煤层中氮气的来源及氮气含量偏高的原因。  相似文献   

13.
Exploitation of coalbed methane (CBM) is directly affected by the strike and density of fractures, particularly because fractures can act as conduits for water and gas (after desorption). To realize the azimuthal amplitude versus angle (AVA) inversion for a CBM reservoir, we treated reservoirs whose fractures are aligned vertically as being equivalent to a horizontal transverse isotropic medium and simplified the P-P wave reflection coefficient formula to an approximately linear equation. Then, we adopted a modified damping least squares algorithm to solve the azimuthal AVA inversion problem. With edited macro-bins, corrected residual moveout, and normalized amplitude, the azimuthal gathers exhibited unambiguous azimuthal AVA characteristics. The #3 CBM reservoir in the Qinshui Basin was selected for a case study. The density and strike of the reservoir fractures were obtained and analyzed, and the reservoir was divided into three classes according to fracture density. Finally, in comparison with the gas production data, we confirmed that the inversion results and reservoir classification were both reasonable and credible.  相似文献   

14.
弹性波阻抗反演方法保留了地震反射振幅随偏移距或入射角变化的特征,能够获得更多、更敏感、更有效的数据,不但适合地层反演,还可进行储集层岩性反演。阐述了弹性波阻抗反演的基础理论及实现流程,通过对实际资料的反演,分析了其在煤层气储层预测中的应用特点。  相似文献   

15.
对煤层气储层进行识别和预测是煤层气勘查工作的一个重要问题。常规的反演方法对储层厚度预测精度不高,不能很好满足实际需要。利用非线性随机反演方法,在充分利用地震资料的基础上,以钻井、测井等已知信息作为约束条件,同时,考虑地下介质的随机性,通过拾取目的层地震反射波振幅、频率、相位等信息,提高了储层预测的精度。该方法在沁水煤田榆社-武乡煤层气区块得到了良好的应用,与实际地质资料对比发现,预测精度与钻井揭露成果吻合率较高,预测的煤层气储层厚度的分布与地质规律吻合。  相似文献   

16.
褐煤煤层气储集特征及气含量确定方法   总被引:2,自引:3,他引:2  
褐煤基质中的孔隙以中孔、大孔为主。实验表明,褐煤对甲烷的吸附能力很低;褐煤基质中的游离气含量通常占总气含量的50%以上。因此,传统的煤层气含量确定方法不适用于褐煤。本文建立了褐煤煤层气含量的确定方法,将吸附气含量与相应储层压力及温度条件下的游离气含量相加,即得到褐煤总的气含量等温线。利用这条等温线,即可获得该温度下不同储层压力时的气含量值。  相似文献   

17.
阐述了有色反演的基本原理,并给出了反演流程。通过模型试算,明确有色反演关键参数的物理意义及取值范围,并在孤南洼陷实际工区应用,较好地刻画出沙三下早期低位扇体的横向展布范围。与常规地震属性相比,反演结果更加符合沉积规律,与实钻井岩性分布情况吻合程度高。表明有色反演在保留地震数据原始现象的基础上,分辨率明显提高,适合无井或少井区的地层或岩性解释。  相似文献   

18.
合理控制套压和井底流压、合理排水降压采气是提高煤层气井开发效果的关键技术。井底流压回升可抑制煤层气解吸产出,造成储层伤害,降低煤层气井产量,影响煤层气井开发效果。通过沁水盆地樊庄区块生产实践动态分析、理论研究和室内实验,提出了煤层气流压回升型不正常井起因,通过理论研究和现场数据分析,明确煤层气井流压回升对储层伤害机理,提出流压回升对储层伤害程度评价方法及治理对策。研究结果表明:煤层气井煤没度增加导致套压降低,套压下降速率越快,则井底流压下降越快;煤没度增加速率过快的煤层气井,其井底流压回升对储层伤害严重,导致气体产出阻力增加,部分气体被毛细管压力封堵在孔隙中,难以产出。流压回升伤害指数可以表征流压回升导致储层伤害程度,抽油泵凡尔漏失和气锁导致煤层气井排水量小于煤层向井筒供水量是井底流压回升的主要原因,其治理措施可通过液压冲洗清除固定凡尔煤粉,通过机械振动清除游动凡尔煤粉,通过恒沉没防气锁工艺与煤层气井间断抽水工艺相结合措施治理气锁。  相似文献   

19.
云南恩洪区块属于多薄煤层发育区,煤层气资源丰富,但勘探开发程度较低。以恩洪区块煤层气井资料为基础,分析了前期单井产气量低的原因,探讨了多煤层合采的必要性及开发层系划分方式和单井开发潜力,进而结合流体可动性和国外煤层气开发经验,提出适合恩洪区块的煤层气开发方式。研究表明:恩洪区块单煤层资源丰度较低,前期煤层气井动用的资源不足是产气量低的重要原因;恩洪区块单井多煤层合采动用储量多,单井合采尽可能多的厚度大于0.5 m的原生-碎裂结构煤层是提高单井产气量的有效方式;恩洪区块煤层气吸附时间短,扩散能力强,但受地应力强度大、非均质性强和煤体结构复杂影响,渗透率较低且空间变化剧烈;分段压裂适合恩洪区块多薄煤层和弱含水的煤系地层特点,多煤层合采可依据煤层垂向上分布特点合理划分开发层系进行分段压裂合层排采,进行排水阶段缓降液面-见套压后憋压-稳产期稳压,之后缓慢降压的排采措施,最后形成各组整体降压提高产量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号