首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 154 毫秒
1.
《Geochimica et cosmochimica acta》1999,63(11-12):1689-1708
We compare the time series of major element geochemical and Pb- and Nd-isotopic composition obtained for seven hydrogenous ferromanganese crusts from the Atlantic, Indian, and Pacific Oceans which cover the last 60 Myr.Average crust growth rates and age–depth relationships were determined directly for the last about 10 Myr using 10Be/9Be profiles. In the absence of other information these were extrapolated to the base of the crusts assuming constant growth rates and constant initial 10Be/9Be ratios due to the lack of additional information. Co contents have also been used previously to estimate growth rates in Co-rich Pacific and Atlantic seamount crusts (Puteanus and Halbach, 1988). A comparison of 10Be/9Be- and Co-based dating of three Co-rich crusts supports the validity of this approach and confirms the earlier chronologies derived from extrapolated 10Be/9Be-based growth rates back to 60 Ma. Our data show that the flux of Co into Co-poor crusts has been considerably lower. The relationship between growth rate and Co content for the Co-poor crusts developed from these data is in good agreement with a previous study of a wider range of marine deposits (Manheim, 1986). The results suggest that the Co content provides detailed information on the growth history of ferromanganese crusts, particularly prior to 10–12 Ma where the 10Be-based method is not applicable.The distributions of Pb and Nd isotopes in the deep oceans over the last 60 Myr are expected to be controlled by two main factors: (a) variations of oceanic mixing patterns and flow paths of water masses with distinct isotopic signatures related to major paleogeographic changes and (b) variability of supply rates or provenance of detrital material delivered to the ocean, linked to climate change (glaciations) or major tectonic uplift. The major element profiles of crusts in this study show neither systematic features which are common to crusts with similar isotope records nor do they generally show coherent relationships to the isotope records within a single crust. Consequently, any interpretation of time series of major element concentrations of a single crust in terms of paleoceanographic variations must be considered with caution. This is because local processes appear to have dominated over more basin-wide paleoceanographic effects. In this study Co is the only element which shows a relationship to Pb and Nd isotopes in Pacific crusts. A possible link to changes of Pacific deep water properties associated with an enhanced northward advection of Antarctic bottom water from about 14 Ma is consistent with the Pb but not with the Nd isotopic results. The self-consistent profiles of the Pb and Nd isotopes suggest that postdepositional diagenetic processes in hydrogenous crusts, including phosphatization events, have been insignificant for particle reactive elements such as Pb, Be, and Nd. Isotope time series of Pb and Nd show no systematic relationships with major element contents of the crusts, which supports their use as tracers of paleo-seawater isotopic composition.  相似文献   

2.
1 Introduction Co-rich ferromanganese crusts occurring on submarine guyots have received much attention from scientists since the beginning of the 1980’s because they are enriched in Co, Mn, Pt, and rare earth elements (REEs), and have large potential mineral resources, occurring as they do on topographic highs relative to polymetallic nodules in the C-C (Clarion-Clipperton) zone (Halbach et al., 1982, 1989; Hein et al., 1992, 1999; Usui and Someya, 1997; Yamazaki and Sharma, 1998, 2000…  相似文献   

3.
王洋  方念乔  刘景昱 《地球科学》2021,46(2):719-728
Os同位素地层法可以得到包含生长间断期的分辨率较高的结壳年代框架,相对传统定年方法具有更优的发展前景.在比对多金属结壳分层Os同位素组成曲线与大洋海水标准曲线从而为多金属结壳定年的同时,研究标准曲线的区域性特征及其与壳源、幔源物质供应的关系.依据比值和趋势贴合原则,得到的多金属结壳生长期包括80~75 Ma、70~65...  相似文献   

4.
Tholeiitic basalts in various stages of alteration were dredged from Late Cretaceous volcanic rocks (60 -67 Ma) in the Hebrides Terrace seamount area in the Atlantic Ocean. These rocks are extrusive olivine basalts, including high- and low-Al basalts. High-Al basalts are depleted in MgO, CaO, Cr,Sc, V, St, Zr and enriched in TiO2, Na2O, Nb, Rb as compared with low-A1 basalts. Petrography and bulk-rock composition (major, trace and rare-earth elements) data defined clear tholeiitic suites displaying possible liquid lines of descent related to different degrees of crystal fractionation and partial melting.Isotopic dating of dredged samples gave the guyot an age of 60 - 67 Ma, in support of the assumption that it was formed during the Late Cretaceous.  相似文献   

5.
Thick hydrogenetic ferromanganese (FeMn) crusts from the northwest and central Pacific seamounts often show a distinct dual structure composed of a typical hydrogenetic porous, friable upper part of FeMn oxides (Layer 1) and the underlying dense, hard phosphatized growth generation of FeMn oxides (Layer 2 in this study). Layer 2 always appears above the substrate rock and composes the lower part of the crust; it is never found as the upper crust layer in contact with seawater. The chemical composition of Layer 2 clearly differs from the younger Layer 1 hydrogenetic FeMn oxides, and is depleted in Fe, Al, Ti, and Co, and enriched in Ni, Cu, and Zn relative to Layer 1. The Be isotope age models of the crusts were refined with paleomagnetic and paleontological information, and applied to selected crust samples. The age model indicates fairly continuous growth from the substrate to the surface and fairly constant growth rates during the past 17 Ma. The growth rate from the Miocene to the present has varied by a factor of two, about 2–4 mm/Myr in Layer 1, while Layer 2 has similar but more variable growth rates than Layer 1.The calculated age for the base of Layer 1, and possibly the age of termination of phosphatization, is never younger than the late Miocene. The age seems to vary with water depth, shallower-water crusts (between 991 and 1575 m) showing a younger age of about 10 Ma whereas the deeper-water (2262 m) crusts have extrapolated ages for the base of Layer 1 of be 17.1 ± 2.5 Ma. This trend indicates that phosphatization took place in a less-oxidizing environment during growth of Layer 2, followed by a weakened oxygen-minimum zone or intensified AABW during growth of Layer 1.  相似文献   

6.
富钴结壳中的磷酸盐岩及其古环境指示意义   总被引:5,自引:0,他引:5  
磷酸盐岩是富钴结壳老壳层的主要组分之一。本文对来自中太平洋海山的三块富钴结壳样品中的磷酸盐岩进行了研究,以期对富钻结壳形成环境的变化有所了解。通过扫描电镜发现结壳中磷酸盐岩的形态有六种,磷酸盐岩主要分布在老壳层,新壳层中偶见。结壳中的磷酸盐岩为碳氟磷灰石(CFA),经成分分析及电镜中反射色的差异可以区分出两种成因的CFA:一种为交代碳酸盐岩型的,相对富Si、Al、Fe;另一种为从结壳孔隙水中直接沉淀而成的,基本不含Si、Al、Fe。对CB12样品中磷酸盐岩脉进行生物地层学鉴定,得出其老壳层下部火焰状磷酸盐岩的形成年代为晚渐新世一早中新世(23.2-29.9Ma),而其上部充填脉状磷酸盐岩的形成年代为中中新世(10.8-16Ma)。老壳层中富集磷酸盐岩说明在结壳形成早期,结壳形成环境条件尚不够稳定,底部存在富磷深层储库,当底流突然增强时,可携带磷在海山上交代结壳中的碳酸盐岩或在结壳内部合适条件下直接沉淀形成磷酸盐岩充填脉。新壳层形成时底流已相对髂定,富磷深层储库已消失,不再有广泛磷酸盐化形成。  相似文献   

7.
麦哲伦海山群MK海山富钴结壳稀土元素的赋存相态   总被引:2,自引:0,他引:2  
利用ICP-OES和ICP-MS,分析了麦哲伦海山群西北端MK海山2 170 m水深的MKD23B-3号富钴结壳样品,获得了其剖面上主元素、稀土元素(REE)和Y含量数据,并基于元素含量间的线性相关关系,研究了REE和Y的赋存相态。结果显示:该样品剖面从基岩到表面可划分为5层,第Ⅰ、Ⅱ层为磷酸盐化壳层,第Ⅲ、Ⅳ、Ⅴ层为未磷酸盐化壳层。在未磷酸盐化壳层中,REE和Y主要赋存在δ-MnO2相中;而在磷酸盐化壳层中,REE和Y除了赋存在Fe、Mn氧化物相中外,主要赋存在独立于碳氟磷灰石(CFA)的矿物相态中,可能为稀土的磷酸盐。并提出利用磷酸盐中REE/Y 估算富钴结壳磷酸盐化壳层次生稀土的方法,据此估算了MK海山富钴结壳磷酸盐化壳层次生稀土的量。在该样品中,次生稀土占稀土总量的42%~88%,近一半以上的稀土是次生的,磷酸盐化作用对于REE和Y的次生富集具有显著的贡献;因此解读磷酸盐化富钴结壳的稀土元素(特别是Nd同位素)古海洋记录必须排除次生稀土元素的干扰。  相似文献   

8.
Local U-Pb dating of zircons separated from various rocks in the crest zone of the Mid-Atlantic Ridge (MAR) and Carter Seamount (Sierra Leone Rise) is performed. Younger zircons formed in situ in combination with older xenogenic zircons are revealed in enriched basalts, alkaline volcanic rocks, gabbroic rocks, and plagiogranites. Only older zircons are found in depleted basalts and peridotites. Older zircons are ubiquitous in the young oceanic lithosphere of the Central Atlantic. The age of the younger zircons from the crest zone of the MAR ranges from 0.38 to 11.26 Ma and progressively increases receding from the axial zone of the ridge. This fact provides additional evidence for spreading of the oceanic floor. The rate of half-spreading calculated from the age of the studied zircons is close to the rate of half-spreading estimated from magnetic anomalies. The age of the younger zircons from Carter Seamount (58 Ma) corresponds to the age of the volcanic edifice. Older zircons make up an age series from 53 to 3200 Ma. Clusters of zircons differing in age reveal quasiperiodicity of about 200 Ma, which approximately corresponds to the global tectonic epochs in the geological evolution of the Earth. Several age groups of older zircons combine grains close in morphology and geochemistry: (1) Neoproterozoic and Phanerozoic (53–700 Ma) prismatic grains with slightly resorbed faces, well-preserved or translucent oscillatory zoning, and geochemical features inherent to magmatic zircons; (2) prismatic grains dated at 1811 Ma with resorbed faces and edges, fragmentary or translucent zoning, and geochemical features inherent to magmatic zircons; (3) ovoid and highly resorbed prismatic grains with chaotic internal structure and metamorphic geochemical parameters; the peak of their ages is 1880 Ma. The performed study indicates that older xenogenic zircons from young rocks in the crest zone of the MAR were captured by melt or incorporated into refractory restite probably in the sublithospheric mantle at the level of magma generation in the asthenosphere. It is suggested that zircons could have crystallized from the melts repeatedly migrating through the asthenosphere during geological history or were entrapped by the asthenosphere together with blocks of disintegrated and delaminated continental lithosphere in the process of breakup of the continents older than Gondwana. The variability in the age of older zircons even within individual samples may be regarded as evidence for active stirring of matter as a result of periodically arising and destroyed within-asthenospheric convective flows varying in orientation and scale.  相似文献   

9.
Zircons from the metasedimentary rocks of the Mesoarchean greenstone belts of the Azov and Middle Dnieper blocks of the Ukrainian shield were studied and dated by U-Pb method on a NORDSIM secondary-ion mass spectrometer. Detrital zircons from the metasediments of the Belozerskaya Formation of the greenstone belts of the Middle Dnieper block are usually dated within 3000–3100 Ma, while individual grains have an age of 3200–3300 Ma. This indicates that the sediments were derived mainly from proximal volcanic source with minor contribution of the basement material (Aul’skaya Group). The metasediments of the Soroki greenstone structure of the Azov block contain mainly zircons with ages within 3500–3600 Ma, except for scarce grains having the ages older than 3700 Ma. Zircon cores are overgrown by granulitic rims dated at approximately 3300 Ma. A wide scatter in ages and Th/U ratios in the zircons indicate that they were derived from rocks of different composition and age. Obtained data suggest significantly wider distribution of the Paleoarchean crust within the Azov block of the Ukrainian shield than was previously assumed.  相似文献   

10.
Ferromanganese crusts from the Atlantic, Indian and Pacific Oceans record the Nd and Pb isotope compositions of the water masses from which they form as hydrogenous precipitates. The10Be/9Be-calibrated time series for crusts are compared to estimates based on Co-contents, from which the equatorial Pacific crusts studied are inferred to have recorded ca. 60 Ma of Pacific deep water history. Time series of ɛNd show that the oceans have maintained a strong provinciality in Nd isotopic composition, determined by terrigenous inputs, over periods of up to 60 Ma. Superimposed on the distinct basin-specific signatures are variations in Nd and Pb isotope time series which have been particularly marked over the last 5 Ma. It is shown that changes in erosional inputs, particularly associated with Himalayan uplift and the northern hemisphere glaciation have influenced Indian and Atlantic Ocean deep water isotopic compositions respectively. There is no evidence so far for an imprint of the final closure of the Panama Isthmus on the Pb and Nd isotopic composition in either Atlantic or Pacific deep water masses.  相似文献   

11.
New geochronological and geochemical data are reported for the San Blas Pluton (SBP), in the northwestern Sierra de Velasco, Sierras Pampeanas, which intrudes Ordovician granitoids developed during the Famatinian orogeny. A precise Carboniferous age of 340±3 Ma is established by U–Pb dating of zircon using a sensitive high-resolution ion microprobe (SHRIMP). The SBP illustrates several petrological and geochemical characteristics of previously reported Carboniferous granitoids in the Sierras Pampeanas. Their generation is consistent with a regional reheating of the crust at approximately 342 Ma, which resulted in the formation of relatively large amounts of granitic melts that were emplaced in higher crustal levels along master fractures (older master shear zones of Lower Paleozoic age). The SBP can be chemically defined as a typical A-type granitoid related to postcollisonal or postorogenic magmatism. Its high REE content and extraordinarily high U and Th concentrations may have economic significance. Many previously published Devonian and Carboniferous K–Ar dates are reset Ordovician ages, but the existence of other Carboniferous bodies in the Sierra de Velasco cannot be discounted until detailed mapping of the whole Sierra is completed.  相似文献   

12.
粤西云开地区基底变质岩的组成和形成   总被引:4,自引:3,他引:1  
云开地块被认为是华南西南部一个重要的前寒武纪变质基底出露区,但对其基底组成的认识仍存在较大争议。本文对云开地块内基底变质岩进行了岩石地球化学、锆石U-Pb-Hf同位素分析。分析结果表明云开地块的基底主要由于新元古代-早古生代的变质沉积岩组成。它们具有比上地壳平均成分更高的Si O2和相对更低的Al2O3、Ca O、Na2O,岩石成熟度中等。微量元素与PAAS相似,但Sr、Cr、Ni等强烈亏损,高场强元素Nb、Ta轻度亏损,而大多数样品的Zr、Hf、Th、U等轻度富集,说明源区更富集长英质组分而贫镁铁组分。地球化学特征和碎屑锆石组成指示这套沉积岩形成于被动大陆边缘环境,源区既有古老的再循环物质,也有大量未经明显改造的新元古代岩浆物质。综合本文和前人的锆石U-Pb定年数据,云开地块基底变质岩原岩可以分为两组:第一组样品形成较早(时代上限为850~522Ma),总体年龄谱特征显示出与华夏南岭地区的亲缘性。这组样品的源区主要有4次岩浆作用(2700~2400Ma、1800~1400Ma、1150~900Ma、850~700Ma),均涉及到古老地壳再循环以及新生地壳的加入,但以再循环的物质为主。最主要的新生地壳生长发生在新太古代和Grenville期。而第二组样品的沉积时代在517Ma之后,具有与扬子南缘新元古代沉积岩的相似性。这组亲扬子沉积物的源区具有不同的4次岩浆事件(2600~2350Ma、2000~1750Ma、1700~1500Ma、900~750Ma),新太古代晚期-古元古早期岩浆主要涉及古老基底再循环。古元古晚期-中元古早期岩浆大多起源于新生地壳物质,而新元古代是最重要的新生地壳生长期,同时也涉及大量古老地壳物质的再循环。不同时代沉积岩的碎屑物质组成变化表明大概在522~517Ma之间云开沉积盆地和物源区受到一定程度的构造运动影响,使得源区由华夏地块变成扬子地块。这期构造事件很可能是早古生代造山事件的初始阶段。根据本文资料和其他证据我们认为云开地块归属于华夏板块,扬子与华夏地块的分界线至少在云开地块以北,且很可能在平乐与平南之间。  相似文献   

13.
为了进一步解释南海不同区域内多金属结核(壳)的地球化学特征与成因,对东部次海盆黄岩?珍贝海山链上新获取的多金属结核(壳)样品进行了X光衍射、X荧光光谱测试、SEM-EDS分析和X Series2 ICP-MS测试,详细分析了样品的矿物组成、地球化学成分特征. 结果表明,矿物组成为水羟锰矿、石英、斜长石等;主要造岩元素中Si、Al含量较高,与陆缘碎屑物影响较大有关;富含Mn、Fe、Co、Ti、Ni、Pb、Sr等多种金属元素,相比南海其他区域,具有中等的Fe、Mn含量特征,地化元素特征与南海西北陆坡发现的铁锰结核(壳)相似;稀土元素具有总量高(平均2 070.01×10-6)的特点,高于南海北部其他样品,与西太平洋结壳稀土含量接近(接近工业品位),指示了重要的稀土资源前景. 结核Be同位素结果指示该区铁锰结核生长时代为1.17~8.51 Ma,形成于晚中新世大量火山喷发之后,因此水成作用是南海东部次海盆海山链结核(壳)的主要控制作用,而陆源物质的输入、火山作用和高压富氢离子海水的浸取作用都为结核(壳)的形成提供了有利的沉积环境.   相似文献   

14.
洪涛  游军  吴楚  徐兴旺 《岩石学报》2015,31(9):2583-2596
扬子板块西缘滇西地区是否存在古老基底一直存在争议。本文对滇西桃花地区花岗斑岩进行了岩石学、地球化学和锆石SHRIMP U-Pb年代学研究。形成于晚造山-后碰撞背景的桃花花岗斑岩具岛弧花岗岩地球化学特征,其成因可能与:1)俯冲拆离的洋壳俯冲拆离的洋壳或富集地幔重熔作用;2)加厚的地壳部分熔融。花岗斑岩中的继承锆石有两种类型:一类是发育具有密集振荡环带的岩浆锆石;另一类是次浑圆状锆石。测年结果显示,花岗斑岩的岩浆锆石年龄为36.35±0.35Ma,环带发育的继承锆石年龄介于167~891Ma之间;而次浑圆状继承锆石可以分为两组,其207Pb/206Pb加权平均年龄分别为1851±22Ma与2499±32Ma。新的锆石测年结果表明着滇西桃花地区不仅存在古金沙江洋东向俯冲形成的晚古生代弧岩浆记录,还发现新元古代岩浆活动信息,及早古元古代和新太古代的锆石记录。推测1.8Ga与2.5Ga锆石可能是捕获自地壳或围岩(石鼓片岩),表明滇西地区可能存在古老基底。  相似文献   

15.
This paper presents the fractal distribution of topography of seamounts from the West Pacific and the resource quantity of cobalt crust therein. The cobalt resource quantity has three to four variable fractal dimensions, corresponding to the distinct slopes and water depths of the seamount. The multiple fractal property of resource quantity may have resulted from various factors, such as types and components of cobalt crusts and ages of oceanic crusts hosting the seamounts. Individual seamounts display complex topography and quantity of cobalt crust, both in the same and different regions. Translated from Acta Sedimentologica Sinica, 2006, 24(5): 705–713 [译自: 沉积学报]  相似文献   

16.
This paper addresses the composition, geochemistry, isotopic characteristics, and age of rocks from the Carter Seamount of the Grimaldi seamount group at the eastern margin of the Central Atlantic. The age of the seamount was estimated as 57–58 Ma. Together with other seamounts of the Grimaldi system and the Nadir Seamount, it forms a “hot line” related to the Guinea Fracture Zone, which was formed during the late Paleocene pulse of volcanism. The Carter Seamount is made up of olivine melilitites, ankaramites, and analcime-bearing nepheline tephrites, which are differentiated products of the fractional crystallization of melts similar to an alkaline ultramafic magma. The volcanics contain xenoliths entrained by melt at different depths from the mantle, layer 3 of the oceanic crust, which was formed at 113–115 Ma, and earlier magma chambers. The rocks were altered by low-temperature hydrothermal solutions. The parental melts of the volcanics of the Carter Seamount were derived at very low degrees of mantle melting in the stability field of garnet lherzolite at depths of no less than 105 km. Anomalously high Th, Nb, Ta, and La contents in the volcanics indicate that a metasomatized mantle reservoir contributed to the formation of their primary melts. The Sr, Pb, and Nd isotopic systematics of the rocks show that the composition of the mantle source lies on the mixing line between two mantle components. One of them is a mixture of prevailing HIMU and the depleted mantle, and the other is an enriched EM2-type mantle reservoir. These data suggest that the formation of the Carter Seamount volcanics was caused by extension-related decompression melting in the Guinea Fracture Zone of either (1) hot mantle plume material (HIMU component) affected by carbonate metasomatism or (2) carbonated basic enclaves (eclogites) ubiquitous in the asthenosphere, whose isotopic characteristics corresponded to the HIMU and EM2 components. In the former case, it is assumed that the melt assimilated during ascent the material of the metasomatized subcontinental mantle (EM2 component), which was incorporated into the oceanic lithospheric mantle during rifting and the breakup of Pangea.  相似文献   

17.
Based on the survey data of five submarine seamount provinces (chains) in the Western Pacific, the distribution characteristics of cobalt-rich ferromanganese crust resources have been researched in this paper by using the relative reference data and applying the theories of hotspot and seafloor spreading. The main research results obtained are as follows: The Co-rich crust thickness in the study area is gradually increasing from east to west and from south to north having a negative correlation (r = -0.59) with longitude and a positive correlation (r = 0.48) with latitude. The crust thickness varying along longitude and latitude is influenced by the hotspot and seafloor spreading. The oceanic crusts and seamounts in the northwest part of the study area are older, and the crust resources are superior to those in the southeast part. In the depth of 〈1500 m, 1500-2000 m, 2000-2500 m in the study area, the cobalt crust thickness is respectively 5.45 cm, 4.34 cm and 3.55 cm, and in the depth of 2500-3000 m and 3000-3500 m, it drops respectively to 2.84 cm and 3.37 cm. The Co-rich crust resources are mainly concentrated in the seamount summit margins and the upper flanks in the depth of 〈2500 m. There is a strong negative correlation (r = -0.67) between the cobalt crust abundance and the slope of the seamount, 75 kg/m^2 and 50 kg/mz at the slopes of 0°-20° and 20°-34° respectively. Cobalt crusts are mainly distributed in the parts whose slopes are less than 20°. It is consistent with the fractal result that the slope threshold of cobalt crust distribution is 19°, and slopes over 20° are not conducive to the crust growth. The cobalt crusts of high grade are mainly enriched in the region within 150°E-140°W and 30°S-30°N in the Pacific, where there are about 587 seamounts at the depth of 3500- 6000 m and over 30 Ma of the oceanic crusts. The perspective area rich in cobalt crust resources is about 41×104 km^2 and the resource quantity is approximately 27 billion tons.  相似文献   

18.
蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年   总被引:101,自引:2,他引:101  
文中简要评述了蛇绿岩的层状辉长岩,斜长岩和斜长花岗岩,以橄榄岩为主岩的花岗岩和蛇绿岩中的埃达克岩的锆石SHRIMP U-Pb年龄的地质意义。层状辉长岩(或堆晶层状辉长岩)通常起源于洋脊下的岩浆房,因而它的形成年龄代表洋壳形成的时代。斜长岩与层状辉长岩的时代相近或略晚。斜长花岗岩年龄的解释极其依赖锆石组成和地球化学证据。橄榄岩为主岩的花岗岩,可能记录蛇绿岩的侵位时代。蛇绿岩中的埃达克岩是消减洋壳在深部的部分熔融的产物。文中发表了新疆扎河坝蛇绿岩SHRIMP定年的中间成果,并简略地介绍了滇川西部金沙江和内蒙古图林凯等地的研究实例。根据层状辉长岩的测定结果,扎河坝蛇绿岩形成于(489±4)Ma,金沙江蛇绿岩形成于(328±8)Ma。内蒙古图林凯蛇绿岩中埃达克岩形成于(467±13)Ma~(429±7)Ma。块状辉长岩、斜长花岗岩和橄榄岩为主岩的花岗质岩石记录了蛇绿岩的复杂演化。新疆扎河坝蛇绿岩中的块状辉长岩中存在多组锆石年龄值。较老的一组为468~511 Ma,与层状辉长岩和斜长岩相似,记录了蛇绿岩或洋壳的形成时代,但是,岩石中的大部分锆石年龄为396~419 Ma,加权平均年龄为(406±4)Ma,可能反映了一次部分熔融事件。滇川西部金沙江蛇绿岩中的斜长花岗岩的形成年龄为约300~285Ma,晚于层状辉长岩和?  相似文献   

19.
富钴结壳的壳层在形成过程中因环境不同而产生结构构造与物质成分的差异。选取采自中太平洋海山、具有多层构造的富钴结壳(样品号MHD79)进行分析。观察到其下部磷酸盐化壳层和上部未磷酸盐化壳层各有3层,即致密层、较致密层和疏松层,且其发育顺序呈镜像关系。元素化学分析显示:Sr、Pb含量由下到上表现为由高到低再到高,同样呈镜像分布,指示结壳生长过程中,古海洋生产力由高逐渐降低,又逐渐升高。在受强烈磷酸盐化作用影响的壳层中,由致密到疏松,其渗透性由弱到强,导致磷酸盐化由弱到强。在未受强烈磷酸盐化影响的壳层中,S i、A l、Ti、V元素含量与结壳显微构造的疏松或致密相关性不强,而是主要受控于结壳中包含的碎屑成分含量。由老到新S i、A l、Ti、V含量逐渐增加,可能是由于随着MH海山逐渐靠近亚洲大陆及青藏高原逐渐隆起,陆源物质供应逐渐增加的结果。  相似文献   

20.
甲乌拉铅锌银矿床位于内蒙古自治区满洲里市南西150km。矿床产于中蒙古-额尔古纳兴凯造山带南东缘之得尔布干断裂北西侧。本文在甲乌拉矿床选取7件闪锌矿和6件黄铁矿样品开展了Rb-Sr定年。获得闪锌矿的Rb-Sr等时线年龄为143.0±2.0Ma(MSWD=3.2),锶同位素初始值I Sr=0.71265;黄铁矿的Rb-Sr等时线年龄为142.0±3.0Ma(MSWD=5.7),锶同位素初始值ISr=0.71267;闪锌矿与黄铁矿的Rb-Sr等时线年龄为142.7±1.3Ma(MSWD=3.8),锶同位素初始值ISr=0.71266。上述定年结果表明,甲乌拉矿床形成于早白垩世初期。甲乌拉矿床硫化物的Rb和Sr含量分别介于0.1034×10-6~7.367×10-6和1.301×10-6~7.148×10-6之间,Sr同位素初始比值(87Sr/86Sr)i介于0.71238~0.71277之间,平均值为0.71264,暗示甲乌拉矿床的成矿物质主要来源于地壳。甲乌拉矿床形成于蒙古-鄂霍茨克造山过程的后碰撞阶段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号