首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A three dimensional numerical model is presented capable of modelling the propagation and transmission of ground vibration in the vicinity of high speed railways. It is used to investigate the effect of embankment constituent material on ground borne vibration levels at various distances from the track.The model is a time domain explicit, dynamic finite element model capable of simulating non-linear excitation mechanisms. The entire model, including the wheel/rail interface is fully coupled. To account for the unbounded nature of the soil structure an absorbing boundary condition (infinite element) is placed at the truncated interfaces. To increase boundary absorption performance, the soil structure is modelled using an elongated spherical geometry.The complex geometries associated with the track components are modelled in detail thus allowing a highly realistic simulation of force transmission from vehicle to embankment. Lastly, quasi-static and dynamic excitation mechanisms of the vehicle locomotives are described using a multi-body approach which is fully coupled to the track using non-linear Hertzian contact theory.The resulting model is verified using experimental ground borne vibration data from high speed trains, gathered through field trials. It is then used to investigate the role of embankments in the transmission of vibration. It is found that soft embankments exhibit large deflections and act as a waveguide for railway vibrations which are trapped within the structure. This results in increased vibration levels both inside the embankment and in the surrounding soil. In contrast it is found that embankments formed from stiffer material reduce vibrations in the near and far fields.  相似文献   

2.
A semi-analytic approach is presented for the three-dimensional analysis of ground vibrations induced by trains moving over elevated bridges. The train is modeled as two sets of moving loads, with one for the front wheels and the other for the rear ones, the elevated bridge as a series of elastically supported beams, and the ground as a viscoelastic half space. Three key elements are considered in the solution: (1) the analytic solution for the vibration of an elastically supported beam under a series of moving loads, (2) the impedance of the foundation–soil system, and (3) Green's function for an elastic half space under a harmonic point load. Such an approach allows us to consider the structural dynamics of the elevated bridge, the foundation–soil interaction, and the wave propagation characteristics in the half space. From the numerical examples studied, the proposed approach was demonstrated to be accurate and efficient. The framework of analysis described herein can be generalized to solve problems with complex foundations and layered soils.  相似文献   

3.
通过建立地面线路城轨列车引起的自由场地振动分析模型,并对模型中不同影响因素进行分析,建立地面振动预测模型。分析模型包括振源和场地两个部分,由列车运行作用于道碴上的力进行联系。影响因素包括:钢轨类型,轨道不平顺,列车速度、编组、载客量,场地土性质。利用课题组在京广铁路沿线进行的自由场地振动测试对振动分析模型进行验证,结合统计软件的相关程度来评价本文所建立的振动预测模型的适用性。  相似文献   

4.
A field measurement of ground vibration was performed on the Beijing−Shanghai high-speed railway in China. In this paper, the experimental results of vertical ground vibration accelerations induced by very high speed trains running over a non-ballasted track on embankment with speeds from 300 to 410 km/h are reported and analyzed in detail for the first time. Characteristics of ground vibration accelerations in both time and frequency domains are analyzed based on the test data. It is shown that the periodic exciting action of high-speed train bogies can be identified in time histories of vertical accelerations of the ground within the range of 50 m from the track centerline. The first dominant sensitive frequency of the ground vibration acceleration results from the wheelbase of the bogie, and the center distance of two neighboring cars plays an important role in the significant frequencies of the ground vibration acceleration. Variations of time–response peak value and frequency-weighted vertical acceleration level of ground vibration in relation with train speed as well as the distance from the track centerline are also investigated. Results show that the time-domain peak value of ground vibration acceleration exhibits an approximately linear upward tendency with the increase of train speed. With the increasing distance from the track centerline, the frequency-weighted vertical acceleration level of the ground vibration attenuates more slowly than the time-domain peak value of the ground vibration acceleration does. Severe impact of high-speed railway ground vibration on human body comfort on the ground occurs at the speed of 380–400 km/h. The results given in the paper are also valuable for validating the numerical prediction of train induced ground vibrations.  相似文献   

5.
The ground vibrations induced by a passenger train at the test site of Ledsgaard, Sweden, have been analysed and numerically simulated through a spectral element discretization of the soil. To calculate the spatial distribution of loading due to train passage, the train is decoupled from the track, and a suitable series of static forces is applied. The track and the embankment are modeled as a beam on elastic foundation, using analytical solutions for loads moving at constant velocity. The results of both 2D and 3D modelling assumptions are thoroughly discussed, in terms of prediction of track motion and of attenuation of peak ground velocity with distance.  相似文献   

6.
This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures. A three-dimensional finite element model is established for a one-track railway tunnel and an adjacent twelvestorey building frame by using commercial software Midas GTS-NX(2019) and Midas Gen. This study considered the moving load effect of a complete train, which varies with space as well as with time. The effect of factors such as train speed, overburden pressure on t...  相似文献   

7.
The 2.5D finite/infinite element approach is adopted to study wave propagation problems caused by underground moving trains. The irregularities of the near field, including the tunnel structure and parts of the soil, are modeled by the finite elements, and the wave propagation properties of the far field extending to infinity are modeled by the infinite elements. One particular feature of the 2.5D approach is that it enables the computation of the three-dimensional response of the half-space, taking into account the load-moving effect, using only a two-dimensional profile. Although the 2.5D finite/infinite element approach shows a great advantage in studying the wave propagation caused by moving trains, attention should be given to the calculation aspects, such as the rules for mesh establishment, in order to avoid producing inaccurate or erroneous results. In this paper, some essential points for consideration in analysis are highlighted, along with techniques to enhance the speed of the calculations. All these observations should prove useful in making the 2.5D finite/infinite element approach an effective one.  相似文献   

8.
Train viaduct behavior and nearby ground motion under the high-speed train passage have been studied in this paper. First, the findings from the field measurement alongside the high-speed Shinkansen railway in Japan are interpreted. Then, the computer simulation is made based on the soil-foundation-viaduct interaction analysis under moving axle loads. The solution method is to apply the dynamic substructure method in the frequency domain. The viaduct girders including track structure and pier supports are modeled by the three-dimensional beam-column elements. The supporting pile foundation and nearby field are discretized by the axisymmetric three-dimensional finite elements and analyzed in a semi-analytical way, with a transmitting boundary replacing the far field based on the thin layer element method. Nearby ground motion during train passage on a viaduct have been calculated by superimposing the effects from neighboring pile foundations.The main parameters affecting viaduct vibrations are discussed by taking environmental vibration into consideration. The nearby ground motion along the viaduct is recomputed by applying the above determined forces to the foundation tops. The results from numerical studies are compared with the field test data, thus proving the present simulation to be effective and reliable.  相似文献   

9.
Reduction in traffic-induced ground vibrations by the use of shaped landscapes is investigated here by shaping the landscape surrounding a high-tech facility, using the landscape thus produced as a wave obstacle. The effects of the geometric parameters of a shaped landscape were examined in parametric studies. An architectural landscape design was also investigated in terms of its effectiveness in reducing traffic-induced ground vibrations. Finite element models, analysed in the frequency domain, were employed. The models involve a layer of soil and the underlying bedrock. It was found that anywhere from an appreciable reduction to an appreciable amplification of the vibrations produced can occur, depending upon the geometric parameters of the shaped landscape involved. The most effective shape was found for a topography that acted as a waveguide that reduced the level of vibration by approximately 35%.  相似文献   

10.
城轨交通引起的环境振动问题综述研究   总被引:4,自引:0,他引:4  
随着城市化进程的加快和人们生活质量的提高,城市轨道交通系统引起的沿线地面和建筑物的振动问题越来越引起人们的关注。系统地介绍了城市轨道交通的主要形式,对城市轨道交通所引起环境振动问题的国内外研究进行了综述,同时,全面分析了环境振动对人们生产生活的影响、振动产生的原因、振动预测模拟等方面的问题。对国内外有关环境振动的计算模型也系统深入地作了分析研究。  相似文献   

11.
Damage of embankments during earthquakes is widely attributed to the liquefaction of foundation soil. Previous studies have investigated the dynamic response of embankments by mainly considering uniform sand foundation and a single earthquake event. However, the foundation of an embankment consists of many sublayers of soil from liquefiable sand to relatively impermeable layer, and during earthquakes a mainshock may trigger numerous aftershocks within a short time which may have the potential to cause additional damage to soil structures. Accordingly, the investigation of liquefaction-induced deformation of earthen embankments on various liquefiable foundation conditions under mainshock–aftershock sequential ground motions is carried out by a series of dynamic centrifuge tests in this study. The liquefiable foundation includes uniform sand profile, continuous layered soil profile, and non-homogeneous soil profiles. Effects of various foundation conditions on embankment deformations are compared and analyzed. From the test results, it is found that the embankment resting on non-homogeneous soil deposits suffer more damage compared to the uniform sand foundation of same relative density. The test results also suggest that the sequential ground motions have a significant effect on the accumulated deformation of embankment.  相似文献   

12.
This paper outlines an experimental analysis of ground-borne vibration levels generated by high speed rail lines on various earthwork profiles (at-grade, embankment, cutting and overpass). It also serves to provide access to a dataset of experimental measurements, freely available for download by other researchers working in the area of railway vibration (e.g. for further investigation and/or the validation of vibration prediction models).First, the work outlines experimental investigations undertaken on the Belgian high speed rail network to investigate the vibration propagation characteristics of three different embankment conditions. The sites consist of a 5.5 m high embankment, an at-grade section and a 7.2 m deep cutting. The soil material properties of each site are determined using a ‘Multichannel Analysis of Surface Waves’ technique and verified using refraction analysis. It is shown that all sites have relatively similar material properties thus enabling a generalised comparison.Vibration levels are measured in three directions, up to 100 m from the track due to three different train types (Eurostar, TGV and Thalys) and then analysed statistically. It is found that contrary to commonly accepted theory, vertical vibrations are not always the most dominant, and that horizontal vibrations should also be considered, particularly at larger offsets. It is also found that the embankment earthworks profile produced the lowest vibration levels and the cutting produced the highest. Furthermore, a low (positive) correlation between train speed and vibration levels was found. A selection of the results can be downloaded from www.davidpconnolly.com.  相似文献   

13.
In this study a 3D numerical analysis approach is developed to predict the ground vibration around rigid-frame viaducts induced by running high-speed trains. The train-bridge-ground interaction system is divided into two subsystems: the train-bridge interaction and the soil-structure interaction. First, the analytical program to simulate bridge vibration with consideration of train-bridge interaction is developed to obtain the vibration reaction forces at the pier bottoms. The highspeed train is described by a multi-DOFs vibration system and the rigid-frame viaduct is modeled with 3D beam elements. Second, applying these vibration reaction forces as input external excitations, the ground vibration is simulated by using a general-purpose program that includes soil-structure interaction effects. The validity of the analytical procedure is confirmed by comparing analytical and experimental results. The characteristics of high-speed train-induced vibrations, including the location of predominant vibration, are clarified. Based on this information a proposed vibration countermeasure using steel strut and new barrier is found effective in reducing train-induced vibrations and it satisfies environmental vibration requirements. The vibration screening efficiency is evaluated by reduction VAL based on 1/3 octave band spectral analysis.  相似文献   

14.
This paper presents the concept of using an additional generator to prevent ground vibrations. A linear, transversally isotropic three dimensional half-space with the hysteretic damping model, acted upon by a harmonic vertical excitation is assumed. Equations of motion for the transversally isotropic ground model with the absorbing boundary conditions are presented and numerically integrated using FlexPDE software, based on the finite element method. The efficiency of the solution is analysed in terms of reducing the vertical and horizontal components of ground surface vibrations. Results in the form of a dimensionless amplitude reduction factor are presented for four different locations of a generator. The influence of the soil parameters and layers locations on the additional generator's efficiency is investigated. The vibration reduction efficiency in a four-story building is also presented.  相似文献   

15.
Ground vibrations generated by construction activities can adversely affect the structural health of adjacent buildings and foundations supporting them. Therefore propagation and rate of attenuation of construction induced ground vibrations is important during construction activities, particularly in urban areas where constructions are carried out in the vicinity of existing structures. In practice wave barriers are installed in the ground to mitigate the ground vibration propagation and hence to minimise the effect of ground vibrations on surrounding structures. Different types of fill materials such as bentonite, EPS geofoam and concrete are used in constructing wave barriers. In this study, a three-dimensional finite element model is developed to study the efficiency of different fill materials in attenuating ground vibrations. The model is first verified using data from full scale field experiments, where EPS geofoam has been used as a fill material in wave barriers. Then the same model has been used to evaluate the efficiency of open trenches, water filled wave barriers and EPS geofoam filled wave barriers on attenuation of ground vibrations. EPS geofoam is found to be the most efficient fill material, providing attenuation efficiency closer to open trenches. The efficiency of EPS geofoam and water filled wave barriers can be significantly increased by increasing the depth of the wave barrier.  相似文献   

16.
In order to effectively control vibration related problems, the development of a reliable vibration monitoring system and the proper assessment of attenuation characteristics of various vibrations are essential. Various ground vibrations caused by train loading, blasting, friction pile driving and hydraulic hammer compaction were measured using 3D geophones inside of the borehole as well as on the ground surface, and the propagation and attenuation characteristics of various source generated vibrations were investigated by analyzing particle motions. For the geometric modeling of various vibrations, the types of various sources and their induced waves were characterized and the geometric damping coefficients were determined. The measured attenuation data matched well with the predicted data when using the suggested geometric damping coefficient, and the estimated soil damping ratios were quite reasonable taking soil type of the site and experiencing strain level into consideration.  相似文献   

17.
可作为新震源的列车振动及实验研究   总被引:10,自引:2,他引:10       下载免费PDF全文
利用地震仪器对火车通过大同—秦岭铁路线产生的振动进行了观测. 观测中使用了两套宽频带地震仪和一套短周期地震仪,共获得距铁路0~2.15km的9个观测点的38次列车振动观测数据,全部记录均可分辨出清晰的地震波形. 研究表明:运动列车会在铁路沿线2~3km范围内产生明显的地面振动,接收到的振动频谱在0.05~20Hz范围内平坦,信号频带较宽,观测重复性好. 列车振动为利用地震勘探方法探测地下浅层结构提供了一种重复性很好的新震源.  相似文献   

18.
Buildings in the proximity of roads can be affected by vibrations induced by traffic. Local geological pattern is necessary to be taken into account because it has significant influence on values of vibrations and their characteristics. This paper summarizes results of experimental measurements. Four different types of buildings in different types of local geology were used for this purpose. The obtained results document that the generation of significant vibrations is mostly due to heavy vehicles. Some maximum velocity values exceed acceptable limits according to the Czech Technical Standard 73 0040 for evaluation of technical seismicity effect on buildings. Cosmetic damage, meaning the cracking of plaster, might occur due to traffic vibrations.  相似文献   

19.

The growing use of underground structures, specifically to facilitate urban transportation, highlights the need to scrutinize the effects of such spaces on the seismic ground response as well as the surrounding buildings. In this regard, the seismic ground amplification variations in the vicinity of single and twin box-shaped tunnels subjected to SV waves have been investigated by the finite difference method. To evaluate the effects, generalizable dimensionless diagrams based on the results of parametric numerical analysis considering factors such as variations in the tunnels’ depth, the distances between the tunnels, tunnel lining flexibility, and input wave frequency, have been presented. In addition, to assess the effects of underground box-shaped tunnels on the response spectrum of the ground surface, seven selected accelerograms have been matched based on a specific design spectrum for the stiff soil condition of Eurocode 8 (CEN, 2006). The results underline the significant amplification effect of the box-shaped tunnels on the ground motions, specifically in the case of horizontal twin tunnels, which should be given more attention in current seismic design practices for surface structures.

  相似文献   

20.
A study about the running safety of trains moving over bridges subjected to earthquakes is presented. The study focuses on moderate earthquakes with relatively small return periods and high probability of occurrence. The analyses are performed using a nonlinear train‐bridge interaction method proposed by the authors, being the running safety evaluated with safety criteria existent in the literature. The influence on the train running safety of the seismic intensity levels, train running speed, and track quality is evaluated. Because no significant nonlinearity is likely to be exhibited in the columns for moderate levels of seismicity, the analyses are performed in the elastic domain. However, the reduction in the columns stiffness due to cracking is accounted, and a methodology to compute their effective stiffness is proposed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号