首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
本文利用一个三层剪切型结构模型在各种激励下的振动台试验,研究经验模分解(empirical mode decomposition,EMD)和小波分析(wavelet analysis,WA)在结构损伤识别中的应用。研究针对结构刚度突然损失的损伤类型,并在试验中通过连接在模型两侧的弹簧的断裂来模拟。利用EMD和WA分析试验记录到的结构加速度信号来识别结构损伤发生的时刻和位置。试验结果表明,EMD和WA方法均可利用分解信号中的尖峰准确识别结构损伤发生的时刻,并利用信号尖峰在结构上的空间分布来确定损伤位置。研究表明,EMD和WA都是进行结构在线检测的良好方法。  相似文献   

2.
Some limitations of the Hilbert–Huang transform (HHT) for nonlinear and nonstationary signal processing are remarked. As an enhancement to the HHT, a time varying vector autoregressive moving average (VARMA) model based method is proposed to calculate the instantaneous frequencies of the intrinsic mode functions (IMFs) obtained from the empirical mode decomposition (EMD) of a signal. By representing the IMFs as time varying VARMA model and using the Kalman filter to estimate the time varying model parameters, the instantaneous frequencies are calculated according to the time varying parameters, then the instantaneous frequencies and the envelopes derived from the cubic spline interpolation of the maxima of IMFs are used to yield the Hilbert spectrum. The analysis of the length of day dataset and the ground motion record El Centro (1940, N–S) shows that the proposed method offers advantages in frequency resolution, and produces more physically meaningful and readable Hilbert spectrum than the original HHT method, short-time Fourier transform (STFT) and wavelet transform (WT). The analysis of the seismic response of a building during the 1994 Northridge earthquake shows that the proposed method is a powerful tool for structural damage detection, which is expected as the promising area for future research.  相似文献   

3.
针对结构损伤检测中损伤的识别、定位以及程度的标定这三个独立并按一定先后顺序进行的检测过程,提出了一种能将以上三者同时进行的联合检测方法。该方法首先利用经验模态分解(EMD)方法将三层钢筋混凝土剪切型结构在各种损伤工况下的顶层地震作用加速度响应分解为若干固有模态函数(IMF)分量,然后以此IMF分量和未经EMD分解的原始加速度响应数据来构造损伤标识量,作为特征参数依次输入到径向基函数神经网络(RBFNN)中进行损伤检测。给出了应用此方法的具体步骤,通过仿真实验证明了利用该方法进行结构损伤一次检测的可行性和有效性,结果表明,由加速度响应经EMD分解而得到的IMF分量输入到RBFNN中能够更为精确地一次检测出结构所有损伤信息,并且RBFNN在结构损伤损度大时具有更好的检测效果。  相似文献   

4.

本文从日本沿岸选取了28个验潮站及联测的GPS站,利用奇异谱分析(Singular Spectrum Analysis,SSA)和SSA+自回归滑动平均(Auto Regression Moving Average,ARMA)方法预测了2014—2018年的近海海平面变化和地壳垂直变化.并用同时段的验潮及GPS的实际测量值进行验证,结果显示,SSA+ARMA预测的相对海平面精度为0.0357~0.0607 m,地壳垂直运动的精度为0.0049~0.0077 m,绝对海平面的精度为0.0433~0.0683 m,且三者SSA+ARMA的预测结果均优于只用SSA预测的结果.在此基础上本文利用SSA+ARMA预测了日本沿岸2019—2023年的近海绝对海平面变化,结果显示,2019—2023年的平均海面高较往年(2014—2018)升高0.0353 m,2003—2023年绝对海平面的变化率为0.0039 m·a-1,预测结果较为理想.

  相似文献   

5.
本文从日本沿岸选取了28个验潮站及联测的GPS站,利用奇异谱分析(Singular Spectrum Analysis,SSA)和SSA+自回归滑动平均(Auto Regression Moving Average,ARMA)方法预测了2014—2018年的近海海平面变化和地壳垂直变化.并用同时段的验潮及GPS的实际测量值进行验证,结果显示,SSA+ARMA预测的相对海平面精度为0.0357~0.0607 m,地壳垂直运动的精度为0.0049~0.0077 m,绝对海平面的精度为0.0433~0.0683 m,且三者SSA+ARMA的预测结果均优于只用SSA预测的结果.在此基础上本文利用SSA+ARMA预测了日本沿岸2019—2023年的近海绝对海平面变化,结果显示,2019—2023年的平均海面高较往年(2014—2018)升高0.0353 m,2003—2023年绝对海平面的变化率为0.0039 m·a-1,预测结果较为理想.  相似文献   

6.
光滑地表面毁伤检测方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
光滑地面毁伤程度评估非常重要,目前评估方法主要是基于光学图像,可是在恶劣的气候或环境条件下,很难获得光学图像,合成孔径雷达(SAR)克服了这个缺点. SAR图像是地表结构和电特征等地球物理参数的映射,通过SAR图像反演地表结构参数,可以推测出光滑地面毁伤程度. 本文以几何光学模型(GOM)为基础,建立神经网络反演模型,以获得光滑地表面受损后的粗糙度参数:表面均方根高度(σ)和表面相关长度(l),并进一步评估光滑地表面受损程度. 实验结果表明该方法可行.  相似文献   

7.
在地震子波非因果、混合相位的假设下,本文应用自回归滑动平均(ARMA)模型对地震子波进行参数化建模,并提出利用线性(矩阵方程法)和非线性(ARMA拟合方法)相结合的参数估计方式对该模型进行参数估计.在利用矩阵方程法确定模型参数范围的基础上,利用累积量拟合法精确估计参数.理论分析和仿真结果表明,该方式有较好的适应性:一方面提高了子波估计精度,避免单独使用矩阵方程法在短数据地震记录情况下可能带来的估计误差;另一方面提高了子波提取运算效率,降低了ARMA模型拟合方法参数范围确定的复杂性,避免了单纯使用滑动平均(MA)模型拟合法估计过多参数所导致的运算规模过大问题.初步应用结果表明该方法是有效可行的.  相似文献   

8.
In this paper, the adaptive chirplet decomposition combined with the Wigner-Ville transform and the empirical mode decomposition combined with the Hilbert transform are employed to process various non-stationary signals (strong ground motions and structural responses). The efficacy of these two adaptive techniques for capturing the temporal evolution of the frequency content of specific seismic signals is assessed. In this respect, two near-field and two far-field seismic accelerograms are analyzed. Further, a similar analysis is performed for records pertaining to the response of a 20-story steel frame benchmark building excited by one of the four accelerograms scaled by appropriate factors to simulate undamaged and severely damaged conditions for the structure. It is shown that the derived joint time–frequency representations of the response time histories capture quite effectively the influence of non-linearity on the variation of the effective natural frequencies of a structural system during the evolution of a seismic event; in this context, tracing the mean instantaneous frequency of records of critical structural responses is adopted.The study suggests, overall, that the aforementioned techniques are quite viable tools for detecting and monitoring damage to constructed facilities exposed to seismic excitations.  相似文献   

9.
Christian Onof 《水文研究》2013,27(11):1600-1614
Under future climate scenarios, possible changes of drought patterns pose new challenges for water resources management. For quantifying and qualifying drought characteristics in the UK, the drought severity indices of six catchments are investigated and modelled by two stochastic methods: autoregressive integrated moving average (ARIMA) models and the generalized linear model (GLM) approach. From the ARIMA models, autocorrelation structures are first identified for the drought index series, and the unexplained variance of the series is used to establish empirical relationships between drought and climate variables. Based on the ARIMA results, mean sea level pressure and possibly the North Atlantic Oscillation index are found to be significant climate variables for seasonal drought forecasting. Using the GLM approach, occurrences and amounts of rainfall are simulated with conditioning on climate variables. From the GLM‐simulated rainfall for the 1980s and 2080s, the probabilistic characteristics of the drought severity are derived and assessed. Results indicate that the drought pattern in the 2080s is less certain than for the 1961–1990 period, based on the Shannon entropy, but that droughts are expected to be more clustered and intermittent. The 10th and 50th quantiles of drought are likely higher in the 2080s scenarios, but there is no evidence showing the changes in the 90th quantile extreme droughts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
地震复谱分解技术及其在烃类检测中的应用   总被引:1,自引:1,他引:1       下载免费PDF全文
谱分解技术在地震解释领域已得到广泛应用,但常用的谱分解方法存在两方面的不足.一是时间分辨率低,难以对薄层进行刻画;二是在烃类检测中多解性强,难以区分流体类型.为了改善该问题,本文提出一种基于地震复谱分解技术的烃类检测方法.复谱分解是指用一个包含多个不同频率Ricker子波的复子波库对地震道进行分解,从而得到时变子波频率和相位信息的过程.借助稀疏反演技术复谱分解可以获得高分辨率的时频能量谱和时频相位谱.本文首先通过拟合算例验证了复谱分解方法刻画薄层的能力以及求取子波频率和相位的准确性.然后利用基于Kelvin-Voigt模型的黏弹波动方程数值模拟对衰减引起子波相位改变的原因进行了分析.最后通过实际资料应用展示了本文方法在储层预测中的高时间分辨率优势,验证了利用子波相位信息识别气藏的有效性.  相似文献   

11.
How to use cepstrum analysis for reservoir characterization and hydrocarbon detection is an initial question of great interest to exploration seismologists. In this paper, wavelet‐based cepstrum decomposition is proposed as a valid technology for enhancing geophysical responses in specific frequency bands, in the same way as traditional spectrum decomposition methods do. The calculation of wavelet‐based cepstrum decomposition, which decomposes the original seismic volume into a series of common quefrency volumes, employs a sliding window to move over each seismic trace sample by sample. The key factor in wavelet‐based cepstrum decomposition is the selection of the sliding‐window length as it limits the frequency ranges of the common quefrency section. Comparison of the wavelet‐based cepstrum decomposition with traditional spectrum decomposition methods, such as short‐time Fourier transform and wavelet transform, is conducted to demonstrate the effectiveness of the wavelet‐based cepstrum decomposition and the relation between these two technologies. In hydrocarbon detection, seismic amplitude anomalies are detected using wavelet‐based cepstrum decomposition by utilizing the first and second common quefrency sections. This reduces the burden of needing dozens of seismic volumes to represent the response to different mono‐frequency sections in the interpretation of spectrum decomposition in conventional spectrum decomposition methods. The model test and the application of real data acquired from the Sulige gas field in the Ordos Basin, China, confirm the effectiveness of the seismic amplitude anomaly section using wavelet‐based cepstrum decomposition for discerning the strong amplitude anomalies at a particular quefrency buried in the broadband seismic response. Wavelet‐based cepstrum decomposition provides a new method for measuring the instantaneous cepstrum properties of a reservoir and offers a new field of processing and interpretation of seismic reflection data.  相似文献   

12.
基于权值、阈值同步学习BP算法的结构损伤检测   总被引:2,自引:0,他引:2  
结合神经元模型,提出了一种新的BP算法:权值,阈值同步学习的BP算法,该方法将冲经元权值、阈值均看作自适应的学习变量,在学习过程中同步修改,从而提高传统BP算法的性能、应用于结构损伤检测的数值模拟算例表明,该方法收敛速度较快、检测精度较高,可以改善传统算法收敛速度慢、易出现过拟合的缺陷。  相似文献   

13.
The former Imperial County Services Building was a six-story reinforced concrete structure in the El Centro, California, severely damaged by the 1979 Imperial Valley earthquake. It represents a rare case of an instrumented building that has been damaged, and thus can serve as a full-scale benchmark to evaluate and further develop structural health monitoring methods. This paper presents an analysis of inter-story drifts, and of changes in the first NS and EW system frequencies (estimated from the ridge of the Gabor transform of the relative roof displacement response) as indicators of the occurrence of damage. The detected initial decreases of system frequency, of about 28% for NS and 24% for EW motions, are not believed to be due to severe damage. The subsequent decreases, of about 44% for NS and 21% for EW motions, are attributed to damage. Near the end of shaking, increases of about 35% for the NS and 36% for EW motions were detected. (These percentage changes were computed with respect to the previous value for particular interval, rather than a fixed reference). During the most severe shaking, the inter-story drifts exceeded 0.5% for NS and 1.5% for EW motions.  相似文献   

14.
合成孔径雷达(SAR)遥感是城镇建筑震害监测的重要手段之一.随着SAR传感器技术的最新发展,利用高分辨率、多极化SAR图像对城镇建筑地震灾害损毁进行探测和评估成为当前的研究趋势和热点.文中首先分析了建筑物及其震害损毁SAR成像特点,并系统综述了近15年来国内外基于SAR图像进行城镇建筑震害损毁探测与评估技术方法的研究和应用现状,评述了各类方法的优缺点,最后针对当前SAR传感器高分辨率、全极化的发展趋势,对有待于进一步研究的问题和技术发展趋势进行了展望.  相似文献   

15.
In this paper, the applicability of an auto‐regressive model with exogenous inputs (ARX) in the frequency domain to structural health monitoring (SHM) is established. Damage sensitive features that explicitly consider non‐linear system input/output relationships are extracted from the ARX model. Furthermore, because of the non‐Gaussian nature of the extracted features, Extreme Value Statistics (EVS) is employed to develop a robust damage classifier. EVS provides superior performance to standard statistical methods because the data of interest are in the tails (extremes) of the damage sensitive feature distribution. The suitability of the ARX model, combined with EVS, to non‐linear damage detection is demonstrated using vibration data obtained from a laboratory experiment of a three‐story building model. It is found that the vibration‐based method, while able to discern when damage is present in the structure, is unable to localize the damage to a particular joint. An impedance‐based active sensing method using piezoelectric (PZT) material as both an actuator and a sensor is then investigated as an alternative solution to the problem of damage localization. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
为研究地震子波相位对反射系数序列反演的影响,在自回归滑动平均(ARMA)模型描述子波的基础上,提出采用z域对称映射ARMA模型零极点的方法构造了一系列相同振幅谱、不同相位谱的地震子波,并结合谱除法对人工合成地震记录进行反射系数序列反演.理论分析表明,子波相位估计不准时反射系数序列反演结果中残留一个纯相位滤波器,该纯相位滤波器的相位谱为真实子波和构造子波的相位谱之差.采用丰度和变分作为评价方法,在反演结果中确定出真实的或准确的反射系数序列.仿真实验和实际数据处理结果也验证了子波相位对反射系数序列反演的影响规律和评价方法的有效性,为进一步提高反射系数序列反演结果精度指明了研究方向.  相似文献   

17.
The intrinsic vulnerability of masonry structures to seismic events makes structural health monitoring of the utmost importance for the conservation of the built heritage. The development of piezoresistive bricks, also termed smart bricks, is an innovative technology recently proposed by the authors for the monitoring of such structures. Smart bricks exhibit measurable variations in their electrical properties when subjected to external loads or, alternatively, strain self-sensing capabilities. Therefore, the deployment of a network of smart bricks into a masonry structure confers self-diagnostic properties to the host structure. In this light, this paper presents a theoretical investigation on the application of smart bricks to full-scale masonry structures for seismic assessment. This includes the study of the convenience of providing electrical isolation conditions to the sensors, as well as the effectiveness of smart bricks when installed into either new constructions or in pre-existing structures. Secondly, numerical results are presented on the seismic analysis of a three-dimensional masonry building equipped with a network of smart bricks. Finally, in order to map the strain field throughout the structure exploiting the outputs of a limited number of sensors, an interpolation-based strain reconstruction approach is proposed.  相似文献   

18.
Damage assessment of a structure involves acquiring and identifying dynamic characteristics of the structure and using these characteristics to evaluate behavior and performance. In this study, an unsymmetrical three‐story steel structure (fabricated with one weak column in the first floor) was tested on shaking table and subjected to a series of earthquake excitations with increasing level of excitation back to back. Besides, white noise excitation was also applied in between the earthquake excitation to serve as the reference state. Both the traditional sensing system (accelerometer and linear variable differential transformer) and the local optical tracker system were implemented in the structure to collect the vibration‐based responses. For operational modal analysis, structural response from white noise excitation will be used in this study. First, the traditional system identification using global response data is used (multivariate autoregressive (AR)‐model) to extract system natural frequencies and mode shapes from all different set of white noise responses after earthquake excitation. The migration of AR‐coefficient ellipse error from each sensor response was used to identify the damage location. Second, blind source separation technique was used to identify the modal contribution of the structure from each test, which provide information to detect the damage severity. Finally, from the local optical tracker array data, the principal component analysis was applied to quantify the earthquake‐induce local stress of the structural member. Combine the result from damage detection using global measurement and the identified local element stress, one can locate and quantify the damage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号