首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The Koktokay No. 3 pegmatite is the largest Li–Be–Nb–Ta–Cs pegmatitic rare‐metal deposit of the Chinese Altai orogenic belt, and is famous for its concentric ring zonation pattern (nine internal zones). However, the formation age and evolution time span have been controversial. Here, we present the results of LA‐ICP–MS zircon U–Pb dating and muscovite 40Ar–39Ar dating. Four groups of zircon U–Pb ages (~210 Ma, ~193–198 Ma, ~186–187 Ma and ~172 Ma) for Zones II, V, VI, VII, and VIII, and a weighed mean 206Pb/238U age of 965 ± 11 Ma for Zone IV are identified. Also, Zones II, IV, and VI have muscovite 40Ar–39Ar plateau ages of 179.7 ± 1.1 Ma, 182.1 ± 1.0 Ma, and 181.8 ± 1.1 Ma, respectively. Considering previous U–Pb age studies (Zones I, V, and VII), the ages of emplacement, Li mineralization peak, hydrothermal stage of the No. 3 pegmatite are in ranges of 193–198 Ma, 184–187 Ma and 172–175 Ma, with weighted mean 206Pb–238U ages of 194.8 ± 2.3 Ma, 186.6 ± 1.3 Ma and 173.1 ± 3.9 Ma, respectively. The No. 3 pegmatite formed in the early Jurassic. The results of xenocrysts suggest that there is another pegmatite forming event of around 210 Ma in the mining district and the old zircon U–Pb ages imply that Neoproterozoic crustal rocks pertain to sources of the No. 3 pegmatite. Including the previous muscovite 40Ar–39Ar age studies (Zones I and V), a cooling age range of 177–182 Ma is considered as the time of hydrothermal stage and end of formation. The evolution process of the No. 3 pegmatite lasted 16 Ma. Therein, the magmatic stage continued for 9–11 Myr and the magmatic–hydrothermal transition and hydrothermal stages were sustained at 5–7 Ma. These time spans are long because of huge scale, cupola shape, large formation depth, and complex internal zoning patterns and formation processes. Considering some pegmatite dikes in the Chinese Altai, there is an early Jurassic pegmatite forming event.  相似文献   

2.
苏鲁仰口超高压岩石SHRIMP锆石U/Pb定年与部分熔融时限   总被引:5,自引:4,他引:1  
在大型碰撞造山带中,在陆壳物质深俯冲或快速折返早期,在超高压-高压条件下,易熔组分可能发生水致或脱水部分熔融,形成花岗质熔体。在超高压-高压条件下,苏鲁超高压岩石发生过部分熔融作用,形成长英质多晶体包裹体和不同尺度的花岗质岩石, 导致可观的地球化学效应。为确定苏鲁超高压岩石部分熔融的时限,对山东仰口超高压副片麻岩和其中平行片麻理的同构造钾质花岗岩脉进行了SHRIMP锆石U/Pb地质年代学、全岩地球化学和锆石内矿物包裹体的研究。副片麻岩的锆石具有典型的核-幔-边结构。核部锆石为碎屑锆石,206Pb/238U年龄大于282Ma,可能反映了副片麻岩的原岩包含不同成因的物质;幔部和边部的Th/U比都小于0.1,分别给出233±3Ma和214±4Ma的206Pb/238U 年龄,分别对应于超高压变质和角闪岩相退变质年龄。同构造花岗岩脉是富钾过铝质花岗岩(A/CNK=1.2),锆石也具有核-幔-边结构;核部锆石年龄与副片麻岩的核部锆石年龄相当,反映了该花岗岩脉的源区可能是变沉积岩;除幔部锆石的一个点具有206Pb/238U年龄为234.6±3.9Ma之外,其它幔部锆石位于谐和线附近,给出206Pb/238U年龄为220.8±2.9Ma, 该年龄代表着该花岗岩脉的形成年龄。上述数据表明,在仰口地区,超高压岩石的部分熔融作用早于角闪岩相退变质作用。  相似文献   

3.
ABSTRACT

Tongling, in eastern China, is an area well-known for intra-plate adakites. Here, we present the mineral chemistry and zircon U–Pb ages for amphibole cumulate xenoliths, the mineral chemistry of amphibole megacrysts, and the whole–rock chemistry, zircon U–Pb age and Sr–Nd isotopic compositions of host gabbros from Tongling. Zircon U–Pb dating yields a crystallization age of 120.6 ± 1.2 Ma (MSWD = 4.2) for the host gabbros, which are characteristically depleted in high field strength elements (Nb, Ta, and Ti) and enriched in large ion lithophile elements (Ba and Sr), with εNd (t) of ?3.00 to ?4.52 and initial 87Sr/86Sr ratios of 0.7068–0.7072, suggesting an enriched mantle source. Parental melts, as estimated from average amphibole megacryst and cumulate compositions, have Mg# values of 26–33, are enriched in Ba, Th, U, and Nd, and depleted in Nb, Ta, Zr, Hf, and Ti, similar to 136 Ma mafic magmas in Tongling. Zircon U–Pb dating yields a crystallization age of 135.4 ± 1.0 Ma (MSWD = 1.6) for the amphibole cumulates. It is concluded that the Tongling adakitic rocks were formed by polybaric crystallization involving early high-pressure intracrustal fractional crystallization of cumulates comprising hornblende and clinopyroxene, and late low-pressure fractional crystallization of hornblende and plagioclase phenocrysts. The flat subduction of Pacific plate and its subsequent foundering during the Cretaceous may have triggered the generation of extensive adakitic magmas and lithospheric thinning in the Lower Yangtze Region.  相似文献   

4.
The Tengchong-Lianghe tin district in northwestern Yunnan, China, is an important tin mineralization area in the Sanjiang Tethyan Metallogenic Domain. There are three N–S trending granite belts in the Tengchong-Lianghe area, with emplacement ages ranging from Early Cretaceous to Late Cretaceous and Early Cenozoic. Tin mineralization is spatially associated with these granitic rocks. However, the petrogenetic link between the tin deposits and the host granites is not clear because of the lack of age data for the tin mineralization. We investigate the possibility of direct dating of cassiterite from three typical tin deposits in the Tengchong-Lianghe tin district, using laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). In situ LA-MC-ICP-MS dating of seven cassiterite samples from the Lailishan (LLS-1 and LLS-2), Xiaolonghe (XLH, WDS, DSP, and HJS), and Tieyaoshan (TYS) tin deposits yielded well-defined 206Pb/207Pb–238U/207Pb isochron ages. To assess the accuracy of the in situ U/Pb dating of cassiterite, 40Ar/39Ar dating of coexisting muscovite (in samples LLS-1, DSP, and TYS) was also performed. The cassiterite in situ U/Pb ages (47.4?±?2.0, 71.9?±?2.3, and 119.3?±?1.7 Ma, respectively) are in excellent agreement with the coexisting muscovite 40Ar/39Ar ages (48.4?±?0.3, 71.9?±?1.4, and 122.4?±?0.7 Ma, respectively). The U/Pb ages of cassiterite combined with the 40Ar/39Ar ages of muscovite indicate that there are three tin mineralization events in this district: the Lailishan tin deposit at 47.4?±?2.0 to 52?±?2.7 Ma, the Xiaolonghe tin deposit at 71.6?±?2.4 to 3.9?±?2.0 Ma, and the Tieyaoshan tin deposit at 119.3?±?1.7 to 122.5?±?0.7 Ma. These ages are highly consistent with the zircon U/Pb ages of the host granites. It is su.ggested that the Cretaceous tin mineralization might have taken place in a subduction environment, while the Early Tertiary tin metallogenesis was in a postcollisional geodynamic setting.  相似文献   

5.
We introduce a potential new working reference material – natural zircon megacrysts from an Early Pliocene alkaline basalt (from Penglai, northern Hainan Island, southern China) – for the microbeam determination of O and Hf isotopes, and U–Pb age dating. The Penglai zircon megacrysts were found to be fairly homogeneous in Hf and O isotopes based on large numbers of measurements by LA-multiple collector (MC)-ICP-MS and SIMS, respectively. Precise determinations of O isotopes by isotope ratio mass spectrometry (IRMS) and Hf isotopes by solution MC-ICP-MS were in good agreement with the statistical mean of microbeam measurements. The mean δ18O value of 5.31 ± 0.10‰ (2s) by IRMS and the mean 176Hf/177Hf value of 0.282906 ± 0.0000010 (2s) by solution MC-ICP-MS are the best reference values for the Penglai zircons. SIMS and isotope dilution-TIMS measurements yielded consistent 206Pb/238U ages within analytical uncertainties, and the preferred 206Pb/238U age was found to be 4.4 ± 0.1 Ma (95% confidence interval). The young age and variably high common Pb content make the Penglai zircons unsuitable as a primary U–Pb age reference material for calibration of unknown samples by microbeam analysis; however, they can be used as a secondary working reference material for quality control of U–Pb age determination for young (particularly < 10 Ma) zircon samples.  相似文献   

6.
Geochronological studies of rocks from a bimodal high-alkali volcanic–plutonic complex collected in the area of Kharkhorin zone of the Early Mesozoic Mongolian–Transbaikalian igneous province (MTIP) are made. The age of alkali granites from Olziit sum is 211 ± 1 Ma (U–Pb ID-TIMS on zircon) to 209 ± 2 and 217 ± 4 Ma (40Ar/39Ar on alkali amphibole); the age of alkali granite-porphyries from the area of Sant sum is 206 ± 1 Ma (U–Pb ID-TIMS on zircon). These rock series formed syncronously to the analogous magmatism episode in the Northern Gobi and Western Transbaikalian rift zones of the MTIP. The similarity of the age and composition of igneous associations of the MTIP suggests a common mechanism of its formation related to the effect of a mantle plume on the continental lithosphere at the base of the entire igneous zone having a zonal structure.  相似文献   

7.
为了精确厘定莲花山铜矿的成矿时代,在前人研究的基础上,开展了与成矿关系密切的花岗闪长斑岩锆石U-Pb定年测定。实验结果共获得4组年龄数据,第1组有1个锆石,206Pb/238U年龄为343Ma±2Ma;第2组1个锆石,206Pb/238U年龄为264Ma±2Ma;第3组有1个锆石,206Pb/238U年龄为256Ma±2Ma;第4组有17个锆石,206Pb/238U年龄在240~249Ma之间,206Pb/238U年龄加权平均值为246.4Ma±1.2Ma(N=17)。结合所测锆石的CL图像特征,确定花岗闪长斑岩就位发生在晚二叠世—早三叠世。  相似文献   

8.
Correct interpretation of zircon ages from high-grade metamorphic terrains poses a major challenge because of the differential response of the U–Pb system to metamorphism, and many aspects like pressure–temperature conditions, metamorphic mineral transformations and textural properties of the zircon crystals have to be explored. A large (c. 450?km2) coherent migmatite complex was recently discovered in the Bohemian Massif, Central European Variscides. Rocks from this complex are characterized by granulite- and amphibolite-facies mineral assemblages and, based on compositional and isotopic trends, are identified as the remnants of a magma body derived from mixing between tonalite and supracrustal rocks. Zircon crystals from the migmatites are exclusively large (200–400?μm) and yield 207Pb/206Pb evaporation ages between 342–328?Ma and single-grain zircon fractions analysed by U–Pb ID-TIMS method plot along the concordia curve between 342 and 325?Ma. High-resolution U–Pb SHRIMP analyses substantiate the existence of a resolvable age variability and yield older 206Pb/238U ages (342–330?Ma, weighted mean age?=?333.6?±?3.1?Ma) for inner zone domains without relict cores and younger 206Pb/238U ages (333–320?Ma, weighted mean age?=?326.0?±?2.8?Ma) for rim domains. Pre-metamorphic cores were identified only in one sample (206Pb/238U ages at 375.0?±?3.9, 420.3?±?4.4 and 426.2?±?4.4?Ma). Most zircon ages bracket the time span between granulite-facies metamorphism in the Bohemian Massif (~345?Ma) and the late-Variscan anatectic overprint (Bavarian phase, ~325?Ma). It is argued that pre-existing zircon was variously affected by these metamorphic events and that primary magmatic growth zones were replaced by secondary textures as a result of diffusion reaction processes and replacement of zircon by dissolution and recrystallization followed by new zircon rim growth. Collectively, the results show that the zircons equilibrated during high-grade metamorphism and record partial loss of radiogenic Pb during post-peak granulite events and new growth under subsequent anatectic conditions.  相似文献   

9.
The Kalguty ore-magmatic system comprises two intrusive complexes: the Kalguty granite-leucogranite complex and Eastern Kalguty complex of dikes and small intrusions. U-Pb dating of individual zircon grains from granites of the main intrusive phase demonstrated that the crystallization age of small grains of magmatic habits and outer rims of large grains is almost concordant and is 216 ± 3 Ma. Ar-Ar isotope study shows that the K-Ar system of biotites from granites of the main phase within the Kalguty ore field was disturbed (radiogenic Ar was partially lost) and gave an age of 202 ± 1 Ma. The Ar-Ar dating of muscovites from intraore and postore dikes of the Eastern Kalguty complex devoid of signatures of postmagmatic recrystallization and superimposed greisenization gave similar ages of 205–201 Ma. This date is considered as the emplacement age of the Eastern Kalguty dikes and associated complex W-Mo-Bi-Be ore mineralization. Sm-Nd and Pb-Pb isotopic study of granites, ongonites, and elvans of the Kalguty ore-magmatic system and host rocks shows that these systems were closed. For example, recalculation of Nd isotopic ratios for corresponding ages of crystallization of magmatic systems (216 and 205 Ma) shows that ?Nd(T) values decrease from ?1.9 to ?3.5 ... ?5.08 with transition from granite-leucogranite to subvolcanic granite porphyry, ongonite, and elvan dikes with corresponding increase of model ages of protoliths from 1.0 to 1.25 Ga. Lead isotopic ratios for leaching residues of whole-rock samples of all rock varieties (206Pb/204Pb = 18.305–18.831; 207Pb/204Pb = 15.527–15.571) are plotted well below the line of average crustal lead evolution according to the Stacey-Kramers model.  相似文献   

10.
道伦达坝矿床位于大兴安岭南段,是一个铜钨锡矿床,其铜、钨、锡储量均达中型。矿体呈脉状,主要产于二叠系砂板岩中的断裂破碎带中,华力西期黑云母花岗岩中的断裂破碎带中亦赋存有矿体。文章选取2件石英-萤石-白云母-电气石-锡石-黑钨矿阶段的矿石样品对其中的进行了LA-ICP-MS U-Pb定年,获得2件样品的~(207)Pb/~(206)Pb-~(238)U/~(206)Pb谐和年龄分别为(134.7±6.6)Ma(MSWD=1.4)和(136.8±7.4)Ma(MSWD=1.7),~(206)Pb/~(207)Pb-~(238)U/~(207)Pb等时线年龄分别为(132±12)Ma(MSWD=0.76)和(135±13)Ma(MSWD=0.9)。锡石定年结果表明,道伦达坝矿床形成于早白垩世。对矿区外围张家营子岩体中的斑状细粒花岗岩进行了LA-ICP-MS锆石U-Pb测年,获得的~(206)Pb/~(238)U加权平均年龄为(135±1)Ma(MSWD=1.3),该岩体的形成年龄与道伦达坝矿床的成矿年龄在误差范围内一致。本次定年结果表明道伦达坝矿床形成于早白垩世,与同期的花岗质岩浆活动有密切的成因联系,该矿床属于与花岗岩有关的岩浆热液脉型矿床。  相似文献   

11.
Chemical compositions and geochronological data utilising the laser ablation ICP-MS technique are presented for zircon megacrysts found in alluvial gem corundum deposits associated with Upper Cretaceous–Cenozoic alkali basalts in the Inverell district-New England field, New South Wales, eastern Australia. Three localities, Kings Plains, Swan Brook and Mary Anne Gully, produce gem-quality transparent dark brown and yellow zircon megacrysts, mostly under 10 mm in size. Although brown zircon shows relative enrichment in Hf and REE, there are no differences in relative transition metal concentrations between the colours. Chemical homogeneity within a single crystal indicates stable crystallisation conditions. The 206Pb/238U age of zircon megacrysts from these three localities define older and younger groups of 216–174 Ma and 45–37.7 Ma, respectively. The ?Hf values of zircon megacrysts from Kings Plains show +7.51±0.34 in the older group and +10.72±0.31 in the younger group. Swan Brook zircons give +11.54±0.47 and +8.32±0.58, and Mary Anne Gully zircons are +13.67±0.63 and +8.50±0.48, respectively. These zircons from New England alluvial gem deposits have two main formational events around Upper TriassicLower Jurassic and Eocene episodes. Most originated from lithospheric mantle and all were brought-up by later host basaltic magmas.  相似文献   

12.
<正>Thus far,our understanding of the emplacement of Xuebaoding granite and the occurrence and evolution of the Songpan-Garze Orogenic Belt has been complicated by differing age spectra results.Therefore,in this study,the ~(40)Ar/~(39)Ar and sensitive high resolution ion micro-probe(SHRIMP) U-Pb dating methods were both used and the results compared,particularly with respect to dating data for Pankou and Pukouling granites from Xuebaoding,to establish ages that are close to the real emplacements.The results of SHRIMP U-Pb dating for zircon showed a high amount of U,but a very low value for Th/U.The high U amount,coupled with characteristics of inclusions in zircons,indicates that Xuebaoding granites are not suitable for U-Pb dating.Therefore,muscovite in the same granite samples was selected for ~(40)Ar/~(39)Ar dating.The ~(40)Ar/~(39)Ar age spectrum obtained on bulk muscovite from Pukouling granite in the Xuebaoding,gave a plateau age of 200.1±1.2 Ma and an inverse isochron age of 200.6±1.2 Ma.The ~(40)Ar/~(39)Ar age spectrum obtained on bulk muscovite from Pankou granite in the Xuebaoding gave another plateau age of 193.4±1.1 Ma and an inverse isochron age of 193.7±1.1 Ma. The ~(40)Ar/~(36)Ar intercept of 277.0±23.4(2σ) was very close to the air ratio,indicating that no apparent excess argon contamination was present.These age dating spectra indicate that both granites were emplaced at 200.6±1.3 Ma and 193.7±1.1 Ma,respectively.Through comparison of both dating methods and their results,we can conclude that it is feasible that the muscovite in the granite bearing high U could be used for ~(40)Ar/~(39)Ar dating without extra Ar.Based on this evidence,as well as the geological characteristics of the Xuebaoding W-Sn-Be deposit and petrology of granites,it can be concluded that the material origin of the Xuebaoding W-Sn-Be deposit might partially originate from the Xuebaoding granite group emplacement at about 200 Ma.Moreover,compared with other granites and deposits distributed in various positions in the Songpan-Garze Orogenic Belt,the Xuebaoding emplacement ages further show that the main rare metal deposits and granites in peripheral regions occurred earlier than those in the inner Songpan-Garze.Therefore,~(40)Ar/~(39)Ar dating of Xuebaoding granite will lay a solid foundation for studying the occurrence and evolution of granite and rare earth element deposits in the Songpan-Garze Orogenic Belt.  相似文献   

13.
The Mount Princeton magmatic center, located in central Colorado, consists of the epizonal Mount Princeton batholith, the nested Mount Aetna caldera, and volumetrically minor leucogranites. New CA-TIMS U/Pb zircon ages indicate the majority of the Mount Princeton batholith was emplaced during a period of regional ignimbrite quiescence. The structurally highest unit of quartz monzonite yields a 206Pb/238U age of 35.80 ± 0.10 Ma, and the youngest dated unit of the quartz monzonite is a porphyritic unit that yields a 206Pb/238U age of 35.37 ± 0.10 Ma. Using the exposed, dated volume of the quartz monzonite and new geochronology yields an estimated pluton filling rate of ~0.002 km3/a. This rate is comparable to the accumulation rates published for other plutons, and at least an order of magnitude slower than fluxes necessary to support accumulation of large eruptible magma volumes. Geochronology for the two large ignimbrites spatially associated with the batholith indicates a temporal disconnect between the vast majority of pluton building and explosive eruption of magma. The Wall Mountain Tuff erupted from a source in the same geographic area as the Mount Princeton batholith at 37.3 Ma (Ar/Ar sanidine), but no structural evidence of a caldera or temporally associated plutonic rocks is known. The Badger Creek Tuff erupted at 34.3 Ma (Ar/Ar sanidine) during the formation of the Mount Aetna caldera in the southern portion of the batholith. Our 206Pb/238U age for the Badger Creek Tuff is 34.47 ± 0.05. The only analyzed plutonic rocks of similar age to the Badger Creek Tuff are an extra-caldera dike with a 206Pb/238U age of 34.57 ± 0.08 Ma, a ring dike with a 206Pb/238U age of 34.48 ± 0.09 Ma, and a portion of the Mount Aetna pluton with a 206Pb/238U age of 34.60 ± 0.13 Ma. The small volume intrusions related to the eruption of the Badger Creek Tuff are chemically similar to the ignimbrite and show no signature of crystal–liquid separation in the shallow crust.  相似文献   

14.
对伊通地区的放牛沟火山岩,以及后期侵入该火山岩的后庙岭花岗质侵入体进行了LA-ICP-MS锆石U-Pb年代学研究。3个样品中的锆石均呈自形-半自形晶,CL图像显示出明显的岩浆振荡生长环带,结合大多数锆石具有较高的Th/U比值(0.23~3.55),暗示了它们的岩浆成因。放牛沟火山岩由变玄武安山岩和变安山岩组成,其中变安山岩样品中锆石22个测点的~(206)Pb/~(238)U年龄加权平均值分为3组:420±4 Ma,402±3 Ma及280±1 Ma,其中280±1 Ma代表了安山岩的形成年龄;变玄武安山岩样品中锆石30个测点的~(206)Pb/~(238)U年龄加权平均值分为两组:401±1 Ma及279±1 Ma,后者代表了玄武安山岩的形成年龄;后庙岭花岗质侵入体中锆石18个测点的~(206)Pb/~(238)U年龄加权平均值为256±2 Ma。上述锆石U-Pb定年结果表明,放牛沟火山岩形成于早二叠世,而非前人认为的早古生代。对后庙岭侵入体的定年结果,进一步暗示放牛沟多金属硫铁矿床的成矿时代为二叠纪。  相似文献   

15.
《International Geology Review》2012,54(10):1180-1193
The basement of the Maya block of eastern Mexico is generally covered by Mesozoic and Cenozoic platformal carbonate rocks. However, the 65.5 Ma Chicxulub meteorite impact in the northern Yucatan Peninsula excavated deep into the crust and brought crystalline basement fragments into the impact breccias. Common Pb isotopic data from impact melt and a granitic clast from drill core (Y6) are highly radiogenic, consistent with the Archaean derivation. A granodiorite clast in this breccia from drill core (Yaxcopoil-1) yielded a continuous range of concordant 206Pb/238U laser ablation inductively coupled plasma mass spectrometry zircon ages between 546 ± 5 Ma and 465 Ma, with three discordant zircons having 206Pb/238U ages between 130 Ma and 345 Ma. The ca. 546 Ma age is interpreted as the age of granodiorite intrusion, with younger ages representing variable Pb loss during melting associated with the meteorite impact. This is consistent with previous U–Pb zircon data that gave an upper intercept age of 550 ± 15 Ma at Chicxulub, which becomes 545 ± 5 Ma when combined with the zircon data from distal ejecta. Such arc rocks are absent in the southern Maya block, and in the neighbouring Oaxaquia terrane (s.s.) they are replaced by a 546 ± 5 Ma plume-related dike swarm. On the other hand, Ediacaran arc rocks continue through the peri-Gondwanan terranes of the Appalachians and Europe (Florida, Carolinia, Avalonia, Iberia, Armorica, Massif Central, Bohemia, and NW Africa). Arc magmatism in these areas ended between 570 Ma (Newfoundland) and 540 Ma (Carolinia/UK) as the subduction zone was replaced by a transform fault along the northern Gondwanan margin. This age range is synchronous with the two-stage birth of Iapetus, suggesting that both are related to major plate reorganization. The source of plume-related dikes may have been located at the rift–rift–transform triple junction between Laurentia, Baltica, and Gondwana.  相似文献   

16.
Zircon megacrysts are found in alluvial deposits associated with Cenozoic basalts from Changle in Shandong Province, Mingxi in Fujian Province and Penglai in Hainan Province within the coastal area of eastern China. They are colourless, transparent to light brown–maroon, and some of them are up to 16 mm long. U–Pb ages of zircon megacrysts from Changle, Mingxi and Penglai are 19.2?±?0.7 Ma, 1.2?±?0.1 Ma and 4.1?±?0.2 Ma respectively, slightly older than the eruption ages of their corresponding host rocks (16.05–18.87 Ma, 0.9–2.2 Ma, 3 Ma). εHf(t) values of zircon megacrysts are 9.02?±?0.49, 6.83?±?0.47, 4.46?±?0.48 for Changle, Mingxi and Penglai, respectively, which indicates their mantle origin. We suggest that the zircon megacrysts originated from metasomatised lithospheric mantle and were later brought up quickly by the host basaltic magma. The euhedral forms, uniform internal structure and chemical homogeneity within a single grain suggest crystallization under stable conditions. Pronounced positive Ce anomalies and negligible Eu anomalies suggest oxidizing conditions and little or no fractional crystallization of plagioclase. The differences in Hf-isotope compositions among the zircon megacrysts from different localities are consistent with the Sr-Nd-Pb isotopic compositions of their respective host basalts. This indicates that the host basalts acquired their isotopic signatures from the lithospheric mantle from which the zircon megacrysts derived. These data document the lateral compositional heterogeneity in the upper mantle beneath eastern China. Like mantle xenoliths, zircon megacrysts also have the potential to fingerprint the composition and evolution of the subcontinental lithospheric mantle.  相似文献   

17.
In this study (U‐Th)/He dating of the Penglai zircons, which occur as abundant megacrysts in Neogene alkaline basalts in northern Hainan Province, south‐eastern China, was undertaken. A weighted mean age of 4.06 ± 0.35 Ma (2s) with a mean square weighted deviation (MSWD) of 1.79 was obtained from eighteen fragments of four zircon megacrysts using single‐crystal laser fusion He determinations and the U‐Th isotope dilution (ID) method. The (U‐Th)/He ages are consistent, homogeneous and systematically slightly younger than the preferred 206Pb/238U age of 4.4 ± 0.1 Ma (95% confidence interval) determined by ID‐TIMS and subsequently published U‐Pb results. The U‐Pb isotopic system in zircon has a high closure temperature of ~ 900 °C, and the preferred U‐Pb age may record both the time since eruption and the zircon residence time in the magma chamber. In contrast, the closure temperature of the zircon (U‐Th)/He system is ~ 190 °C and the zircon megacrysts were brought quickly to the surface by the host basaltic magma. Thus, the (U‐Th)/He age represents the timing of the eruption. Based on the unlimited quantity, large grain size, mostly weak broad zoning, rapid cooling and homogenous (U‐Th)/He ages, we consider the Penglai zircons suitable for use as a reference material in (U‐Th)/He isotope geochronology.  相似文献   

18.
《Chemical Geology》2007,236(1-2):134-166
The ∼ 5000 km3 Fish Canyon Tuff (FCT) is an important unit for the geochronological community because its sanidine, zircon and apatite are widely used as standards for the 40Ar/39Ar and fission track dating techniques. The recognition, more than 10 years ago [Oberli, F., Fischer, H. and Meier, M., 1990. High-resolution 238U–206Pb zircon dating of Tertiary bentonites and Fish Canyon Tuff; a test for age “concordance” by single-crystal analysis. Seventh International Conference on Geochronology, Cosmochronology and Isotope Geology. Geological Society of Australia Special Publication Canberra, 27:74], of a ≥ 0.4 Ma age difference between the U–Pb zircon ages and 40Ar/39Ar sanidine ages has, therefore, motivated efforts to resolve the origin of this discrepancy. To address this controversial issue, we initially performed 37 U–Pb analyses on mainly air-abraded zircons at ETH Zurich and nearly 200 40Ar/39Ar measurements on hornblende, biotite, plagioclase and sanidine obtained at the University of Geneva, using samples keyed to a refined eruptive stratigraphy of the FCT magmatic system.Disequilibrium-corrected 206Pb/238U ages obtained for 29 single-crystal and three multi-grain analyses span an interval of ∼ 28.67–28.03 Ma and yield a weighted mean age of 28.37 ± 0.05 Ma (95% confidence level), with MSWD = 8.4. The individual dates resolve a range of ages in excess of analytical precision, covering ∼ 600 ka. In order to independently confirm the observed spread in zircon ages, 12 additional analyses were carried out at the Berkeley Geochronology Center (BGC) on individual zircons from a single lithological unit, part of them pre-treated by the “chemical abrasion” (CA) technique [Mattinson, J.M., 2005. Zircon U–Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220(1–2): 47–66]. Whereas the bulk of the BGC results displays a spread overlapping that obtained at ETH, the group of CA treated zircons yield a considerably narrower range with a mean age of 28.61 ± 0.08 Ma (MSWD = 1.0). Both mean zircon ages determined at ETH and BGC are older than the ∼ 28.0 Ma 40Ar/39Ar eruption age of FCT – even when considering the possibility that the latter may be low by as much as ∼ 1% due to a miscalibration of the 40K decay constants – and is thus indicative of a substantial time gap between magma crystallization and extrusion. The CA technique further reveals that younger FCT zircon ages are likely to be associated with chemically unstable U-enriched domains, which may be linked to crystallization during extended magma residence or may have been affected by pre-eruptive and/or post-eruptive secondary loss of radiogenic lead. Due to their complex crystallization history and/or age bias due to Pb loss, the FCT zircon ages are deemed unsuitable for an accurate age calibration of FCT sandine as a fluence monitor for the 40Ar/39Ar method.Even though data statistics preclude unambiguous conclusions, 40Ar/39Ar dating of sanidine, plagioclase, biotite, and hornblende from the same sample of vitrophyric Fish Canyon Tuff supports the idea of a protracted crystallization history. Sanidine, thought to be the mineral with the lowest closure temperature, yielded the youngest age (28.04 ± 0.18 Ma at 95% c.l., using Taylor Creek Rhyolite [Renne, P.R. et al., 1998. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology, 145: 117–152.] as the fluence monitor), whereas more retentive biotite, hornblende and plagioclase gave slightly older nominal ages (by 0.2–0.3 Ma). In addition, a laser step-heating experiment on a 2-cm diameter feldspar megacryst produced a “staircase” argon release spectrum (older ages at higher laser power), suggestive of traces of inherited argon in the system. Thermal and water budgets for the Fish Canyon magma indicate that the body remained above its solidus (∼ 700 °C) for an extended period of time (> 105 years). At these temperatures, argon volume diffusion is thought to be fast enough to prevent accumulation of radiogenic Ar. If this statement were true, an existing isotopic record should have been completely reset within a few hundred years, regardless of the phase and initial age of the phenocryst. As these minerals are unlikely to be xenocrysts that were incorporated within such a short time span prior to eruption, we suggest that a fraction of radiogenic Ar can be retained > 105 years, even at T 700 °C.  相似文献   

19.
大兴安岭扎兰屯地区前寒武纪变质岩系年龄及其构造意义   总被引:2,自引:0,他引:2  
大兴安岭扎兰屯地区出露较多的前寒武纪变质岩系,包括先前认为是古元古代的兴华渡口群、新元古代的佳疙瘩组和新元古代—早寒武世的倭勒根岩群,但一直缺少精确的年代学依据。通过LA-ICP-MS锆石U-Pb同位素测年,对这3个变质岩群的原岩时代进行了厘定。结果显示,兴华渡口群中绿泥石白云母片岩的锆石~(206)Pb/~(238)U年龄加权平均值为520.1±4.3Ma(n=11,MSWD=1.6),佳疙瘩组中长英质糜棱岩锆石~(206)Pb/~(238)U年龄加权平均值为512.0±2.9Ma,倭勒根岩群中绿泥绢云片岩最年轻锆石~(206)Pb/~(238)U年龄加权平均值为491.7±11.9Ma,年龄最密集区加权平均值为516.7±4.5Ma。锆石图像特征及Th/U值均显示岩浆型锆石特征。综上所述,扎兰屯地区出露的兴华渡口群、佳疙瘩组和倭勒根群形成时代均为早古生代早期,而非先前认为的"前寒武纪"。同时,上述年龄谱系表明,该地区在480~500Ma和500~530Ma存在2期强烈的岩浆活动,应与东北地区晚泛非期岩浆-变质事件有关。  相似文献   

20.
40 Ar/39Ar–mica and 207Pb/206Pb–zircon dates are presented and combined with existing P–T data and the sedimentary record. These data indicate that the RCC was faulted into three segments which underwent different exhumation histories during the Late Carboniferous/Early Permian. The eastern segment shows 40Ar/39Ar–biotite data of336 ±4 and 323±3 Ma. Furthermore, it is intruded by the Thuringian Hauptgranite dated at 337±4 Ma by the 207Pb/206Pb single zircon method. At approximately 300 Ma rocks of the eastern segment were finally exposed and, subsequently, subsided as part of the Oberhof pull-apart basin, filled by Late Carboniferous/Early Permian molasse sediments and volcanic rocks (296–285 Ma; Goll 1996). A similar Late Carboniferous evolution is inferred for the western segment, since it is also overlain by Upper Carboniferous volcanic rocks. In contrast to the eastern and western segments, distinctly younger intrusion and cooling ages were recorded for the central segment of the RCC (40Ar/39Ar muscovite: 311±3 Ma; 40Ar/39Ar biotite: 293–288±3 Ma) that was intruded by the Trusetal Granite, the Ruhla Granite and Brotterode Diorite (207Pb/206Pb single zircon: 298±2, 295±3, 289±4 Ma, respectively). These young data are unique in the MGCR and testify that plutonic activity and cooling of basement rocks took place simultaneously with basin formation and volcanism in the eastern and western segments. Overlying Upper Permian (Zechstein) and Triassic sediments indicate final exposure of the central segment by approximately 260 Ma, as a part of the Ruhla-Schleusingen Horst. Combination of these results with P–T data from the contact aureole of the Trusetal granite indicate that the central segment was unroofed by at least 8.5 km during the Late Carboniferous. The Late Carboniferous/Early Permian horst-basin formation, documented in the RCC, is due to dextral transtensional movements along the NW-trending Franconian fault system. It may have been enhanced by mantle upwelling widespread in Central Europe during the Early Permian that also caused intensive magmatism in the Thuringian Forest region. Received: 2 February 1999 / Accepted: 15 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号