首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The equations governing the dynamic behavior of saturated porous media as well as a finite element spatial discretization of these equations are summarized. A three-parameter time integration scheme called the Hilber–Hughes–Taylor α-method is used together with a predictor/multi-corrector algorithm, instead of the widely used Newmark's method, to integrate the spatially discrete finite element equations. The new time integration scheme possess quadratic accuracy and desirable numerical damping characteristics. The proposed numerical solution and bounding surface plasticity theory to describe the constitutive behaviour of soil have been implemented as the computer code DYSAC2. Predictions made by DYSAC2 code are verified using dynamic centrifuge test results for a clay embankment. Importance of initial state of a soil on its dynamic behaviour is demonstrated.  相似文献   

2.
3-D finite element modelling of pile groups adjacent to surcharge loads   总被引:9,自引:0,他引:9  
The short-term behaviour of pile groups subjected to lateral pressures by deformation of a clay layer under an adjacent surcharge load was studied using three dimensional finite element analysis. The main aim of the analysis was to investigate the pile-clay interaction behaviour. A load-path-dependent, non-linear constitutive model was used to describe the clay, which required knowledge of in situ stresses and recent strain history. Numerical results compared well with those from a centrifuge model test. The effects of the different in situ stresses and strains likely in prototypes and centrifuge model tests were also studied with particular interest in the load-transfer relationships and soil deformation behaviour around the piles.  相似文献   

3.
The behavior of a reinforced embankment on soft Bangkok clay has been analyzed by plane strain finite element method. The finite element analysis considers the selection of proper soil/reinforcement properties according to the relative displacement pattern of upper and lower interface elements. The large deformation phenomenon is simulated by updating the node coordinates, including those of the embankment elements above the current construction level, which ensures that the applied fill thickness simulates the actual field value. A full scale test reinforced embankment with a vertical face (wall) on Bangkok clay has been analyzed by the proposed finite element method, and the numerical results are compared with the field data. The response of a reinforced embankment on soft ground is principally controlled by the interaction between the reinforced soil mass and soft ground and the interaction between the grid reinforcement and the backfill soil. The tension in reinforcement and lateral displacement of the wall face varied during consolidation of foundation soil. The maximum tension force occurred in the reinforcement layer placed at the base of reinforced mass, due to bending of the reinforced mass resulting from differential settlements. It is considered necessary to account for the permeability variation of the soft ground foundation in the finite element analysis.  相似文献   

4.
Analysis of large deformation of geomaterials subjected to time‐varying load poses a very difficult problem for the geotechnical profession. Conventional finite element schemes using the updated Lagrangian formulation may suffer from serious numerical difficulties when the deformation of geomaterials is significantly large such that the discretized elements are severely distorted. In this paper, an operator‐split arbitrary Lagrangian–Eulerian (ALE) finite element model is proposed for large deformation analysis of a soil mass subjected to either static or dynamic loading, where the soil is modelled as a saturated porous material with solid–fluid coupling and strong material non‐linearity. Each time step of the operator‐split ALE algorithm consists of a Lagrangian step and an Eulerian step. In the Lagrangian step, the equilibrium equation and continuity equation of the saturated soil are solved by the updated Lagrangian method. In the Eulerian step, mesh smoothing is performed for the deformed body and the state variables obtained in the updated Lagrangian step are then transferred to the new mesh system. The accuracy and efficiency of the proposed ALE method are verified by comparison of its results with the results produced by an analytical solution for one‐dimensional finite elastic consolidation of a soil column and with the results from the small strain finite element analysis and the updated Lagrangian analysis. Its performance is further illustrated by simulation of a complex problem involving the transient response of an embankment subjected to earthquake loading. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
A finite element model is proposed for studying the seismic response of a flexible retaining wall/soil system. The model accounts for nonlinear hysteretic soil behaviour, and also for the increase in lateral stresses and settlement related to grain slip caused by cyclic loads. The response computed by the proposed method was compared with responses recorded at the Cambridge centrifuge facility, and found to be in reasonable agreement. The model was then used to identify the importance of factors such as flexibility of the wall and relative density of the backfill. The study reveals that the maximum bending moments given by current design procedures are nonconservative for stiffer walls. Deflections of flexible walls are of major concern. Flexible walls supporting a sand of medium density yield the greatest deflection.  相似文献   

6.
周小文  程力  周密  王齐 《岩土力学》2019,40(5):1713-1720
目前球形全流贯入被仪广泛应用于岩土离心试验中,以表征软弱黏土土样的抗剪性能。然而,在离心加速度作用下离心机试验中的球贯入仪比现场使用的标准球贯入仪有更大的加载杆与球的面积比a、更大的等效原型直径以及不一样的球-土摩擦系数,从而使得离心机球体会出现不一样的贯入特性,进而导致不一样的土体抗剪承载力校验系数。通过大变形有限元(large deformation finite element,简称LDFE)方法对中国常见离心机球形贯入仪贯入单层黏土进行分析,获得不同几何尺寸和摩擦系数下球形贯入仪的贯入特性。计算结果通过与有关解析解以及其他前人研究结论的对比分析,验证了有限元分析结果的合理性。通过大量参数分析表明,球摩擦系数对空腔的临界深度以及深层破坏深度的影响较小,面积比a对浅层和深层承载力系数以及达到深层破坏深度有显著的影响。根据数值模拟的结果,提出了不同面积比和摩擦系数下的极限间隙深度Hc、浅层和深层临界破坏模式深度Hd、不同摩擦系数和面积比情况下的深层承载力系数和浅层承载力校准系数的计算公式,从而能获得更精确的土体抗剪强度,为离心机中球形贯入仪的应用提供了理论依据。  相似文献   

7.
Using a computer code based on the finite element method, a study is conducted to analyse the time-dependent behaviour of a geosynthetic-reinforced and jet grout column-supported embankment on soft soils, as well as the influence of three factors: the embankment height, the elastic modulus of column and the column spacing. The cylindrical unit cell formulation is used. The numerical model incorporates the Biot consolidation theory with soil constitutive relations simulated by the pqθ critical state model. Special emphasis is given to the analysis of several parameters: settlement, excess pore pressure, effective stress, stress level, tension in the geosynthetic, soil arching effect and overall efficiency coefficient.  相似文献   

8.
为了研究冻土的冻胀特性对公路路基稳定性的影响,建立了冻土路基变形场及应力场的二维数值计算模型,并应用有限元法求解路基土体冻结时变形场和应力场的分布规律.分析了土基范围内冻胀带对路基应力场和变形场的作用,并计算了不同冻胀带范围对路基顶面变形场和应力场的影响.结果表明:冻胀带的存在是引起路基病害的直接原因,不同冻胀带范围将引起路基产生不同类型及不同规模的破坏,位于路面以下的冻胀带属于敏感冻胀带范围.  相似文献   

9.
砂土海床中大直径单桩水平承载与变形特性   总被引:5,自引:0,他引:5  
刘晋超  熊根  朱斌  应盼盼 《岩土力学》2015,36(2):591-599
通过室内三轴固结排水剪切试验等获得典型剪胀性砂土的力学参数,在此基础上利用有限元软件ABAQUS,开展了近海大直径单桩基础在水平荷载作用下的三维有限元数值分析,揭示了加载过程中桩周土的应力路径,探讨了桩周土内摩擦角、剪胀角及桩土接触面特性等对三维数值分析结果的影响,得到了离心模型试验的验证,进而提出了砂土海床中大直径单桩基础的合理数值分析模型及参数取值方法,并建议风机大直径单桩基础水平承载力确定以变形作为控制标准。在此基础上,利用该数值分析模型分析了现有桩基承载力和变形分析方法对超大直径单桩的有效性,并提出了采用数值分析来确定基础的临界埋深的确定方法。  相似文献   

10.
This paper examines the drained bearing response of circular footings resting on structured soil deposits. Numerical simulations have been carried out using a finite element formulation of the Structured Cam Clay model. A parametric study was conducted by varying the parameters that govern the behaviour of structured soils and guidelines are given for designers to identify when effects of the soil structure are important. Under fully drained conditions, deformation within the structured soil supporting the footing usually occurs as a local or punching shear failure due to high compressibility of the structured soil and the mobilised bearing pressure increases with the footing movement, without reaching an ultimate value. A novel approximate method is presented to obtain the load–displacement response of a rigid circular footing resting on the surface of a structured soil deposit. This requires the properties of the soil in the reconstituted state and two additional parameters, which govern the natural structure of the soil. The proposed method has been applied to a published case study, where plate load test results are given for rigid circular steel plates resting on structured soil deposits. Fair agreement is observed between the computed and experimental results, suggesting the approximate method may be useful in design studies of foundations on structured soil deposits.  相似文献   

11.
A parametric study of an embankment on soft soils reinforced with stone columns is performed using a computer program based on the finite element method. The cylindrical unit cell formulation is used by modeling one column and its surrounding soft soil with confined axisymmetric behaviour. The computer program incorporates the Biot consolidation theory (coupled formulation of the flow and equilibrium equations) with constitutive relations simulated by the pqθ critical state model. The following parameters are analysed: the replacement area ratio, the deformability of the column material, the thickness of the soft soil, the deformability of the fill and the friction angle of the column material. Based on the results of this study, a new design method is proposed, relating the settlement improvement factor to the two factors that revealed major influence: the replacement area ratio and the ratio between the deformability of the soft soil and the deformability of the column material.  相似文献   

12.
This paper presents a numerical method that can be used to evaluate the post-failure deformation of slopes and embankments. The method is based on a large deformation finite element analysis employing the updated Lagrangian formulation. It can simulate the changing geometry of slopes during failure. An extended Mohr–Coulomb constitutive model represents the strain softening behaviour of slope material. The results of a series of analyses show that the post-failure deformation of slopes is a function of the rate of strength reduction and also the stiffness of the slope material. These two factors influence the initiation of progressive failure of slopes. The validity of the method is evaluated by simulation of a test embankment failure and comparison of the predicted results with the observed record of the failure.  相似文献   

13.
The dynamic behaviour of pile groups subjected to an earthquake base shaking is analysed. An analysis is formulated in the time domain and the effects of material nonlinearity of soil, pile–soil–pile kinematic interaction and the superstructure–foundation inertial interaction on seismic response are investigated. Prediction of response of pile group–soil system during a large earthquake requires consideration of various aspects such as the nonlinear and elasto‐plastic behaviour of soil, pore water pressure generation in soil, radiation of energy away from the pile, etc. A fully explicit dynamic finite element scheme is developed for saturated porous media, based on the extension of the original formulation by Biot having solid displacement (u) and relative fluid displacement (w) as primary variables (uw formulation). All linear relative fluid acceleration terms are included in this formulation. A new three‐dimensional transmitting boundary that was developed in cartesian co‐ordinate system for dynamic response analysis of fluid‐saturated porous media is implemented to avoid wave reflections towards the structure. In contrast to traditional methods, this boundary is able to absorb surface waves as well as body waves. The pile–soil interaction problem is analysed and it is shown that the results from the fully coupled procedure, using the advanced transmitting boundary, compare reasonably well with centrifuge data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
文章通过四个模型的离心模拟试验,对某机场强夯加固后的高填方地基土的变形沉降问题进行了模拟研究,并结合现场试验对该机场高填方地基强夯处理效果进行了综合评价。试验结果表明,由于填方土高度过大,未经强夯法处理的高填方地基的最终沉降量满足不了工程设计要求;而经过强夯处理的地基,填方土体瞬时沉降和固结沉降在施工后都能迅速完成,变形和沉降可得到控制,这说明强夯法可用于控制丘陵山区高填方地基的不均匀沉降。  相似文献   

15.
桩承式路堤土拱效应发挥过程研究   总被引:4,自引:0,他引:4  
费康  陈毅  王军军 《岩土力学》2013,34(5):1367-1374
通过三维模型试验对桩承式路堤中土拱效应发挥过程进行了研究,重点分析了不同桩顶盖板尺寸、不同加筋方式下应力折减系数与差异沉降之间的关系。结果表明,土拱效应随变形的增加而发挥;加筋材料的设置减小了差异沉降,削弱了填土中的土拱效应,荷载向桩顶的传递是土拱效应和拉膜效应共同作用的结果。采用有限元法对桩间距、填土高度等未能在模型试验中考虑的关键因素进行了参数敏感性分析,总结了土拱效应发挥过程的相关规律。根据有限元计算结果、试验数据和文献中收集到的实测资料,提出用土拱效应发挥系数和归一化位移来描述土拱效应的发挥过程,建议二者之间采用双曲线方程模拟,从而在设计中体现土拱效应随位移的发展,并满足路堤填土、加筋材料和地基之间的变形协调要求。  相似文献   

16.
The mechanical behavior of natural clays is affected by their inherent anisotropy and metastable soil structure. A simple hierarchical model that considers initial anisotropy and destructuration was formulated within the framework of critical state soil mechanics. In the proposed model, stress sensitivity and a destructuration index were introduced to account for the degree of bonding and the rate of destructuration, respectively. An inclined yield surface was used to incorporate the effect of the initial anisotropy. The proposed model can be degenerated to the Modified Cam Clay model by setting the initial stress sensitivity equal to unity and using a horizontal yield surface. Reasonable agreement between the model simulations and the experimental results on a variety of stress paths demonstrated that the proposed model can capture well the deformation behavior of natural clay and reconstituted soil. The model was implemented into the finite element program for the numerical analysis of an embankment on soft clay improved with prefabricated vertical drains. The numerical predictions were compared with the field-measured data in terms of embankment settlement. Additionally, the numerical simulations were analyzed in terms of horizontal displacements, excess pore water pressure, mean effective stress and volumetric strain. All of the simulations and comparisons indicate the importance of considering the effects of plastic anisotropy, interparticle bonding and destructuration caused by loading beyond yield stress and field disturbance in analyzing the behavior of an embankment on natural soft clay.  相似文献   

17.
软土地基上路堤填筑的破坏性状分析   总被引:5,自引:0,他引:5  
在软土地区建设高速公路、铁路等的填筑路堤越来越多,由于软土的不排水抗剪强度较低,软土地区路堤的填筑十分困难,而软土地基的渗透性很低,通常认为路堤的填筑是在不排水条件下进行。经典的设计方法是基于极限平衡法,无法考虑变形等因素,因此,能综合考虑稳定及变形等因素的有限元方法成为分析此类问题的一种有效手段。依据连云港铁路路堤在软土地基上的填筑试验资料,采用大变形有限元方法及Mohr-Coulomb模型,采用现场试验得到的土体强度值,对平面应变条件下路堤填筑的破坏性状及极限填筑高度等进行了分析,并对比了有限元分析结果及现场试验结果,结果表明,采用大变形有限元方法能够较准确的得到填筑路堤的极限高度,并有效地分析填筑路堤的破坏性状。  相似文献   

18.
A new constitutive formulation for simulating the behaviour of nearly saturated sands under seismic loads is presented. The formulation is based on combining the Henry's law for dissolution of gas in water, the ideal or perfect gas law and the law of conservation of mass. The effects of transient air dissolution in water on the compressibility of partially saturated soils are also taken into account. The model was calibrated based on numerical simulations of isotropically consolidated cyclic triaxial tests conducted on partially saturated samples of Toyoura sand. A multi‐yield plasticity soil constitutive model implemented in the finite element code DYNAFLOW was used for these numerical simulations. It is shown that the formulation proposed here is able to reasonably predict the soil cyclic undrained behaviour at various degrees of saturation (95% and higher). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.

Prediction of unsaturated soil behavior during earthquake loading has received increasing attention in geotechnical engineering research and practice in recent years. Development of a fully coupled analysis procedure incorporating a coupled hydromechanical elastoplastic constitutive model for dynamic analysis of unsaturated soils has, however, been limited. This paper presents the implementation of a coupled hydromechanical elastoplastic constitutive model into a fully coupled dynamic analysis procedure and its validation using a centrifuge test. First, the fully coupled finite element equations governing the dynamic behavior of unsaturated soils with the solid skeleton displacement, pore water pressure, and pore air pressure as nodal unknowns are briefly presented. The closest point projection method is then utilized to implement the coupled hydromechanical elastoplastic constitutive model into the finite element equations. The constitutive model includes hysteresis in soil–water characteristic curves, cyclic elastoplasticity of the solid skeleton, and the coupling mechanisms between the SWCCs and the solid skeleton. Finally, the analysis procedure is validated using the results from a dynamic centrifuge test on an embankment constructed of compacted unsaturated silt subjected to base shaking. Reasonable comparisons between the predicted and measured accelerations, settlements, and deformed shapes are obtained.

  相似文献   

20.
高填石路堤蠕变本构模型及其参数反演分析与应用   总被引:1,自引:0,他引:1  
曹文贵  李鹏  程晔 《岩土力学》2006,27(8):1299-1304
结合高填石路堤工后沉降变形机理与工程特点,基于工程实测数据,提出了高填石路堤工后沉降蠕变变形的双曲线型三参数本构模型,并引进遗传算法与有限元分析理论,建立了该模型参数的反演分析方法。在此基础上,利用蠕变有限元分析手段,深入探讨了高填石路堤工后沉降的分析计算方法,并开发了相应的分析计算软件。结合某高填石路堤工程实践,探讨了高填石路堤双曲线三参数蠕变本构模型和高填石路堤工后沉降计算的应用方法。工程实例分析表明,提出的本构模型及其工后沉降计算方法简单,可以满足工程要求,初步建立了一种新的高填石路堤工后沉降计算方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号