首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The common upper mantle assemblage olivine-orthopyroxene-spinelmay be used to calculate the oxygen fugacity at which mantle-derivedperidotites have equilibrated. The equilibrium has been calibratedusing the large amount of existing data on the thermodynamicproperties of each phase in this assemblage. A by-product ofthis procedure is a new calibration of the olivine-spinel Mg-Fe2+exchange geothermometer. Application of the equilibrium to avariety of peridotite xenoliths indicates that the oxygen fugacityof the upper mantle lies between the quartz-fayalite-magnetite(QFM) and w?stite-magnetite (WM) oxygen buffers; the few apparentexceptions to this rule may be due to analytical error, particularlyin the Fe3+ content of the spinet phase. In fact, the determinationof Fe3+ in spinet is at present the limiting factor in the accurateapplication of the method: within this limitation, the presentlyavailable evidence suggests that the oxygen fugacity of themantle may be laterally homogeneous over wide regions, but mayalso show small differences between these regions. The fluidspecies in the system C-H-O at such oxygen fugacities are predominantlyCO2 and/or H2O, and not CH4/H2 The minimum possible oxygen fugacity of the mantle is givenby the nickel content of olivine in equilibrium with orthopyroxene;for typical mantle compositions this minimum curve is virtuallycoincident with the iron-w?stite (IW) oxygen buffer.  相似文献   

2.
On Ile de Groix, Variscan metamorphic former tholeiitic and alkaline basalts occur as glaucophane-eclogites, blueschists and greenschists in isolated lenses and layers within metapelites. Whole-rock '18OSMOW values of the metabasites show limited variations (10.4-12.0‰) and no systematic differences among rock types and metamorphic grades. This provides no argument for large-scale blueschist-to-greenschist transformation driven by infiltration of externally derived fluids. Metamorphic mineralogical changes should have been triggered by internal fluids. Element variations in interlayered blue- and greenschists can be attributed to magmatic fractionation. Assemblages with garnet, clinopyroxene and glaucophane of a high-pressure/low-temperature (HP-LT) metamorphism M1, and NaCa-amphiboles (barroisite, magnesiohornblende, actinolite) of a medium-pressure/medium-temperature metamorphism M2 crystallized during deformation D1. Detailed core-rim zonation profiles display increasing and then decreasing AlIV in glaucophane of M1. NaCa-amphiboles of M2, mantling glaucophane and crystallized in porphyroblasts, show first increasing, then decreasing, AlIV and AlVI. Empirically calibrated thermobarometers allowed P-T path reconstructions. In glaucophane-eclogites of a metamorphic zone I, a prograde evolution to M1 peak conditions at 400-500°C/10-12 kbar was followed by a retrograde P-T path within the glaucophane stability field. The subsequent M2 evolution was again prograde up to >600°C at 8 kbar and then retrograde. Similarly, in metamorphic zones II and III, prograde and retrograde paths of M1 and M2 at lower maximal temperatures and pressures exist. The almost complete metamorphic cycle during M2 signalizes that the HP-LT rocks escaped from an early erosion by a moderate second burial event and explains the long-lasting slow uplift with low average cooling rates.  相似文献   

3.
Sparry and microcrystalline magnesite are minor constituents of the Upper Triassic Burano Evaporite Formation of the northern Apennines in Italy. Petrography and geochemistry of magnesite suggest three modes of formation. (1) Evaporitic precipitation of stratified microcrystalline magnesite layers associated with sulfate and carbonate rocks. Most REE are below ICP-MS detection limits. '18O is +20.2‰ (SMOW) and '13C is -2.6‰ (PDB). (2) Hydrothermal infill of Fe-rich (9.78 wt% FeO) lenticular sparry magnesite. This type of magnesite is characterized by very low LREE concentrations, whereas HREEs are relatively high. The fluid inclusion composition is NaCl-MgCl2-H2O, salinity is ~30 wt% NaCl equiv., and total homogenization temperatures range from 204-309 °C; '18O is +17.5‰ and '13C is +1‰. (3) The partial or total replacement of dolostones by lenticular sparry magnesite. LREEs are lower in magnesite compared with the partly replaced dolostones. Magnesite yields '18O and '13C compositions of +17.3 to +23.6‰ and +0.5 to +1.4‰, respectively, whereas the partly replaced dolostones yield '18O and '13C values of +25.0 to +26.2 and +1.3 to +1.9, respectively. Complete replacement of dolostones produced massive lenticular sparry magnesite rock containing ooids and axe-head anhydrite relicts; LREEs are depleted compared to unaffected dolostones; '18O and '13C compositions range from +16.4 to +18.4‰ and +0.4 to +0.9‰, respectively. These data and the association between fracture-filling and replacive magnesite suggests a metasomatic system induced by hydrothermal circulation of hot and saline Mg-rich fluids. These processes probably occurred in the Oligocene-Miocene, when the Burano Formation acted as main detachment horizon for the Tuscan Nappe during the greenschist facies metamorphism of the Apuane complex. Thrusting over the Apuane zone produced large scale fluid flow focused at the Tuscan Nappe front. Sources of Mg-rich fluids were metamorphic reactions in the Apuane complex and dissolution of Mg-salts at the thrust front. Considering a maximum tectonic burial depth of 10 km, as inferred from the geometry of the chain, the pressure-corrected temperature of magnesite precipitation (380 to 400 °C) and the calculated fluid composition ('18O=+13.3ǃ.2‰) are in the range of the published Apuane metamorphic temperatures (300-450 °C) and fluid compositions ('18O=7-16‰). The results of this study support the hydrothermal-metasomatic model for the formation of sparry magnesite deposits at the expense of dolostone units involved in thrusting and low-grade metamorphism, as proposed for the Northern Graywacke Zone (Alps) and the Eugui deposit (western Pyrenees).  相似文献   

4.
Meta-peridotites outcropping at different structural levels within the Alpine metamorphic complex of the Cycladic island of Naxos were studied to re-examine their metamorphic evolution and possible tectonic mechanisms for emplacement of mantle material into the continental crust. The continental margin section exposed on Naxos, consisting of pre-Alpine basement and c. 7 km thick Mesozoic platform cover, has undergone intense metamorphism of Alpine age, comprising an Eocene (M1) blueschist event strongly overprinted by a Miocene Barrovian-type event (M2). Structural concordance with the country rocks and metasomatic zonation at the contact with the felsic host rocks indicate that the meta-peridotites have experienced the M2 metamorphism. This conclusion is supported by the similarity between metamorphic temperatures of the ultrabasic rocks and those of the host rocks. Maximum temperatures of 730–760 °C were calculated for the upper-amphibolite facies meta-peridotites (Fo–En–Hbl–Chl–Spl), associated with sillimanite gneisses and migmatites. Relict phases in ultrabasics of different structural levels indicate two distinct pre-M2 histories: whereas the cover-associated horizons have been affected by low-grade serpentinization prior to metamorphism, the basement- associated meta-peridotites show no signs of serpentinization and instead preserve some of their original mantle assemblage. The geochemical affinities of the two groups are also different. The basement-associated meta-peridotites retain their original composition indicating derivation by fractional partial melting of primitive lherzolite, whereas serpentinization has led to almost complete Ca-loss in the second group. The cover-associated ultrabasics are interpreted as remnants of an ophiolite sequence obducted on the adjacent continental shelf early in the Alpine orogenesis. In contrast, the basement-associated meta-peridotites were tectonically interleaved with the Naxos section at great depth during the Alpine collision and high P/T metamorphism. Their emplacement at the base of the orogenic wedge is inferred to have involved isobaric cooling from temperatures of c. 1050 °C within the spinel lherzolite field to eclogite facies temperatures of c. 600 °C.  相似文献   

5.
Petrographic and petrologic investigations of upper amphibolitefacies metacarbonates from the East Humboldt Range core complex,Nevada, provide important constraints on P-T-XCO2 conditionsand fluid flow during metamorphism. Three marble assemblagesare observed [(1)dol+cc+bt+cpx+q+ruscapkspamph; (2) cc+bt+cpx+plag+q+sphscapksp;(3) cc+cpx+plag+q+sphscapksp], all of which equilibrated withrelatively CO2-rich fluid compositions, at P-T conditions of6 kbar and 600–750C. The most recent equilibration eventis recorded in some calcsilicate gneisses where retrograde amphiboleand epidotegarnet replace clinopyroxene and plagioclase, respectively.This is attributed to infiltration of H2O-rich fluids at and/orafter peak metamorphic temperatures, which continued as therocks were cooled and rapidly uplifted after a Tertiary extension-relatedheating event. Likely sources for the retrograde fluids are the abundant pegmatiticleucogranites in the area. Volumetric fluid-rock ratios of 0.02–0.4are required to generate the retrograde assemblage, and observedleucogranite proportions are more than adequate to provide therequired volume of fluid. Estimates of retrograde fluid fluxesrange from 0.25 to 5102 cm3/cm2 for a transient temperaturegradient of 5C/m, to 3103 to 7104 cm3/cm2 for a temperaturegradient of 35C/km. These gradients are characteristic of askarn-type contact metamorphic environment and a regional crustalgeotherm, respectively. They imply different time-scales andlength-scales for the retrograde fluid flow system, with theformer more akin to a contact metamorphic setting with local,meter-scale retrograde fluid flow, and the latter to a regionalmetamorphic setting with regionally high mid- and lower-crustaltemperatures and fluid flow throughout a significant thicknessof the middle crust. Higher gradients are considered more likelygiven the proximity of leucogranites to retrogressed calc-silicategneisses, and the resultant relatively small fluxes are consistentwith a magmatic source. The length-scale of reaction within the retrograde fluid flowsystem was of the order of meters to hundreds of meters andinvolved both pervasive and (later) fracture-controlled down-temperatureflow. Retrograde fluid flow in this terrance, as well as othersdominated by magmatic volatiles, is in the form of multiplediscrete bursts of fluid released in a discontinuous mannerpotentially over long periods of time (1–10 Ma) with locallyvariable thermal gradients along the flow path.  相似文献   

6.
Anomalous geogenic arsenic occurs in drinking water from the Goose River crystalline ground-watershed in mid-coastal Maine. Isotope investigations were useful in understanding release areas of arsenic into affected water wells. The isotope composition of sulfate associated with probable arsenian pyrite oxidation is described. Correlation of '18OSO4 enrichment [+4.57 to +7.46‰ Vienna Standard Mean Ocean Water (VSMOW)] is discussed with specific and recurring areas of elevated arsenic (10-52 µg l-1). Although arsenic concentrations were highly variable over 2 years per well, '18OSO4 values were always consistent and suggested a specific and consistent risk for elevated arsenic occurrences for each well. The '18O values in the water molecule (-12.07 to -8.81‰ VSMOW) and the '18OSO4 values may serve as prospective indicators of prominent zones of aeration at depth in discrete fracture zones. The '18O values in the water molecule and sulfate ion appear to indicate that more than 60% of O2 incorporated into the SO42- ion are from dissolved oxygen and belong to distinct fractured areas. These aeration zones or oxidation fronts, as outlined by oxygen isotopes, are sentinels for high arsenic risk in groundwater.  相似文献   

7.
Proterozoic migmatitic paragneisses exposed in the McCulloughRange, southern Nevada, consist of cordierite+almanditic garnet+biotite+sillimanite+plagioclase+K-feldspar+quartz+ilmenite+hercynite.This assemblage is indicative of a low-pressure fades seriesat hornblende-granulite grade. Textures record a single metamorphicevent involving crystallization of cordierite at the expenseof biotite and sillimanite. Thermobarometry utilizing cation exchange between garnet, biotite,cordierite, hercynite, and plagioclase yields a preferred temperaturerange of 590–750?C and a pressure range of 3–4 kb.Equilibrium among biotite, sillimanite, quartz, garnet, andK-feldspar records aH2O between 0?03 and 0?26. The low aH2Otogetherwith low fO2 (QFM) and optical properties of cordierite indicatemetamorphism under fluid-absent conditions. Preserved mineralcompositions are not consistent with equilibrium with a meltphase. Earlier limited partial melting was apparently extensiveenough to cause desiccation of the pelitic assemblage. The relatively low pressures attending high-grade metamorphismof the McCullough Range paragneisses allies this terrane withbiotite-cordierite-garnet granulites in other orogenic belts.aosure pressures and temperatures require a transient apparentthermal gradient ofat least 50?C/km during part of this Proterozoicevent in the southern Cordillera. *Present address: Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90024-1567  相似文献   

8.
The Dafulou and Huile vein and stratabound cassiterite-sulfide deposits and sheeted ore veins at the Kangma cassiterite-sulfide deposit are located in the eastern part of the Dachang tin field. These deposits are hosted in a sedimentary sequence containing significant concentrations of organic matter in the form of Lower Devonian calcareous black shales and hornfels. These rocks together with the younger intrusion of Longxianggai granite (91DŽ Ma) actively participated in the formation of Sn-polymetallic deposits. The following three major stages have been distinguished in stratiform and vein-type orebodies at Dafulou, Huile and Kangma: stage I (cassiterite, pyrrhotite, arsenopyrite, tourmaline, carbonate), stage II - main sulfide stage (quartz, cassiterite, arsenopyrite, pyrrhotite, sphalerite, stannite, pyrite, carbonates) and stage III (native Bi, galena, electrum, sulfosalts). Stage IV (post-ore), recognized at Huile is represented by barren carbonates and zeolites. Whole rock geochemistry has revealed that at Dafulou, Bi and Cu correlate strongly with S, whereas V and Pb correlate well with Corg (organic carbon). The similar distribution patterns of selected elements in average slightly mineralized low-Ca black shales indicate a fluid composition similar for all deposits studied. Studies of graphitization of the organic matter in black shales adjacent to orebodies indicate that d(002) and FWHM (full width in half maximum)/peak height values gradually decrease in the following sequence: Dafulou deposit M Kangma deposit M Huile deposit. The pyrolysate of wall rocks at the Dafulou deposit is relatively enriched in asphaltenes and maltenes (55.6-72.0% of the pyrolysate) comparable with pyrolysate obtained from more distal black shales (19.2-28.5%). Typical GC-MS spectra of pyrolysate from distal black shales are dominated by alkanes in the n-C15 to n-C25 range, aromatic molecules being represented mostly by alkyl-naphthalenes. In contrast, only traces of aliphatic hydrocarbons in the n-C14 to n-C18 range and elemental sulfur were identified in pyrolysates from pyrrhotitized wall rocks. The earliest fluid inclusions of the studied system occur in the quartz-tourmaline-cassiterite assemblage of stage I at Dafulou. These inclusions are H2O-CO2-CH4-rich, with 10 to 20 vol% of aqueous phase. P-T conditions of the trapping of inclusions are estimated to be up to 400 °C and 1.3 to 2.0 kbar (between 5.0 and 7.5 km under lithostatic pressure). In contrast, the presence of a low density gaseous CO2-CH4 phase indicates relatively low pressures during the formation of the breccia-type quartz-calcite-cassiterite-sulfide mineralization (stage II), when P-T conditions probably reached approx. 380 to 400 °C and 0.6 kbar (up to 6 km under hydrostatic pressure). Fluid inclusion data and oxygen isotope thermometry indicate that cassiterite-sulfide ores of the main sulfide stage (stage II) formed from aqueous-carbonic fluid (CO2/CH4 =ᄺ) at temperatures of up to 390 °C at Dafulou and in a temperature range of 250 to 360 °C at Huile and 260 to 370 °C at Kangma. The '34S values of sulfides from Dafulou range mostly between -1 and -6‰, whereas sulfides from the Kangma and Huile deposits are characterized by more negative '34S values (between -8 and -11‰, and between -9 and -12‰, respectively). These data suggest that bacteriogenic sulfides of black shales were a dominant source of reduced sulfur for epigenetic (vein and replacement) mineralization. Oxygen isotopic compositions of five quartz-cassiterite pairs from Dafulou and Huile show a relatively narrow range of calculated oxygen isotope temperatures (250-320 °C, using the equation of Alderton 1989) and high '18Ofluid values between +8 and +10‰ (SMOW), which are in agreement with fluid derivation from and/or high temperature equilibration with the Longxianggai granite. The carbon and oxygen isotope composition of carbonates reflects variable carbon sources. Stage I calcite is characterized by narrow ranges of '13C (-7.0 to -9.5‰ PDB) and '18O (+15.0 to +17.5‰ SMOW). This calcite shows ubiquitous deformation, evidenced by intense development of twins. Fluid compositions calculated at 330 °C for the Dafulou and Huile deposits and at 270-300 °C for the Kangma deposit ('18Ofluid between +10.0 and +11.5‰ SMOW, '13Cfluid between -5.5 and -7.5‰ PDB), agree with fluid derivation from and/or equilibration with the peraluminous, high-'18O Longxianggai granite and suggest a significant influence of contact metasedimentary sequences (carbon derived from decomposition and/or alteration of organic matter of calcareous black shales). The '13 C values of organic matter from the Lower to Upper Devonian host rocks at the Dafulou deposit (-24.0 and -28.0‰) fit with a marine origin from algae. However, organic matter adjacent to the host rock-ore contact displays a slight enrichment in 13C. The organic carbon from the Huile and Kangma deposits is even more 13C enriched (-24.6 to -23.5‰). The most heavy '13 C values (-16.5‰) were detected in hornfels sampled at the contact of the Upper Devonian sediments with the Longxianggai granite. The '13C data broadly correlate with the degree of structural ordering (degree of graphitization) of organic matter, which indicates that both variables are related to thermal overprint.  相似文献   

9.
A suite of mantle peridotite xenoliths from the Malaitan alnoitedisplay both trace element enrichment and modal metasomatism.Pargasitic amphibole is present in both garnet- and spinelbearingxenoliths, formed by reaction of a metasomatic fluid (representedby H2O and Na2O) with the peridotite assemblage. Two pargasite-formingreactions are postulated, whereby spinel is totally consumed: 6MgAl2O4 + 8CaMgSi2O6 + 7Mg2Si2O6 + 4H2O + 2Na2O = 4NaCa2Mg4Al3Si6O12(OH)2+ 6Mg2SiO4 or spinel is both a reactant (low Cr) and a product (high Cr): 24MgAlCrO4 + 16CaMgSi2O6 + 14Mg2Si2O6 + 8H2O + 4Na2O = 8NaCa2Mg4Al3Si6O12(OH)2+ 12MgCr2O4 + 12Mg2SiO4 Seven garnet—spinel-peridotites display cryptic metasomatismas demonstrated by the LREE enrichment in clinopyroxenes. TheLREE enrichment correlates positively with 143ND/144ND (0?512771–0?513093)which defines a mixing line between a mantle MORB source anda metasomatic fluid. Isotopic evidence (Sr and Nd) from garnet,clinopyroxene, and amphibole demonstrate this fluid has notoriginated in the alnoite sensu stricto. Calculated amphiboleequilibrium liquids show a range in La/Yb and Ce/Yb ratios similarto those calculated for the augite and subcalcic diopside megacrysts.Sr and Nd isotope analyses from amphibole are within error ofthe augite (PHN4074) and subcalcic diopside megacrysts (CRN2I6,PHN4069, and PHN4085). It is concluded that fluids emanatedfrom a proto-alnoite magma throughout megacryst fractionation,and the mixing line was generated during the crystallizationof the subcalcic diopsides. This study demonstrates that metasomatismrepresented in these xenoliths is not a prerequisite for alnoitemagmatism, but is a consequence of it.  相似文献   

10.
In Central Dronning Maud Land, East Antarctica, rare metre-sizedlenses of spinel peridotite are enclosed in high-grade metamorphicrocks. The rocks experienced a medium-P granulite-facies metamorphismat 575 Ma and a low-P amphibolite-facies overprint at 530 Ma.The latter is probably related to extensive granitoid magmatismbetween 530 and 500 Ma, which produced large volumes (abouthalf of the outcrops today) of granitic to syenitic rocks aswell as abundant K-feldspar–quartz pegmatites. One ofthe spinel peridotite lenses in the Schirmacher Oasis of CentralDronning Maud Land is crosscut by several small (up to 10 cmwide) veins with a characteristic zoned sequence of mineralassemblages, which was formed by reaction of a hydrous, SiO2-saturatedfluid or pegmatitic melt with the peridotite. The zoned sequenceconsists of the following mineral assemblages (from the centreof the vein towards the outer margin): zone 0, plagioclase +quartz; zone 1, green biotite intergrown with zircon + clinoamphibole;zone 2, cummingtonite + dark brown biotite intergrown with rutile+ clinoamphibole; zone 3, cummingtonite + light brown biotite+ spinel; zone 4, olivine + orthopyroxene + spinel ±clinopyroxene (unaltered peridotite). This sequence was investigatedwith respect to its conditions of formation, modal mineralogy,mineral chemistry, fluid inclusions, and oxygen and hydrogenisotope compositions of selected minerals. Based on the stabilityof cummingtonite and on equilibrium calculations in the MgO–SiO2–H2Osystem and on quartz–biotite oxygen isotope thermometry,the reaction vein formed at 650°C, which is in accord withtypical pegmatite crystallization temperatures. The pegmatiteof zone 0 is interpreted to have formed in an open fissure whereas,on textural grounds, zone 3 replaces former peridotite. On thebasis of mass balance constraints, the boundary between zones1 and 2 is interpreted to approximately represent the formerboundary between peridotite and the open fissure before reaction.Oxygen isotope systematics show that the infiltrating fluidhad an isotopic composition of 9–10 SMOW. All mineralsof the reaction vein with the exception of the inherited spineland olivine in the adjacent peridotite are in equilibrium withsuch a fluid. Spinel in the peridotite is depleted in 18O comparedwith coexisting olivine, which suggests isotopic disequilibrium.Spinel in zone 3 has a distinctly different isotopic compositioncompared with that in the peridotite, apparently approachingbut not reaching equilibrium. The combination of mineral chemistryand mass balance constraints of the modal mineralogy constrainsthe volume change during metasomatism and the direction of elementaldiffusion. It is indicated that Mg, Cr and Ni always diffusedtowards the vein, whereas Si, Al, K, Na, H2O and possibly Fediffused into the peridotite. KEY WORDS: peridotite; metasomatism; pegmatite; diffusion; reaction  相似文献   

11.
The ultrahigh-temperature (UHT) metamorphism of the Napier Complex is characterized by the presence of dry mineral assemblages, the stability of which requires anhydrous conditions. Typically, the presence of the index mineral orthopyroxene in more than one lithology indicates that H2O activities were substantially low. In this study, we investigate a suite of UHT rocks comprising quartzo-feldspathic garnet gneiss, sapphirine granulite, garnet-orthopyroxene gneiss, and magnetite-quartz gneiss from Tonagh Island. High Al contents in orthopyroxene from sapphirine granulite, the presence of an equilibrium sapphirine-quartz assemblage, mesoperthite in quartzo-feldspathic garnet gneiss, and an inverted pigeonite-augite assemblage in magnetite-quartz gneiss indicate that the peak temperature conditions were higher than 1,000 °C. Petrology, mineral phase equilibria, and pressure-temperature computations presented in this study indicate that the Tonagh Island granulites experienced maximum P-T conditions of up to 9 kbar and 1,100 °C, which are comparable with previous P-T estimates for Tonagh and East Tonagh Islands. The textures and mineral reactions preserved by these UHT rocks are consistent with an isobaric cooling (IBC) history probably following an counterclockwise P-T path. We document the occurrence of very high-density CO2-rich fluid inclusions in the UHT rocks from Tonagh Island and characterize their nature, composition, and density from systematic petrographic and microthermometric studies. Our study shows the common presence of carbonic fluid inclusions entrapped within sapphirine, quartz, garnet and orthopyroxene. Analysed fluid inclusions in sapphirine, and some in garnet and quartz, were trapped during mineral growth at UHT conditions as 'primary' inclusions. The melting temperatures of fluids in most cases lie in the range of -56.3 to -57.2 °C, close to the triple point for pure CO2 (-56.6 °C). The only exceptions are fluid inclusions in magnetite-quartz gneiss, which show slight depression in their melting temperatures (-56.7 to -57.8 °C) suggesting traces of additional fluid species such as N2 in the dominantly CO2-rich fluid. Homogenization of pure CO2 inclusions in the quartzo-feldspathic garnet gneiss, sapphirine granulite, and garnet-orthopyroxene gneiss occurs into the liquid phase at temperatures in the range of -34.9 to +4.2 °C. This translates into very high CO2 densities in the range of 0.95-1.07 g/cm3. In the garnet-orthopyroxene gneiss, the composition and density of inclusions in the different minerals show systematic variation, with highest homogenization temperatures (lowest density) yielded by inclusions in garnet, as against inclusions with lowest homogenization (high density) in quartz. This could be a reflection of continued recrystallization of quartz with entrapment of late fluids along the IBC path. Very high-density CO2 inclusions in sapphirine associated with quartz in the Tonagh Island rocks provide potential evidence for the involvement of CO2-rich fluids during extreme crustal temperatures associated with UHT metamorphism. The estimated CO2 isochores for sapphirine granulite intersect the counterclockwise P-T trajectory of Tonagh Island rocks at around 6-9 kbar at 1,100 °C, which corresponds to the peak metamorphic conditions of this terrane derived from mineral phase equilibria, and the stability field of sapphirine + quartz. Therefore, we infer that CO2 was the dominant fluid species present during the peak metamorphism in Tonagh Island, and interpret that the fluid inclusions preserve traces of the synmetamorphic fluid from the UHT event. The stability of anhydrous minerals, such as orthopyroxene, in the study area might have been achieved by the lowering of H2O activity through the influx of CO2 at peak metamorphic conditions (>1,100 °C). Our microthermometric data support a counterclockwise P-T path for the Napier Complex.  相似文献   

12.
GREEN  D. H. 《Journal of Petrology》1964,5(1):134-188
The Lizard peridotite produced a high-temperature metamorphicaureole during diapirie emplacement in a period of amphibolitefacies regional metamorphism. The peridotite preserves a coarse-grainedprimary core within a cataclastic, finely foliated and recrystallizedmarginal shell. Chemical analyses demonstrate the constancyof rock composition in the primary and recrystallized mineralassemblages. The primary mineral assemblage of the peridotiteconsists of olivine (Fo89), aluminous enstatite, aluminous diopside,and green aluminous spinel. In contrast the mineral assemblageon recrystallization is olivine, enstatite (normal Al2O3 content),diopside (normal Al2O3 content), plagioclase, and brown chromite.A third assemblage of olivine, pargasite, and brown chromianspinel is developed locally from the plagioclase-bearing assemblage,particularly in contact areas. Major and trace element analyses of twenty minerals and eightrocks are given. These are compared in detail with peridotitesand minerals occurring as accumulates from basaltic magma, asperidotite nodules in basalts and as ’intrusive' peridotitesin orogenic areas. It is concluded that the primary mineralsof the Lizard peridotite have not crystallized and accumulatedfrom a basaltic magma but have crystallized in a similar environmentto that of peridotite nodules in basalts. It is further concludedthat the cause of the differences between the primary and recrystallizedassemblages of the peridotite is primarily a difference in loadpressure at crystallization. In particular the high aluminacontent of both enstatite and diopside and the coexistence ofpyroxenes+ aluminous spinel instead of olivine+anorthite areconsidered to be a direct consequence of the high load pressureat the initial crystallization of the peridotite.  相似文献   

13.
Several types of anhydrite-bearing rocks have been found in the amphibolite-facies metamorphosed rocks at the north-eastern margin of the Moldanubian Zone. Anhydrite either forms monomineralic bands up to 40 cm thick, or occurs in the form of disseminated grains in surrounding calc-silicate gneiss together with feldspar, scapolite, amphibole, pyroxene, epidote and pyrite. The isotopic composition of sulphur ('34S=30.6 to 32.3‰) and strontium (87Sr/86Sr=0.70797 to 0.70781) in anhydrite may indicate a marine source of sulphate. The isotopic ratio of strontium is in the same range as that of metamorphosed strata-bound barite-sulphide ores, which have been previously described in the same area. The '34S values of coexisting pyrite range from 21.4 to 22.5‰, the (34Sanhydrite-pyrite corresponding to the metamorphic temperature of 600 to 660 °C. In contrast to many submarine-exhalative deposits, the oxygen isotopic compositions of anhydrite ('18O=9.3 to 10.2‰) are lighter than that of barite ('18O=10.4 to 13.8‰). This indicates that the both minerals are not in isotopic equilibrium. Therefore, it is probable that anhydrite and barite from the Ro—ná district were deposited from fluids that contained different proportions of seawater and hydrothermal fluids or from hydrothermal fluids that underwent variable extent of oxygen isotope exchange with seafloor rocks. The '13C values in calcite ('13C=-17.2 to -18.7‰) from anhydrite-bearing rock are lower than those in distant marbles. As graphite is absent in anhydrite- and calcite-bearing rocks, impoverishment in the 13C isotope cannot be attributed to the graphite-carbonate isotopic exchange during metamorphism. It is proposed that low '13C values in carbonates are caused by pre-metamorphic oxidation of organic matter in course of hydrothermal processes. Anhydrite and anhydrite-bearing calc-silicate gneiss from the north-eastern part of the Moldanubian Zone are interpreted to be the high-grade metamorphosed analogue of anhydrite-rich exhalites commonly found in submarine-exhalative hydrothermal deposits.  相似文献   

14.
Distribution of Ferric Iron in some Upper-Mantle Assemblages   总被引:16,自引:5,他引:11  
The distribution of ferric iron among the phases of upper-mantlerocks, as a function of pressure (P), temperature (T) and bulkcomposition, has been studied using 57Fe Mssbauer spectroscopyto determine the Fe3+/Fe ratios of mineral separates from 35peridotite and pyroxenite samples. The whole-rock Fe3+ complementof a peridotite is typically shared approximately evenly amongthe major anhydrous phases (spinel and/or garnet, orthopyroxeneand clinopyroxene), with the important exception of olivine,which contains negligible Fe3+. Whole-rock Fe3+ contents areindependent of the T and P of equilibration of the rock, butshow a well-defined simple inverse correlation with the degreeof depletion in a basaltic component. Fe3+ in spinel and inboth pyroxenes from the spinel Iherzolite facies shows a positivecorrelation with temperature, presumably owing to the decreasein the modal abundance of spinel. In garnet peridotites, theFe3+ in garnet increases markedly with increasing T and P, whereasthat in clinopyroxene remains approximately constant. The complexnature of the partitioning of Fe3+ between mantle phases resultsin complicated patterns of the activities of the Fe3+ -bearingcomponents, and thus in calculated equilibrium fO2, which showlittle correlation with whole-rock Fe3+ or degree of depletion.Whether Fe3+ is taken into account or ignored in calculatingmineral formulae for geothermobarometry can have major effectson the resulting calculated T and P. For Fe-Mg exchange geothermometers,large errors must occur when applied to samples more oxidizedor reduced than the experimental calibrations, whose fO2 conditionsare largely unknown. Two-pyroxene thermometry is more immuneto this problem, and probably provides the most reliable P—Testimates. Accordingly, the convergence of P—T valuesderived for a given garnet peridotite assemblage may not necessarilybe indicative of mineral equilibrium. The prospects for thecalculation of accurate Fe3+ contents from electron microprobeanalyses by assuming stoichiometry are good for spinel, uncertainfor garnet, and distinctly poor for pyroxenes. KEY WORDS: mantle; oxidation; partitioning; peridotite; thermobarometry *Corresponding author. Present address: School of Earth and Ocean Sciences, University of Victoria, P.O. Box 1700, Victoria, B.C., V8W 2Y2, Canada  相似文献   

15.
A detailed petrological analysis of the marble assemblages observed within the M2 metamorphic complex on Naxos is presented. Two distinct periods of mineral growth are documented; the first is associated with prograde M2 metamorphism and the second with retrograde M2 metamorphism occurring during ductile extensional thinning of the complex. The textural and miner-alogical characteristics and the carbon and oxygen isotope compositions of each generation are described, and the P-T-X CO 2 conditions at which these two mineral generations were stable, and the compositions of the fluids present during metamorphism are characterised. Whereas the low variance and stable isotope compositions of prograde siliceous dolomite assemblages are consistent with internally buffered fluid evolution, the retrograde mineral generation is shown to have grown as a result of the infiltration of a water-rich fluid phase that transported silica, Al2O3, Na2O and FeO into the host rocks. This observation, together with the stable isotope compositions of the retrograde calcite, and the fact that occurrences of veins of this type are limited to marbles in the highest grade areas (T>600° C) of the metamorphic complex, suggests that the fluids responsible for vein formation were generated during the crystallisation of melts as the metamorphic complex cooled from peak temperatures. The existence of this second generation of minerals has significant implications for previous studies of heat transport by fluid flow on Naxos, because many of the unusually low 18O compositions of pelites at high grades may be ascribable to the effects of interaction with retrograde M2 fluids, rather than with prograde fluids.  相似文献   

16.
Experimental Melting of Carbonated Peridotite at 6-10 GPa   总被引:2,自引:0,他引:2  
Partial melting of magnesite-bearing peridotites was studiedat 6–10 GPa and 1300–1700°C. Experiments wereperformed in a multianvil apparatus using natural mineral mixesas starting material placed into olivine containers and sealedin Pt capsules. Partial melts originated within the peridotitelayer, migrated outside the olivine container and formed poolsof quenched melts along the wall of the Pt capsule. This allowedthe analysis of even small melt fractions. Iron loss was nota problem, because the platinum near the olivine container becamesaturated in Fe as a result of the reaction Fe2SiO4Ol = FeFe–Ptalloy + FeSiO3Opx + O2. This reaction led to a gradual increasein oxygen fugacity within the capsules as expressed, for example,in high Fe3+ in garnet. Carbonatitic to kimberlite-like meltswere obtained that coexist with olivine + orthopyroxene + garnet± clinopyroxene ± magnesite depending on P–Tconditions. Kinetic experiments and a comparison of the chemistryof phases occasionally grown within the melt pools with thosein the residual peridotite allowed us to conclude that the meltshad approached equilibrium with peridotite. Melts in equilibriumwith a magnesite-bearing garnet lherzolite are rich in CaO (20–25wt %) at all pressures and show rather low MgO and SiO2 contents(20 and 10 wt %, respectively). Melts in equilibrium with amagnesite-bearing garnet harzburgite are richer in SiO2 andMgO. The contents of these oxides increase with temperature,whereas the CaO content becomes lower. Melts from magnesite-freeexperiments are richer in SiO2, but remain silicocarbonatitic.Partitioning of trace elements between melt and garnet was studiedin several experiments at 6 and 10 GPa. The melts are very richin incompatible elements, including large ion lithophile elements(LILE), Nb, Ta and light rare earth elements. Relative to theresidual peridotite, the melts show no significant depletionin high field strength elements over LILE. We conclude fromthe major and trace element characteristics of our experimentalmelts that primitive kimberlites cannot be a direct productof single-stage melting of an asthenospheric mantle. They rathermust be derived from a previously depleted and re-enriched mantleperidotite. KEY WORDS: multianvil; carbonatite melt; peridotite; kimberlite; element partitioning  相似文献   

17.
FROST  RONALD 《Journal of Petrology》1975,16(2):272-313
The 2 km wide contact aureole produced from serpentinite bythe intrusion of the Mount Stuart Batholith into the IngallsComplex at Paddy-Go-Easy Pass contains the following ultramaficassemblages, in order of increasing grade: serpentine-forsterite-diopside,serpentine-forsterite-tremolite, forsterite-talc, forsterite-anthophyllite,forsterite-enstatite-anthophyllite, forsterite-enstatite-chlorite,forsterite-enstatite-spinel. Associated metarodingites displayfive metamorphic zones, the diagnostic assemblages of whichare, in increasing grade: grossular-idocrase-chlorite, grossular-diopside-chlorite,epidote-diopside-chlorite, epidotediopside-spinel, plagioclase-grossular-diopside.Mafic hornfels in the aureole contains no orthopyroxene, indicatingthat the conditions of pyroxene hornfels facies were not reached. The breakdown of chlorite is best displayed in aluminous blackwallreaction zones around mafic inclusions in the peridotite. Attemperatures above those of the anthophyllite-out isograd, butwithin the field of forsterite+tremolite, these chlorite-richrocks react to form the assemblage: forsterite-enstatite-spinel.Calculations show that cordierite did not form as a result ofchlorite breakdown in the natural system because impurities,such as iron and chromium, displaced the equilibrium: forsterite+cordierite= enstatite+spinel to much lower pressures than the three kilobarsfound in the pure system. The primary chromite of the peridotite has been altered to chrome-magnetitein the serpentinite. This alteration seems to be isochemicalover the whole rock, as true chromite, formed by metamorphism,occurs at grades above that of the forsterite-enstatite-anthophylliteassemblage. Calcic amphibole in high-grade metaperidotite is tremolite,even in the presence of aluminous chromite, whereas that inmetamorphosed blackwall rock grades from tremolite into hornblende.The pattern of substitution appears to be: Mg2Si3rlhar2;(Na,K)(AlVI)2(AlIV)3.  相似文献   

18.
A large number of Variscan mesothermal gold deposits are located in the central part of the Bohemian Massif, close to the Central Bohemian Plutonic Complex. The Petrá)kova hora deposit has many features that distinguish it from other deposits in the region and suggest its mineralization is closely related to the late magmatic processes associated with the Petrá)kova hora granodiorite. The gold ores occur as sheeted arrays of quartz veins and veinlets hosted by the small Petrá)kova hora granodiorite stock. Gold is found mainly as free grains of >900 fineness, and is accompanied by abundant pyrrhotite and chalcopyrite, and accessory pyrite, arsenopyrite, loellingite, and molybdenite. Molybdenite from the Petrá)kova hora deposit has been dated by the Re-Os method at 344.4DŽ.8 Ma. Hydrothermal alteration in the Petrá)kova hora deposit exhibits a distinct temporal paragenesis. Selectively pervasive, early K-alteration and silicification are the oldest hydrothermal phases. These were followed by early quartz veins (Q1 to Q4) that contain most of the gold mineralization. Late quartz veins (Q5) and fracture-controlled silicification are gold-poor or barren. Barren calcite veins are the youngest hydrothermal product. Extensive low-temperature, meteoric-water dominated alteration, as is typical of classic porphyry deposits, is absent. However, the lower '18O whole rock values for Petrá)kova hora granodiorite and aplite (+2.4 to +5.1‰ SMOW) compared to other intrusions in the region reflect either interaction with isotopically light external fluids or magma assimilation of small volumes of hydrothermally altered country rock. The '18O isotopic compositions for quartz, scheelite and hornblende (7.7 to 13.4‰ SMOW) and the '34S compositions for sulfide minerals (-1 to +3.5‰ CDT) from early, gold-rich quartz veins indicate formation at high temperatures (590 to 400 °C) from fluids with a magmatic isotopic signature ('18OFLUID of 5.7 to 7.2‰). Fluids related to late quartz veins (Q5) suggest the presence of a significant component of non-magmatic water ('18OFLUID: +2.5 to +4.0‰). The '34S values of post-Q5 sulfide minerals (-4.5 to -3.5‰) reflect at least partial derivation of late-stage sulfur from a source external to the intrusions. Aqueous, aqueous-carbonic and nitrogen-bearing fluid inclusions were identified in hydrothermal and igneous quartz, with the aqueous inclusions being the most common. In hydrothermal vein quartz, the salinity of primary aqueous inclusions falls into ranges 6 to 23 and 33 to 41 equiv. wt% NaCl; in igneous quartz, populations in salinity were observed between 5 to 16, 35 to 40 and 62 to 70 equiv. wt% NaCl. The salt component of these fluids is best, and minimally, approximated by the NaCl-KCl-CaCl2 system. Low- and high-salinity aqueous-carbonic inclusions are accessory in many of the analyzed samples. Three large successive pulses of fluids are recognized. Each pulse begins with a high-salinity (>30 equiv. wt% NaCl) magmatic fluid and evolves toward a lower salinity (~5 equiv. wt% NaCl) fluid. Data suggest that external (meteoric?) water(s) were significant for only the third fluid pulse, which formed the late Q5 quartz veins and the calcite veins. Polyphase fluid inclusions hosted by igneous quartz of the Petrá)kova hora granodiorite indicate minimum trapping conditions of about 3 kbar and 550 °C. The gold-rich Q1 to Q4 veins may have formed along a quasi-isobaric cooling path at 2.5 to 1.5 kbar and 590 to 400 °C. This was followed by uplift, and formation of late Q5 quartz veins (0.5 to 1.5 kbar; ~300 °C) and post-ore calcite veins (<0.5 kbar; 100 to 140 °C). The characteristics of the Petrá)kova hora deposit suggest that it may represent a position intermediate between intrusion-related gold systems (e.g., Fort Knox deposit, Alaska) and gold-rich, copper-poor porphyry deposits (e.g., Maricunga Belt in Chile). As such, the Petrá)kova hora deposit might be an example of the reduced gold sub-type of porphyry deposit.  相似文献   

19.
On Silica Activity and Serpentinization   总被引:10,自引:0,他引:10  
Serpentinites have the lowest silica activity of common crustalrocks. At the serpentinization front, where olivine, serpentine,and brucite are present, silica activities (relative to quartz)are of the order of 10–2·5 to 10–5, dependingon the temperature. Here we argue that this low silica activityis the critical property that produces the unusual geochemicalenvironments characteristic of serpentinization. The formationof magnetite is driven by the extraction of silica from theFe3Si2O5(OH)4 component of serpentine, producing extremely reducingconditions as evinced by the rare iron alloys that partiallyserpentinized peridotites contain. The incongruent dissolutionof diopside to form Ca2+, serpentine, and silica becomes increasinglyfavored at lower T, producing the alkalic fluids characteristicof serpentinites. The interaction of these fluids with adjacentrocks produces rodingites, and we argue that desilication isalso part of the rodingite-forming process. The low silica activityalso explains the occurrence of low-silica minerals such ashydrogrossular, andradite, jadeite, diaspore, and corundum inserpentinites or rocks adjacent to serpentinites. The tendencyfor silica activity to decrease with decreasing temperaturemeans that the presence of certain minerals in serpentinitescan be used as indicators of the temperature of serpentinization.These include, with decreasing temperature, diopside, andraditeand diaspore. Because the assemblage serpentine + brucite marksthe lowest silica activity reached in most serpentinites, thepresence and distribution of brucite, which commonly is a crypticphase in serpentinites, is critical to interpreting the processesthat lead to the hydration of any given serpentinite. KEY WORDS: serpentinization; serpentinites; silica activity; oxygen fugacity; rodingites; magnetization of serpentinites  相似文献   

20.
O18/O16 and C12/C13 ratios have been determined for carbonaterocks and coexisting minerals from two contact metamorphic aureolesat Birch Creek, California and Marble Canyon, Texas. The peliticmetasediments and granitic intrusions of the Birth Creek localitywere also analyzed for their O18/16 and D/H ratios. Oxygen andcarbon isotope fractionations in coexisting dolomite and calciteare interrelated but show no obvious correlation with sampledistance from the intrusive contact. Small-scale oxygen isotopicexchange effects between rock units are observed within a fewfeet of the intrusive-country rock contacts and the marble-schistcontacts at Birch Creek. Oxygen isotopic temperatures obtainedfrom quartz—biotite fractionations in the biotite schistsof Birch Creek show a systematic decrease with increasing distanceaway from the intrusive contact; the isotopic contact temperatureis calculated to be 535–45°C. Low O18/16 and C13/12ratiosof the contact metamorphic marbles generally correlate wellwith presence of calc-silicate minerals, indicating that theCO2 liberated during metamorphic decarbonation reactions isenriched in both O18and C12 relative to the carbonates. Materialbalance calculations indicate that the liberated CO2 is about5 per mille richer in O18 and about 6 per mille richer in C13than coexisting calcite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号