共查询到9条相似文献,搜索用时 0 毫秒
1.
本文以GPS技术为基础,在位于青藏高原北缘、古浪-海原断裂带的甘肃天视一带布设了现代地壳运动监测网,并完成了第一期观测。初步处理结果表明,GPS测量具有高精度,高效率等特点,可以成为监测现代地壳运动的最好方法之一。 相似文献
2.
基于“前兆台网(站)观测数据跟踪分析平台”,对武汉台形变观测资料进行了系统分析,提取出观测曲线受降雨干扰影响的事件,采用降雨总量、初始驱动降雨量和瞬时降雨量最大值等降雨参数对降雨干扰事件进行统计分析。结果表明:降雨总量达40 mm、初始驱动降雨量为0.3 mm或瞬时降雨量最大值达0.6 mm时,DSQ型水管倾斜仪易受降雨干扰;SSY型铟瓦棒伸缩仪当降雨总量超60 mm或瞬时降雨量最大值大于0.5 mm时易受降雨干扰;VS型垂直摆倾斜仪受降雨干扰与降雨总量、初始驱动降雨量和瞬时降雨量最大值无显著相关关系;降雨总量对形变仪器观测物理量的影响基本呈现线性;而形变仪器观测物理量与初始驱动降雨量、瞬时降雨量最大值无显著相关关系。认为武汉台形变观测受降雨影响主要来自降雨渗透影响和周边水体荷载变化影响两个方面。 相似文献
3.
4.
青藏高原植被变化与地表热源及中国降水关系的初步分析 总被引:4,自引:0,他引:4
利用设在青藏高原的5个自动气象站(AWS)近地层梯度观测资料、归一化植被指数(GIMMS NDVI)和中国624个台站月降水资料,初步分析了青藏高原植被变化与地表热源及中国降水的关系.结果表明:青藏高原植被与地表热源之间存在明显的正相关关系.高原西部感热与NDVI的正相关关系较高原东部显著,而高原东部地表潜热与NDVI的正相关关系则好于高原西部.植被改善后,各季节地表热源以增加为主,尤其夏季,热源增量最大;冬、春季感热对地表热源增量贡献较大,潜热贡献相对较小;夏、秋季感热与潜热对地表热源增量贡献同等重要.青藏高原植被与中国夏季降水相关系数从南到北,呈“+-+”带状分布.植被变化引起的高原地表加热异常可能是影响中国夏季降水的重要因子之一. 相似文献
5.
35年来青藏高原大气热源气候特征及其与中国降水的关系 总被引:69,自引:2,他引:69
用1961~1995年青藏高原及其邻近地区148个地面站月平均资料计算了35年的青藏高原大气热量源汇,并分析了它的气候特征及其和中国降水的关系.结果发现,平均而言,青藏高原大气热源最强在6月(为 78 W/m2)9冷源最强在12月份(为-72 W/m2);地面感热在高原西南部明显增加,造成 2月、 3月份高原西南部热量源汇增加最明显,使得3月份在喜马拉雅山北坡形成热源中心.此后该中心继续加强,并且有两次明显的向西移动,分别出现在4月和6月;东部大气变为热源的时间以及热源最强出现的时间都要比西南部晚1个月.夏季凝结游热成为和感热同样重要的加热因子,也是使夏季东部热源继续增强的主要因子.在年代际变化尺度上,1977年前后高原大气热量源汇明显具有突变特征,其后大气热量源汇显著增加.青藏高原春季热源对于随后的夏季中国江淮地区、华南地区和华北地区的降水有比较好的指示意义,而高原夏季热源与同期长江流域降水存在着明显的正相关. 相似文献
6.
北京MST雷达是子午工程建设的国内仅有的两部MST雷达之一,为研究其在中间层-低热层MLT区域的探测能力以及数据可靠性,本文应用北京MST雷达2012、2013两年高模式数据,从数据获取率、与廊坊流星雷达测风对比以及风场时空分布特征三个方面进行初步分析.结果是:(1)数据获取率日变化特征为:白天65~100km均可获取数据,数据获取率的高值区主要集中在70~80km,最大值可达80%;夜间主要集中在80~100km,数据获取率在30%及以下.表明该MST雷达白天可以探测到电离层D层和E层低层,夜间D层消失,只探测到E层低层.季节变化特征为:夏季白天可获取数据的时间和高度区间都比较大,春季次之,冬季最小.夏季白天以及日落后1h内可探测到120km.(2)对北京MST雷达与廊坊流星雷达2012年5月份、80~100km高度区间测量的水平风进行对比分析,二者测风结果在时空分布上有很好的一致性,表明MST雷达探测数据是可靠的.(3)2012年和2013年相应月份平均的纬向风、经向风时空分布特征有较高的一致性,并与HWM07模式结果也基本一致.上述初步分析结果表明,北京MST雷达对中间层-低热层60~120km高度区域已具备较强的探测能力,所得结果将可用于MLT过程揭示与驱动因子研究,并可与该高度上其他探测手段作综合研究. 相似文献
7.
为高分辨率气候模式检验等的需要,基于2400余个中国地面气象台站的观测资料,通过插值建立了一套0.25°×0.25°经纬度分辨率的格点化数据集(CN05.1).CN05.1包括日平均和最高、最低气温,以及降水4个变量.插值通过常用的"距平逼近"方法实现,首先将计算得到的气候平均场使用薄板样条方法进行插值,随后使用"角距权重法"对距平场进行插值,然后将两者叠加,得到最终的数据集.将CN05.1与CN05、EA05和APHRO三种日气温和降水资料(四种资料的分析时段统一为1961—2005年)进行对比,分析了它们对气候平均态和极端事件描述上的不同,结果表明几者总体来说在中国东部观测台站密集的地方差别较小,而在台站稀疏的西部差别较大,相差最大的是青藏高原北部至昆仑山西段等地形起伏较大而很少或没有观测台站的地方,反映了格点化数据在这些地区的不确定性,在使用中应予以注意. 相似文献
8.
骆遥 《中国科学:地球科学》2013,(8):1376-1378
康国发等[1]"青藏高原及邻区的地壳磁异常特征与区域构造"一文采用高阶地磁场模型NGDC-EMM-720-V3系统研究了青藏高原及邻区(24°~40°N,76°~108°E)的磁异常特征并分析与区域构造的一些对应关系.该文利用岩石圈磁场模型研究地质构造单元具有独特优势,但在使用岩石圈磁场模型时应对模型构建的局限性予以重视.NGDC- 相似文献
9.
感谢骆遥[1]对我们论文[2]的关注和直言不讳的意见,我们赞赏他严谨的科学态度.骆遥的主要意见是:在NGDC-720模型构建中,青藏高原中西部有100多万平方公里地区缺少航磁数据.论证了用此模型来研究整个青藏高原地区地壳磁异常特别是由地壳中、浅层物质引起的磁异常存在局限;指出在使用岩石 相似文献