首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
台风"森拉克"的数值模拟研究:海洋飞沫的作用   总被引:7,自引:0,他引:7  
台风作为一种在海洋上生成和演变的强烈天气现象,除了环境流场、自身结构以及地形等因子对它产生影响外,海气间的热量动量交换也是台风演变过程中不可或缺的因子。台风期间在海气界面生成大量海洋飞沫,这些飞沫在台风边界层的蒸发必然对海气之间的通量传输过程产生影响,进而影响到台风本身的演变。文章将海洋飞沫参数化引入大气中尺度模式中,对2002年16号台风“森拉克”的演变进行了数值模拟研究。结果表明,引入海洋飞沫参数化方案,可使台风期间海气界面的潜热通量增加50%,10m层风速最大值增加30%,从而使模拟台风的强度明显增加,使模拟结果更趋于合理。因此,在台风数值模拟和预报中考虑海洋飞沫的作用是十分必要的。  相似文献   

2.
本文以2006年9月日本以南海域的台风YAGI为例,应用黑潮延伸体附近的KEO浮标观测资料,并结合卫星遥感等融合资料,分析海洋飞沫在台风不同发展阶段对海气界面间热量通量和动量通量的影响。首先,定量地分析台风期间海洋飞沫对海气热通量的影响。结果表明,在台风YAGI过境期间,海洋飞沫能够显著地加剧海气界面间的热量交换,尤其是潜热交换。海洋飞沫增加的热通量随着风速的增强而增大,随着波龄的增大而减小。随后,通过动量分析表明,在台风YAGI过境期间,海洋飞沫显著地增强了由大气向海洋的动量转移。当风速达到台风量级后,考虑海洋飞沫所增加的动量通量与界面动量通量大小相当,同时,在此风速条件下,海洋飞沫在海气界面形成极限饱和悬浮层,抑制风到海表面的动量转移,导致海气界面间总的动量通量的增长率随之减小。  相似文献   

3.
将海洋飞沫参数化引入到一个高分辨率、非静力中尺度WRF模式中,对0908号热带气旋Morakot进行数值模拟,探讨了海洋飞沫对热带气旋Morakot边界层结构和强度的影响。模拟结果表明:采用新参数化后,对热带气旋Morakot的强度预报有改进,但对热带气旋移动路径改进不大;其次,通过对边界层过程的改进,使得眼墙区域的平均径向风速、切向风速、温度、相对湿度、垂直风速、热通量,降水等物理量均有增强,各物理量的贡献对热带气旋Morakot强度和结构变化的影响十分重要。  相似文献   

4.
基于2016-02-01—2016-05-21在南海博贺海洋气象观测平台观测的实验资料,首先利用整体空气动力学算法分别计算海气界面处感热通量与潜热通量,同时利用涡动相关法计算液滴蒸发层处总的感热通量与潜热通量。然后比较海气界面处热通量与液滴蒸发层处热通量的值,并利用差比法分别对2处感热通量和潜热通量进行做差计算。结果表明:液滴蒸发层处热通量与海气界面处热通量存在明显差异。通过与海洋飞沫引起的热通量值比较,结果表明液滴蒸发层处热通量与海气界面处热通量的差值由海洋飞沫作用引起;且在中低风速条件下,海洋飞沫引起的热通量与风速呈正相关;相比感热通量而言,潜热通量随着风速的变化更为显著。  相似文献   

5.
海洋飞沫参数化方案在台风数值模拟中的应用   总被引:3,自引:0,他引:3       下载免费PDF全文
海洋飞沫作为海气相互作用的重要因子, 在台风的发生、发展过程中扮演着重要角色.将Fairall和Andreas海洋飞沫参数化方案加入到WRF模式中对两个台风--"珊珊"、"桑美"进行了模拟, 以研究不同海洋飞沫参数化在WRF模式中对台风模拟效果的影响.结果表明, 加入Fairall方案后潜热通量、感热通量得到很大程度的加强, 使得台风的热力结构得以改变, 暖心结构十分明显, 从而影响了动力场结构.相对涡差解释了台风移动路径变化的原因, 热成散度、涡度以及水汽通量的改变影响了台风的强度.Andreas方案由于界面通量算法在考虑海表面动量粗糙度、热力粗糙度及水汽粗糙度随风速、相对湿度变化的情况下, 得到的潜热通量、感热通量较Fairall方案为弱, 因而台风的强度不强.飞沫参数化方案对模拟台风路径的影响较小.  相似文献   

6.
风浪和海洋飞沫对海表面拖曳系数和风廓线的影响   总被引:2,自引:1,他引:1  
基于埃克曼理论,本文将波致应力和飞沫应力引入到海-气边界层的界面应力中,来研究海表面风浪和海洋飞沫对海-气边界层动量交换的影响,并得到修改后的埃克曼模型的理论解。波致应力是由风浪谱和波增长函数估计,并得到在中低风速下,波致应力、飞沫应力与湍流应力相比,对海表面拖曳系数和风廓线的影响非常小。当风速高于25米/秒时,海洋飞沫通过飞沫应力对海-气界面应力的作用远高于波致应力,以至于波致应力可以忽略。海表面拖曳系数在高风速下,随着风速的增大而减小。通过采用风浪谱的不同波龄,得到海洋飞沫的产生会导致海-气边界层风速的增加。最后,理论解与现场的观察数据进行了对比。对比后的数据表明,在中高风速下,飞沫对海-气边界层的影响远大于表面风浪。  相似文献   

7.
Air–sea exchange plays a vital role in the development and maintenance of tropical cyclones(TCs). Although studies have suggested the dependence of air–sea fluxes on surface waves and sea spray, how these processes modify those fluxes under TC conditions have not been sufficiently investigated based on in-situ observations.Using continuous meteorological and surface wave data from a moored buoy in the northern South China Sea,this study examines the effects of surface waves and sea spray on air–sea fluxes during the passage of Typhoon Hagupit. The mooring was within about 40 km of the center of Hagupit. Surface waves could increase momentum flux to the ocean by about 15%, and sea spray enhanced both sensible and latent heat fluxes to the atmosphere,causing Hagupit to absorb 500 W/m~2 more heat flux from the ocean. These results have powerful implications for understanding TC–ocean interaction and improving TC intensity forecasting.  相似文献   

8.
采用中尺度大气模式MM5和区域海洋模式POM构造了中尺度海气耦合模式,利用该耦合模式模拟了台风Chanchu(2006)从热带低压发展到台风再逐渐衰减的全过程;再以该耦合试验作为对比试验,同时设计一个敏感性数值试验来考察海洋中暖涡对TC强度的影响。试验结果表明暖涡的存在并没有使得TC更快速增强,但抑制了TC的衰减,使得TC增强的时间延长,暖涡的存在使得TC增强,中心气压减少了15 hPa。分析表明,由于暖涡处的混合层很深,阻止了温跃层的冷水挟卷到混合层中,使得TC引起的海面降温较小,因此抑制了TC的衰减。  相似文献   

9.
本文应用高风速条件下海面动力粗糙度长度,拓展了COARE3.0块体通量算法,考虑高风速下,海洋飞沫对热通量的贡献。利用GSSTF3(Goddard Satellite-based Surface Turbulent Fluxes Version 3)遥感产品、GSSTF_NCEP(National Centers Environmental Prediction)再分析资料和浮标KEO实测数据,探讨了中国南海台风LEO和西北太平洋台风SOULIK期间湍流热通量的变化。研究结果表明:感热通量与潜热通量相比很小;台风的轨迹与潜热通量的分布密切相关且在台风轨迹的东偏北区域潜热通量数值大;在热带低压之前,原潜热通量与改进后潜热通量的差值即飞沫热通量很小,随着台风等级的增加,飞沫热通量也增加。当台风LEO达到最高即台风级别时原潜热通量达到300W/m2,飞沫热通量与原通量的比值高达12%,而台风SOULIK达到强台风级别时原潜热通量达到1000W/m2,飞沫热通量与原通量的比值达到20%,显著高于台风LEO,飞沫效应更明显。  相似文献   

10.
珠江口台风增水对热带气旋参数改变的反响   总被引:2,自引:0,他引:2  
通过计算,研究热带风暴中心气压下降示度、最大风速半径、热带气旋登陆地点,热带气旋登陆时的入射角、热带气旋移动速度度等参数改变条件下,珠江口5个测站风暴潮的变化,结果表明,各站的反响很不一致,在风暴潮预报中对地形的特点、热带气旋移动速度及热带气旋登陆地点等应给予足够的重视。  相似文献   

11.
本文以区域热带气旋模式(GRAPES-TCM)为基础,引入海洋环流模式(Estuarine,Coastal and Ocean Model(semi-implicit),ECOM-si)和Ocean Atmosphere Sea Ice Soil 3(OASIS3)耦合器,建立了一个区域海-气耦合模式。利用该模式对0414号热带气旋"云娜"进行了数值模拟,验证了模式的性能。结果表明,耦合模式模拟的"云娜"强度相比单独的大气模式更接近观测,单独大气模式模拟的近地面风场偏强,而耦合模式模拟的近地面风场的强度和非对称结构均与观测更为接近。数值实验中,"云娜"热带气旋过境引起的海表面温度的下降与实况接近,海表面温度下降引起的海-气热通量相比控制实验的结果明显下降,分析资料表明这一下降是合理的。海洋模式的引入导致了热带气旋"云娜"结构的变化,这种变化不但反应在径向风的减弱(强度下降),还反应在对流强度和最强对流发生位置的变化,并最终引起了热带气旋降水结构的改变。  相似文献   

12.
刘式适 《海洋预报》1997,14(4):1-10
本文从描写台风水平运动的基本方程组出发,利用流动稳定性及分岔和突变理论,建立了包含惯性,角动量及气压场等因子的非线性运动模型。  相似文献   

13.
建立一个改进的二层非线性原始方程海洋模式,研究海洋对热带气旋的响应。采用湍流动能收支参数化风应力产生的垂直混合(夹卷),其中考虑了盐度对层结强度的影响。通过海洋对7002号台风响应的数值模拟,结果表明,在引起海表温度下降的各热通量分量中,夹卷约占了83%,余下的海表面热通量占了17%。在台风路径转向的右侧,海洋出现强烈的降温,表现出明显的右偏性。降温的幅度、范围和形状均与观测结果较为一致。  相似文献   

14.
MM5模式在热带气旋模拟中的应用   总被引:4,自引:3,他引:4  
钟中  张金善  黄瑾 《海洋预报》2004,21(4):10-15
本文利用3重嵌套的中尺度非静力模式MM5系统,对热带气旋Winnie(1997)在我国登陆前后路径和强度演变进行了数值模拟。模拟结果表明,通过合理地选择Bogus的初始强度和模式启动时间,能较准确地模拟热带气旋登陆前后移动路径和强度演变,所选个例路径模拟误差仅为54.5km。  相似文献   

15.
运用澳大利亚大气海洋耦合预报模式(Predictive Ocean Atmosphere Model for Australia,POAMA)的输出结果,采用泰勒图与分类统计分析方法,评估了该模式对2003和2004年南海夏季风的爆发和演变进行实时预报的能力。通过对泰勒图的分析发现,随着预报初始时间越来越接近实际的季风爆发时间,模式预报南海夏季风爆发和演变的能力越来越强。当提前1-30d预报南海夏季风时,模式能够很好地预报风场、射出长波辐射OLR(Outgoing Longwave Radiation)和降水场的空间分布,其中对风场的预报最好。通过对季风爆发指数和分类统计的分析,定量分析了模式预报南海夏季风爆发的能力,结果表明该模式对南海夏季风爆发时间有一定的预报能力,其最大预报时限可以提前10-15d左右,这与目前中期预报的上限(2周)是一致的。  相似文献   

16.
本文利用1950—2000年全球月平均海表温度,计算分析海表温度与西北太平洋热带气旋频数之间的相关性,确定太平洋海表温度与西北太平洋热带气旋相关性好的海域作为预测模式的相关海区。从相关海区中选取代表格点海表温度资料构造出综合预测因子。利用综合预测因子建立一元线性和一元多项式非线性预测模式。经检验,两种模式预测效果较为理想。因此,利用太平洋海表温度与西北太平洋热带气旋频数的相关性建立预测模式作西北太平洋热带气旋频数预测是可行的。同时发现,经过以上方法建立的线性模式和非线性模式预测结果相差甚微,表明西北太平洋热带气旋频数与前一年太平洋某些海区海表温度经以上方法得到的综合预测因子之间线性相关性较为明显。  相似文献   

17.
根据1949—1992年南海热带气旋资料,分为厄尔尼诺年和非厄尔尼诺年,将南海划分成4个海区,采用灰色聚类方法,找出特征值N。然后,用这N值诊断厄尔尼诺和非厄尔尼诺年在南海的热带气旋对4个海区的影响程度。  相似文献   

18.
广西沿海热带气旋暴雨分析   总被引:1,自引:0,他引:1  
本文利用1954~1998年的资料,以统计分析的方法,对广西沿海热带气旋暴雨与热气旋生成地区、路径和天气形势的相互关系进行初步探讨,归纳出几点有价值的结论,这些结论将对广西沿海热带气旋暴雨预报有较大的帮助。  相似文献   

19.
热带气旋是夏季影响渤海的灾害性天气系统之一。其影响路径主要有三类,各类路径在影响时前期中高纬500hPa高空环流形势及夏季西太平洋副热带高压特征指数有显著差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号