首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
The characteristics and correlation of faults and earthquakes are discussed based on fractal and statistical analysis of the earthquakes in the last 500 years and the active faults in China. It is found that fractal relationship exists between the frequency and the length of the active faults, and the fractal dimension is 1.70 in the continental region of China, and 1.40 in the northwest China. The fractal relationship also exists between the frequency and the scales of earthquakes during the last five centuries and the fractal dimension is 1.30 for the whole continental region of China and 1.08 for the northwest China. The differences of the fractal dimensions between the active faults and the earthquakes indicate that some of the active faults have not caused earthquakes during the last 500 years. The differences of fractal dimensions of the active faults and earthquakes between the northwest China and the whole continental region of China suggest that the frequency of strong earthquakes is greater in northwest China than that of the average level of China, because the number of longer active faults is larger in northwest China than that of the average in whole China. Thus, the fractal analysis is an effective method for studies of faults and earthquakes.  相似文献   

2.
Fractalanalysisappliedtofaultsandearthquakes———AcasestudyofChinaJIANWANG(王建)XIAOHUAZHU(朱晓华)YONGHUIXU(徐永辉)DepartmentofGeog...  相似文献   

3.
An approximate solution of the classical eigenvalue problem governing the vibrations of a relatively stiff structure on a soft elastic soil is derived through the application of a perturbation analysis. The full solution is obtained as the sum of the solution for an unconstrained elastic structure and small perturbing terms related to the ratio of the stiffness of the soil to that of the superstructure. The procedure leads to approximate analytical expressions for the system frequencies, modal damping ratios and participation factors for all system modes that generalize those presented earlier for the case of stiff soils. The resulting approximate expressions for the system modal properties are validated by comparison with the corresponding quantities obtained by numerical solution of the eigenvalue problem for a nine-story building. The accuracy of the proposed approach and of the classical normal mode approach is assessed through comparison with the exact frequency response of the test structure.  相似文献   

4.
This paper proposes a new algorithm for modeling the nonlinear seismic behavior of fractured concrete gravity dams considering dam–reservoir interaction effects. In this algorithm, the cracked concrete gravity dam is modeled by distinct element (DE) method, which has been widely used for the analysis of blocky media. Dynamic response of the reservoir is obtained using boundary element (BE) method. Formulation and various computational aspects of the proposed staggered hybrid approach are thoroughly discussed. To the authors' knowledge, this is the first study of a hybrid DE–BE approach for seismic analysis of cracked gravity dam–reservoir systems. The validity of the algorithm is discussed by developing a two-dimensional computer code and comparing results obtained from the proposed hybrid DE–BE approach with those reported in the literature. For this purpose, a few problems of seismic excitations in frequency- and time-domains, are presented using the proposed approach. Present results agree well with the results from other numerical methods. Furthermore, the cracked Koyna Dam is analyzed, including dam–reservoir interaction effects with focus on the nonlinear behavior due to its top profile crack. Results of the present study are compared to available results in the literature in which the dam–reservoir interaction were simplified by added masses. It is shown that the nonlinear analysis that includes dam–reservoir interaction gives downstream sliding and rocking response patterns that are somehow different from that of the case when the dam–reservoir interaction is approximated employing added masses.  相似文献   

5.
Miocene igneous dikes older and younger than 15 Ma in Southwest Japan are thought to be oriented parallel and perpendicular to the arc, respectively. This difference of orientations was referred to as significant evidence for termination of the opening of the Japan Sea at 15 Ma. The tightest constraint comes from ~60 dikes in the Tajima–Myokensan area, northern Hyogo Prefecture. Here we present orientations of 716 planar intrusive bodies and the directions of 143 meso-scale faults, obtained using the latest stress inversion techniques from the lower to middle Miocene Hokutan Group in the Tajima–Myokensan area. The results contradict the 15 Ma hypothesis for the end of the opening of the Japan Sea. We find that intrusive bodies cannot be separated into two groups by their orientations as reported previously. Rather, the orientations of their poles comprise a horizontal girdle and a vertical cluster. The former indicates NE-SW extensional stress, and the latter NW-SE compression. However, the latter are interpreted as not representative of regional stress, based on common sill intrusions (the formation of which was not influenced by regional stress) in the well-stratified Muraoka Formation resulting in the vertical cluster of pole orientations from which compression was recognized. The results of fault-slip analysis are consistent with the extensional stress. Fission-track and U–Pb ages of zircons were obtained from seven intrusive bodies. These and previously published ages suggest that the area underwent NW-SE extension both before and after 15 Ma. In the main part of Southwest Japan, the weak extension was kept after 16 Ma when intra-arc rifting was terminated. This is consistent with the hypothesis that the Japan Sea continued to open until 13.5 Ma.  相似文献   

6.
Characterizing the spatio-temporal distribution of groundwater–surface water (GW–SW) exchange fluxes is of paramount importance in understanding catchment behavior. A wide range of field-based techniques are available for such characterization. The objective of this study is to quantify the spatio-temporal distribution of the exchange fluxes along the Çakıt stream (Niğde, Turkey) through coupling a set of geophysical techniques and in-stream measurements in a hierarchical manner. First, geological and water quality information were combined at the catchment scale to determine key areas for reach-scale focus. Second, electromagnetic induction (EMI) surveys were conducted along the reach to pinpoint potential groundwater upwelling locations. EMI anomalies guided our focus to a 665 m-long reach of the stream. Along this selected reach, a fibre-optic distributed temperature sensing (FO-DTS) system was utilized to investigate streambed temperature profiles at fine spatial and temporal scales. Furthermore, vertical hydraulic gradients and exchange fluxes were investigated using nested piezometers and vertical temperature profiles, respectively, at two potential upwelling locations and a potential downwelling location identified by previous surveys. The results of the study reveal heterogeneity of vertical water-flow components with seasonal variability. The EMI survey was successful in identifying a localized groundwater upwelling location. FO-DTS measurements revealed a warm temperature anomaly during cold air temperature and low streamflow conditions at the same upwelling site. Our point-based methods, namely vertical temperature profiles and vertical hydraulic gradient estimates, however, did not always provide consistent results with each other and with EMI and FO-DTS measurements. This study, therefore, highlights the opportunities and challenges in incorporating multi-scale observations in a hierarchical manner in characterization of the GW–SW exchange processes that are known to be highly heterogeneous in time and space. Overall, a combination of different methods helps to overcome the limitations of each single method and increases confidence in the obtained results.  相似文献   

7.
In this study, a new model is developed for the aseismic design of a periodic viaduct when the pile–soil–structure interaction is considered. To account for the influence of the pile–soil–structure interaction, a wavenumber domain boundary element method (WDBEM) model for the periodic pile row supporting the viaduct is developed using the sequence Fourier transform as well as the boundary element method for the elastic medium. By using the WDBEM model for the pile row, the transfer matrices for the beams and piers, the joint conditions at the beam–beam–pier (BBP) junction as well as the periodicity condition for the viaduct, the wavenumber domain response of the periodic viaduct to spatially harmonic waves is determined. Based on the wavenumber domain response of the viaduct, the space-domain response of the viaduct to an arbitrary seismic wave can be obtained by invoking the inverse sequence Fourier transform method. Numerical results show that when the periodic viaduct is exposed to the spatially harmonic wave, resonances may occur at the bounding frequencies of the passbands of the characteristic waves of the viaduct. Also, it is found that the coincidence between the traveling seismic wave and characteristic waves of the viaduct will generate additional resonant frequencies located in passbands of the characteristic waves.  相似文献   

8.
Precipitation is an important part of the hydrologic cycle, and its complexity is closely related to surface runoff and changing groundwater dynamics, which in turn influences the accuracy of precipitation forecasts. In this study, we used the Lempel–Ziv algorithm (LZA) and a multi-scaling approach to assess precipitation complexity for 1958–2011 by analyzing time series data from 28 gauging stations located throughout Jilin province, China. The spatial distribution of normalized precipitation complexity was measured by LZA, a symbolic dynamics algorithm, and by a multi-scaling approach, which is described by fractals. In addition, the advantages and limitations of these two methods were investigated. The results indicate that both methods are applicable and consistent for calculating precipitation complexity, and that the degree of relief is a primary factor controlling precipitation complexity in the mountainous area; in the plain terrain, however, the prominent influencing factor is climate.  相似文献   

9.
The objective of this paper is to present incremental dynamic analysis (IDA) and seismic performance evaluation results for a two-story cold-formed steel (CFS)–framed building. The archetype building was designed to current U.S. standards and then subjected to full-scale shake table tests under the U.S. National Science Foundation Network for Earthquake Engineering Simulation (NEES) program. Test results showed that the building's stiffness and capacity were considerably higher than expected and the building suffered only nonstructural damage even at excitations in excess of Maximum Considered Earthquake levels for a high seismic zone. For the archetype building, three-dimensional finite element models at different modeling fidelity levels were created using OpenSees. The models are subjected to IDA using the far-field ground motion records prescribed in Federal Emergency Management Agency (FEMA) P695. Seismic performance quantification following the FEMA P695 procedure shows that if the modeling fidelity only follows the state-of-the-practice, ie, only includes shear walls, unsafe collapse margin ratios are predicted. State-of-the-art models that account for participation from CFS gravity walls and architectural sheathing have overall performance that are consistent with testing, and IDA results indicate acceptable collapse margin ratios, predicated primarily on large system overstrength. Neglecting the lateral force resistance of the gravity system and nonstructural components, as done in current design, renders a safe design in the studied archetype, but largely divorced from actual system behavior. The modeling protocols established here provide a means to analyze a future suite of CFS-framed archetype buildings for developing further insight on the seismic response modification coefficients for CFS-framed buildings.  相似文献   

10.
ABSTRACT

A parameter estimation strategy for a conceptual rainfall–runoff (CRR) model applied to a storm sewer system in an urban catchment (Chassieu, Lyon, France) is proposed on the basis of event-by-event Bayesian local calibrations. The marginal distribution formed by locally-estimated parameters is divided into conditional functions, clustering the event-based parameters based on their transferability to similar rainfall events. The conditional functions showed to be consistent with an observed bimodality in the marginal representation, reflecting two different hydrological conditions mainly related to the magnitude of the rainfall intensities (high or low). The improvements achieved by expressing the parameter probability functions into a conditional form are shown in terms of accuracy (Nash-Sutcliffe efficiency criterion), precision (average relative interval length) and reliability (percentage of coverage) for simulating flow rate in 255 and 110 calibration/verification events.  相似文献   

11.
The Northern current is the main circulation feature of the North-Western Mediterranean Sea. While the large-scale to mesoscale variability of the northern current (NC) is well known and widely documented for the Ligurian region, off Nice or along the Gulf of Lions shelf, few is known about the current instabilities and its associated mesoscale dynamics in the intermediate area, off Toulon. Here, we took advantage of an oceanographic cruise of opportunity, the start of a HF radar monitoring programme in the Toulon area and the availability of regular satellite sea surface temperature and chlorophyll a data, to evaluate the realism of a NEMO-based regional high-resolution model and the added value brought by HF radar. The combined analysis of a 1/64° configuration, named GLAZUR64, and of all data sets revealed the occurrence of an anticyclonic coastal trapped eddy, generated inside a NC meander and passing the Toulon area during the field campaign. We show that this anticyclonic eddy is advected downstream along the French Riviera up to the study region and disturbs the Northern current flow. This study aims to show the importance of combining observations and modelling when dealing with mesoscale processes, as well as the importance of high-resolution modelling.  相似文献   

12.
The existence of a layer of unstable seismotectonic strain, which spatially coincides with the waveguide previously detected here at depths of 12–20 km, is established in the central part of the Tajik Depression [Lukk et al., 1970; Nersesov and Chepkunas, 1970; 1971]. This crustal layer is assumed to be weakened and saturated by fluid. The latter is supposedly achieved due to the supply of the liquid component from the bottom crust or upper mantle in the cracks and pores of the waveguide material. A near vertical pillar-like seismogenic body revealed in the work [Shevchenko et al., 2011], which penetrates the waveguide in the depth interval 0–40 km, is considered as one of the possible channels of such inflow. The detected loosened layer (the waveguide) is characterized by a signficant reduction in seismic activity. However, no such reduction is observed within the pillar-like seismogenic body at these depths. Moreover, compared to the nearest ambient environment, the upper 10–15 km of this body feature considerably increased seismic activity that manifested itself in a series of 13 strong earthquakes (with M ≥ 4.7) that occurred within the past approximately 100 years.  相似文献   

13.
The degree to which the hydrologic water balance in a snow-dominated headwater catchment is affected by annual climate variations is difficult to quantify, primarily due to uncertainties in measuring precipitation inputs and evapotranspiration (ET) losses. Over a recent three-year period, the snowpack in California's Sierra Nevada fluctuated from the lightest in recorded history (2015) to historically heaviest (2017), with a relatively average year in between (2016). This large dynamic range in climatic conditions presents a unique opportunity to investigate correlations between annual water availability and runoff in a snow-dominated catchment. Here, we estimate ET using a water balance approach where the water inputs to the system are spatially constrained using a combination of remote sensing, physically based modelling, and in-situ observations. For all 3 years of this study, the NASA Airborne Snow Observatory (ASO) combined periodic high-resolution snow depths from airborne Lidar with snow density estimates from an energy and mass balance model to produce spatial estimates of snow water equivalent over the Tuolumne headwater catchment at 50-m resolution. Using observed reservoir inflow at the basin outlet and the well-quantified snowmelt model results that benefit from periodic ASO snow depth updates, we estimate annual ET, runoff efficiency (RE), and the associated uncertainty across these three dissimilar water years. Throughout the study period, estimated annual ET magnitudes remained steady (222 mm in 2015, 151 mm in 2016, and 299 mm in 2017) relative to the large differences in basin input precipitation (547 mm in 2015, 1,060 mm in 2016, and 2,211 mm in 2017). These values compare well with independent satellite-derived ET estimates and previously published studies in this basin. Results reveal that ET in the Tuolumne does not scale linearly with the amount of available water to the basin, and that RE primarily depends on total annual snowfall proportion of precipitation.  相似文献   

14.
The purpose of this study is the evaluation of dynamic behavior induced by seismic activity on a silo system, containing bulk material, with a soil foundation. The interaction effects between the silo and bulk material, as well as the effects produced between the foundation of the silo and the soil, were taken into account. Proposed simplified approximation, as well as the finite model, were used for analysis. The results, from the presented approximation, were compared with a more rigorous obtainment method. Initially, the produced simplified approximation, with elastic material assumption for the grain, could determine the pressures on the dynamic material along with displacements along the height of the silo wall and base shear force, etc., with remarkable precision. Some comparisons, via a change of soil and/or foundation conditions, were also made regarding the seismic pressure of the dynamic material pressure, displacement and base shear forces for both squat and slender silos. Comparing the analytical predictions to results from the numerical simulations produced good results. It can be concluded that the model can be used effectively to perform a broad suite of parametric studies, not only at the design stage but also as a reliable tool for predicting system behavior under the limit state of the system. The results and comprehensive analysis show that displacement effects and base shear forces generally decreased when soil was softer; however, soil structure interaction (SSI) did not have any considerable effects on squat silos and therefore need not be taken into practice.  相似文献   

15.
The technique of the wavefield polarization is applied to ambient vibrations recorded in the Mefite d’Ansanto area, an important non-volcanic natural emission of low temperature CO2 enriched gases. Twenty-five measurements were performed in the study area, eleven near the emission site and the other fourteen in different sites within an area of 5 km. Polarization is assessed both in the frequency and time domain through the individual-station horizontal-to-vertical spectral ratio and covariance-matrix analysis, respectively. We find a significant tendency of ground motion in the gas emission area to be polarized in the horizontal plane, with a N115° predominant trend. This polarization tends to disappear while moving far from the site. According to previous papers in other study areas, such a directional effect is likely caused by fault-induced fractures and tends to be orthogonal to the fracture strike. The predominant NW–SE regional faulting does not fit the N115° polarization direction. To explain observations, we propose an interpretation in terms of a NE–SW oriented, local transfer fault as inferred from the lineament analysis. The intersection of the damage zone of this fault with the regional NW–SE normal fault system could easily be the responsible for the gas emissions since it favors a locally increased crustal weakness.  相似文献   

16.
This issue of Hydrological Processes is dedicated to Dr. Edward P. Glenn, a frequent contributor to the journal, who suddenly passed away in late 2017. The articles within this volume are by a number of his former co-authors and others who have been greatly influenced by his professional work on hydrological processes.  相似文献   

17.
《国际泥沙研究》2023,38(5):739-753
Soil erosion is a significant threat in the Rif region in northern Morocco. Hence, accurate cartography of the phenomenon, magnitude, and extent of erosion in the area needs a simple, rapid, and economical method such as magnetic susceptibility (MS). The current study aims to: (i) determine the factors influencing the variation of soil MS, (ii) exploit MS to estimate soil loss using two approaches in different homogenous units characterized by the same climatic conditions with different edaphic characteristics (land use, slope, and lithology), and (iii) highlight the potential for using MS as a cheap and rapid tracer of a long term erosion and deposition processes. Mass-specific magnetic susceptibility at low (χlf) and high (χhf) frequencies were measured for 182 soil samples collected in the study area. A tillage homogenization (T-H) model and a simple proportional model (SPM) were applied on an undisturbed soil profile to predict the eroded soil depths for given cores. The results confirm that χlf is influenced by land use, slope, and soil type. Pedogenesis is the main factor affecting soil MS enhancement, indicated by homogenous magnetic mineralogy with a dominance of super-paramagnetic (SP) and stable single domain (SSD) magnetic grains. The study results show that higher soil losses have occurred in almost all the soil samples when applying the T-H model compared to application of the SPM. The SPM underestimates erosion due to its ignorance of the MS of the plow layers after erosion. The current study implies the high efficacy of magnetic susceptibility as the quick, easily measurable, simple, and cost-effective approach that can be used as an alternative technique for evaluating soil redistribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号