首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New apatite and zircon (U–Th)/He and apatite fission‐track (FT) data allow constraining the timing of Miocene–Pliocene extensional exhumation that affected the central part of the Dinarides‐Albanides‐Hellenides orogen. Apatite (U–Th)/He ages in the northern and western Internal Albanides range from 57 to 17 Ma, contrasting to younger ages of 5.2–9.3 Ma in the eastern Internal Albanides. Eastward younging is also reflected in zircon (U–Th)/He ages varying from 101 Ma in the north‐western Internal Albanides to 19–50 Ma in the east, as well as in recently published apatite FT ages. Thermal history predictions with the new data point to a phase of rapid exhumation of the eastern Internal Albanides around 6–4 Ma, while the western Internal Albanides record slower continuous exhumation since the Eocene. This asymmetric exhumation pattern is most likely linked to extensional reactivation of NE–SW‐trending thrusts east of the Mirdita zone and within the Korabi zone of the eastern Internal Albanides.  相似文献   

2.
A new set of apatite fission‐track and apatite (U–Th)/He data reveals a hitherto undated late Miocene exhumation pulse in the eastern part of the Eastern Alps. While distinct parts of the study area, including the Seckauer Tauern, have been at near surface conditions (<100 °C) since the Eocene, the neighbouring Niedere Tauern experienced enhanced cooling and exhumation in the middle Miocene and again at the late Miocene/Pliocene boundary. Middle Miocene exhumation is interpreted as a result of tectonic escape and convergence that operated simultaneously during lateral extrusion of the Eastern Alps. As the higher late Miocene/Pliocene exhumation rates are restricted to a single tectonic block, namely the Niedere Tauern, we infer a tectonic trigger that is probably related to a change in the external stress field that affected the Alps during this time.  相似文献   

3.
Gangdese batholith in the southern Lhasa block is a key location for exploring the Tibetan Plateau uplift and exhumation history. We present the new low-temperature thermochronological data from two north–south traverses in the central Gangdese batholith to reveal their cooling histories and corresponding controls. Zircon fission track ages show prominent clusters ranging from 23.7 to 51.6 Ma, apatite fission track ages from 9.4 to 36.9 Ma, apatite (U–Th)/He ages between 9.5 and 12.3 Ma, and one zircon (U–Th)/He age around 77.8 Ma. These new data and thermal modeling, in combination with the regional geological data, suggest that the distinct parts of Gangdese batholith underwent different cooling histories resulted from various dynamic mechanisms. The Late Eocene–Early Oligocene exhumation of northern Gangdese batholith, coeval with the magmatic gap, might be triggered by crust thickening followed by the breakoff of Neotethyan slab, while this stage of exhumation in southern Gangdese batholith cannot be clearly elucidated probably because the most of plutonic rocks with the information of this cooling event were eroded away. Since then, the northern Gangdese batholith experienced a slow and stable exhumation, while the southern Gangdese batholith underwent two more stages of exhumation. The Late Oligocene–Early Miocene rapid cooling might be a response to denudation caused by the Gangdese Thrust or related to the regional uplift and exhumation in extensional background. By the early Miocene, the rapid exhumation was associated with localized river incision or intensification of Asian monsoon, or north–south normal fault.  相似文献   

4.
The Cretaceous-Eocene Xigaze forearc basin is a crucial data archive for understanding the tectonic history of the Asian continental margin prior to and following collision with India during the early Cenozoic Era. This study reports apatite and zircon(U-Th)/He thermochronologic data from fourteen samples from Albian-Ypresian Xigaze forearc strata to determine the degree and timing of heating(burial) and subsequent cooling(exhumation) of two localities along the Yarlung suture zone(YSZ) near the towns of Saga and Lazi. Thirty-seven individual zircon He ages range from 31.5 ± 0.8 Ma to6.06 ± 0.18 Ma,with the majority of grains yielding ages between 30 Ma and 10 Ma. Twenty apatite He ages range from 12.7 ± 0.5 Ma to 3.9 ± 0.3 Ma,with the majority of grains yielding ages between 9 Ma and 4 Ma. These ages suggest that the Xigaze forearc basin was heated to 140-200 ℃ prior to cooling in Oligocene-Miocene time. Thermal modeling supports this interpretation and shows that the samples were buried to maximum temperatures of ~140-200 0 C by 35-21 Ma, immediately followed by the onset of exhumation. The zircon He and apatite He dataset and thermal modeling results indicate rapid exhumation from ~21 Ma to 15 Ma, and at ~4 Ma. The 21-15 Ma thermochronometric signal appears to be regionally extensive, affecting all the lithotectonic units of the YSZ, and coincides with movement along the north-vergent Great Counter Thrust system. Thrusting, coupled with enhanced erosion possibly related to the paleo-Yarlung River, likely drove Early Miocene cooling of the Xigaze forearc basin.In contrast, the younger phase of rapid exhumation at ~4 Ma was likely driven by enhanced rock uplift in the footwall of north-striking rifts that cross-cut the YSZ.  相似文献   

5.
To determine the long-term landscape evolution of the Albertine Rift in East Africa, low-temperature thermochronology was applied and the cooling history constrained using thermal history modelling. Acquired results reveal (1) “old” cooling ages, with predominantly Devonian to Carboniferous apatite fission-track ages, Ordovician to Silurian zircon (U–Th)/He ages and Jurassic to Cretaceous apatite (U–Th–Sm)/He ages; (2) protracted cooling histories of the western rift shoulder with major phases of exhumation in mid-Palaeozoic and Palaeogene to Neogene times; (3) low Palaeozoic and Neogene erosion rates. This indicates a long residence time of the analysed samples in the uppermost crust, with the current landscape surface at a near-surface position for hundreds of million years. Apatite He cooling ages and thermal history models indicate moderate reheating in Jurassic to Cretaceous times. Together with the cooling age distribution, a possible Albertine high with a distinct relief can be inferred that might have been a source area for the Congo Basin.  相似文献   

6.
Northern Svalbard represents a basement high surrounded by the Norwegian‐Greenland Sea/Fram Strait, Eurasian Basin, the Barents Shelf and the onshore Central Tertiary Basin (CTB). Published apatite fission track (AFT) data indicate Mesozoic differential, fault‐controlled uplift and exhumation of the region. Thermal history modelling of published and new AFT and (U–Th–Sm)/He ages of 51–153 Ma in the context of regional stratigraphy and geomorphology implies at least two, possibly three, uplift and exhumation stages since late Mesozoic, separated by episodes of subsidence and sediment deposition. Late Cretaceous/Palaeocene exhumation and subsequent burial appear to be related with the transition of compressional to transpressional collision of Svalbard and Greenland during the Eurekan Orogeny. Renewed exhumation since the Oligocene probably results from passive margin formation after the separation of Svalbard and Greenland, when a new offshore sedimentary basin opened west of Svalbard. Final uplift since the Miocene eventually re‐exposed the palaeosurface of northern Svalbard.  相似文献   

7.
We present a database of geochronological data documenting the post-collisional cooling history of the Eastern Alps. This data is presented as (a) georeferenced isochrone maps based on Rb/Sr, K/Ar (biotite) and fission track (apatite, zircon) dating portraying cooling from upper greenschist/amphibolite facies metamorphism (500–600 °C) to 110 °C, and (b) as temperature maps documenting key times (25, 20, 15, 10 Ma) in the cooling history of the Eastern Alps. These cooling maps facilitate detecting of cooling patterns and cooling rates which give insight into the underlying processes governing rock exhumation and cooling on a regional scale.The compilation of available cooling-age data shows that the bulk of the Austroalpine units already cooled below 230 °C before the Paleocene. The onset of cooling of the Tauern Window (TW) was in the Oligocene-Early Miocene and was confined to the Penninic units, while in the Middle- to Late Miocene the surrounding Austroalpine units cooled together with the TW towards near surface conditions.High cooling rates (50 °C/Ma) within the TW are recorded for the temperature interval of 375–230 °C and occurred from Early Miocene in the east to Middle Miocene in the west. Fast cooling post-dates rapid, isothermal exhumation of the TW but was coeval with the climax of lateral extrusion tectonics. The cooling maps also portray the diachronous character of cooling within the TW (earlier in the east by ca. 5 Ma), which is recognized within all isotope systems considered in this study.Cooling in the western TW was controlled by activity along the Brenner normal fault as shown by gradually decreasing ages towards the Brenner Line. Cooling ages also decrease towards the E–W striking structural axis of the TW, indicating a thermal dome geometry. Both cooling trends and the timing of the highest cooling rates reveal a strong interplay between E–W extension and N–S orientated shortening during exhumation of the TW.  相似文献   

8.
The Tiegelongnan is the first discovered porphyry–epithermal Cu (Au) deposit of the Duolong ore district in Tibet, China. In order to constrain the thermal history of this economically valuable deposit and the rocks that host it, eight samples were collected to perform a low‐temperature thermochronology analysis including apatite fission track, apatite, and zircon (U‐Th)/He. Apatite fission track ages of all samples are between 34 ± 3 and 67 ± 5 Ma. Mean apatite (U‐Th)/He ages show wide distribution, ranging from 29.3 ± 2.5 to 56.4 ± 9.1 Ma. Mean zircon (U‐Th)/He ages range from 79.5 ± 12.0 to 97.9 ± 4.4 Ma. The exhumation rate of the Tiegelongnan deposit was 0.086 km m.y.?1 between 98 and 47 Ma and decreased to 0.039 km m.y.?1 since 47 Ma. The mineralized intrusion was emplaced at a depth of about 1400 m in the Tiegelongnan deposit. Six cooling stages were determined through HeFTy software according to low‐temperature thermochronology and geochronology data: (i) fast cooling stage between 120 and 117 Ma, (ii) fast cooling stage between 117 and 100 Ma, (iii) slow cooling stage between100 and 80 Ma, (iv) fast cooling stage between 80 and 45 Ma, (v) slow cooling stage between 45 and 30 Ma, and (vi) slow cooling stage (<30 Ma). Cooling stages between 120 and 100 Ma are mainly caused by magmatic–hydrothermal evolution, whereas cooling stages after 100 Ma are mainly caused by low‐temperature thermal–tectonic evolution. The Bangong–Nujiang Ocean subduction led to the formation of the Tiegelongnan ore deposit, which was buried by the Meiriqiecuo Formation andesite lava and thrust nappe structure; then, the Tiegelongnan deposit experienced uplift and exhumation caused by the India–Asia collision.  相似文献   

9.
We present a multi‐chronometric approach for reconstructing deep‐time thermal histories using southern Baffin Island as a case study. This continuous thermal history begins with the Palaeoproterozoic Trans‐Hudson Orogeny and is derived from inverse and forward models that integrate thermochronometers spanning some 500°C: new apatite U–Pb ages and K‐feldspar 40Ar/39Ar multi‐diffusion domain data, published (U–Th)/He zircon ages and new multi‐kinetic fission‐track results. Integration of data from a wider temperature range reduces ambiguities in thermal‐history modelling and permits us to constrain the timing of geological processes including, extended post‐orogenic cooling, enhanced later Proterozoic cooling, and then episodic burial and exhumation in the Palaeozoic–Mesozoic.  相似文献   

10.
(U‐Th)/He ages on apatite obtained in the vicinity of the Têt fault hydrothermal system show a large variability. In the inner damage zone adjacent to the fault core, where fluid flows are concentrated, AHe ages display a large scatter (3–41 Ma) and apatite ageing. Samples from the outer damage zone show young ages with less dispersion (0.9–21.1 Ma) and apatite rejuvenation. Outside the damage zone, ages are consistent with the regional exhumation history between 20 and 12 Ma. The important age dispersion found in the damage zone is interpreted as the result of 4He mobility during fluid infiltration. Our results show that thermochronological data close to a fault should be interpreted with caution, but may offer a new tool for geothermal exploration.  相似文献   

11.
Independent geochronological and thermal modelling approaches are applied to a biostratigraphically exceptionally well‐controlled borehole, Alcsútdoboz‐3 (Ad‐3), in order to constrain the age of Cenozoic geodynamic events in the western Pannonian Basin and to test the efficacy of the methods for dating volcanic rocks. Apatite fission track and zircon U–Pb data show two volcanic phases of Middle Eocene (43.4–39.0 Ma) and Early Oligocene (32.72 ± 0.15 Ma) age respectively. Apatite (U–Th)/He ages (23.8–14.8 Ma) and independent thermal and subsidence history models reveal a brief period of heating to 55–70 °C at ~17 Ma caused by an increased heat‐flow related to crustal thinning and mantle upwelling. Our results demonstrate that, contrary to common perception, the apatite (U–Th)/He method is likely to record ‘apparent’ or ‘mixed’ ages resulting from subsequent thermal events rather than ‘cooling’ or ‘eruption’ ages directly related to distinct geological events. It follows that a direct conversion of ‘apparent’ or ‘mixed’ (U‐Th)/He ages into cooling, exhumation or erosion rates is incorrect.  相似文献   

12.
Fission track dating on detrital zircons of Alpine debris in the Swiss molasse basin provides information about the erosion history of the Central Alps and the thermal evolution of source terrains. During Oligocene times, only sedimentary cover nappes, and Austroalpine basement units were eroded. Incision into Austroalpine basement units is indicated by increasing importance of Cretaceous cooling ages in granite pebbles upsection. Erosion of Penninic basement units started between 25 and 20 Ma. Early Oligocene zircon FT ages show that Penninic basement units were exposed at ∼20 Ma. Deeper Penninic units of the Lepontine Dome became exposed first at ∼14 Ma, contemporaneously with the opening of the Tauern window in the Eastern Alps. A middle Miocene cooling rate of 40 °C Myr−1 is deduced for the Lower Penninic units of the Lepontine Dome.  相似文献   

13.
The post‐Variscan thermal history of the Erzgebirge (Germany) is the result of periods of sedimentary burial, exhumation and superimposed hydrothermal activity. The timing and degree of thermal overprint have been analysed by zircon and apatite (U–Th)/He and apatite fission track thermochronology. The present‐day surface of the Erzgebirge was exhumed to a near‐surface position after the Variscan orogeny. Thermal modelling reveals Permo‐Mesozoic burial to temperatures of up to 80–100 °C, although the sedimentary cover thins out towards the north resulting in maximum burial temperatures of less than 40 °C. This thermal pattern was locally modified by Cretaceous hydrothermal activity that reset the zircon (U–Th)/He thermochronometer along ore veins. The thermal models show no significant regional exhumation during Cenozoic times, indicating that the peneplain‐like morphology of the basement is a Late Cretaceous feature.  相似文献   

14.
《Chemical Geology》2006,225(1-2):91-120
Low temperature thermochronologic techniques (e.g. apatite fission track (AFT) thermochronology and (U–Th)/He dating) constrain near-surface Tt paths and are often applied to uplift/denudation and landscape evolution studies. Samples collected in vertical profiles from granitic walls on either side of the Ferrar Glacier, southern Victoria Land, Antarctica were analyzed using AFT thermochronology and apatite (U–Th)/He dating to further constrain the lowest temperature thermal history of this portion of the Transantarctic Mountains. AFT central ages vary systematically with elevation and together with track length information define a multi-stage cooling/denudation history in the Cretaceous and early Tertiary. Apatite (U–Th)/He single grain age variation with elevation is not as systematic with considerable intra-sample age variation. Although many complicating factors (e.g., U- and Th-rich (micro)inclusions, fluid inclusions, variation in crystal size, α-particle ejection correction, zonation and α-particle ejection correction, implantation of He into a crystal or impediment of He diffusion out of a crystal, and 147Sm-derived α-particles) may contribute to age dispersion, we found that variation in single grain ages correlated with cooling rate. Samples that cooled relatively quickly have less variation in single grain ages, whereas samples that cooled relatively slowly (< 3 °C/m.y.) or resided within an (U–Th)/He partial retention zone (HePRZ) prior to more rapid cooling have a comparatively greater variation in ages.Decay of U and Th via α-particle emission creates a 4He concentration profile dependent upon the initial parent [U,Th] within a crystal. Variation of single grain ages for samples with non-homogeneous [U,Th] distributions will be enhanced with long residence time in the partial retention zone (i.e., slow cooling) because of the relative importance of loss via volume diffusion and loss via α-particle ejection with respect to the [U,Th] zonation and the grain boundary. Correction of ages for α-particle ejection (FT correction factor) typically assumes uniform U and Th distribution within the crystal and when applied to a population of crystals with different U and Th distributions will enhance the variation in ages. Most complicating factors (listed above) for apatite (U–Th)/He ages result in ages that are “too old”. We propose that if considerable variation in (U–Th)/He single grain ages exists, that a weighted mean age is determined once outlier single crystal ages are excluded using the criterion of Chauvenet or a similar approach. We suggest that the “true age” or most representative age for that age population lies between the minimum (U–Th)/He age and the weighted mean age. We apply this approach, coupled with composite age profiles to better constrain the Tt history of the profiles along the Ferrar Glacier. Significant intra-sample variation in single crystal apatite (U–Th)/He ages and other minerals dated by the (U–Th)/He method should be expected, especially when the cooling rate is slow. The variation of (U–Th)/He single crystal ages is therefore another parameter that can be used to constrain low-temperature thermal histories.  相似文献   

15.
Multi‐method thermochronology along the Vakhsh‐Surkhob fault zone reveals the thermotectonic history of the South Tian Shan–Pamirs boundary. Apatite U/Pb analyses yield a consistent age of 251 ± 2 Ma, corresponding to cooling below ~550–350°C, related to the final closure of the Palaeo‐Asian Ocean and contemporaneous magmatism in the South Tian Shan. Zircon (U–Th–Sm)/He ages constrain cooling below ~180°C to the end of the Triassic (~200 Ma), likely related either to deformation induced by the Qiangtang collision or to the closure of the Rushan Ocean. Apatite fission track thermochronology reveals two low‐temperature (<120°C) thermal events at ~25 Ma and ~10 Ma, which may be correlated with tectonic activity at the distant southern Eurasian margin. The late Miocene cooling is confirmed by apatite (U–Th–Sm)/He data and marks the onset of mountain building within the South Tian Shan that is ongoing today.  相似文献   

16.
Highly elevated and well-preserved peneplains are characteristic geomorphic features of the Tibetan plateau in the northern Lhasa Terrane, north–northwest of Nam Co. The peneplains were carved in granitoids and in their metasedimentary host formations. We use multi-method geochronology (zircon U–Pb and [U–Th]/He dating and apatite fission track and [U–Th]/He dating) to constrain the post-emplacement thermal history of the granitoids and the timing and rate of final exhumation of the peneplain areas. LA-ICP-MS U–Pb geochronology of zircons yields two narrow age groups for the intrusions at around 118 Ma and 85 Ma, and a third group records Paleocene volcanic activity (63–58 Ma) in the Nam Co area. The low-temperature thermochronometers indicate common age groups for the entire Nam Co area: zircon (U–Th)/He ages cluster around 75 Ma, apatite fission track ages around 60 Ma and apatite (U–Th)/He ages around 50 Ma. Modelling of the thermochronological data indicates that exhumation of the basement blocks took place in latest Cretaceous to earliest Paleogene time. By Middle Eocene time the relief was already flat, documented by a thin alluvial sediment sequence covering a part of the planated area. The present-day horst and graben structure of the peneplains is a Late Cenozoic feature triggered by E–W extension of the Tibetan Plateau. The new thermochronological data precisely bracket the age of the planation to Early Eocene, i.e. between ca. 55 and 45 Ma. The erosional base level can be deduced from the presence of Early Cretaceous zircon grains in Eocene strata of Bengal Basin. The sediment generated during exhumation of the Nam Co area was transported by an Early Cenozoic river system into the ocean, suggesting that planation occurred at low elevation.  相似文献   

17.
We identified a Neogene rapid uplift-denudation event of the South Tianshan based on apatite (U–Th)/He and apatite fission track (AFT) ages in Tertiary rocks of the Tarim basin, using borehole samples. The (U–Th)/He thermochronology can be used to reveal the tectono-thermal events with lower temperature than that of AFT thermochronology and has not been used previously to study the uplift of the Tianshan Mountain. Using these data, we show the relationship between the uplift of the South Tianshan and the subsidence/deposition of the northern Tarim basin during the Neogene. The apatite helium ages reveal the migration of uplift, erosion and deposition in the northern Tarim basin. A rapid uplift of the South Tianshan during the Miocene and a corresponding rapid subsidence in the northern Tarim basin occurred. However, in the Pliocene, the Kuqa Depression and South Tianshan uplifted and eroded at the same time and in turn provided the detrital source rocks for the Northern Uplift of the Tarim basin. In contrast to earlier studies, we arrive at the conclusion that the South Tianshan experienced rapid uplift in the Miocene based on (U–Th)/He data of apatite obtained from borehole samples collected in the Tarim basin itself, and not from the bordering mountain chain. Combined apatite (U–Th)/He and fission track thermochronometry enables reconstruction of thermal histories of sedimentary rocks between 40 and 120°C, and this has implications for the generation of liquid hydrocarbon in the 65–120°C range in the basin. Thermal and burial histories of typical samples were also modelled to show the rapid uplift in our study. Our works not only provide a new evidence for the South Tianshan uplift but also indicate that there is a coupling between uplift and subsidence in the South Tianshan and adjacent northern part of the Tarim basin, which controlled hydrocarbon accumulation in the Kuqa Depression and Northern Uplift of the Tarim basin.  相似文献   

18.
The timing of the closure of the Bangong Ocean between the Lhasa and South Qiangtang Terranes in central Tibet and the resulting crustal thickening are still under debate. We integrate published apatite fission track and (U–Th)/He thermochronometer data with new zircon (U–Th)/He ages from eight samples and with structural profiles to document that the South Qiangtang Terrane experienced slow exhumation between 200 and 150 Ma, associated with the opening of the Bangong Ocean. Accelerated exhumation (around 0.2–0.3 mm/a) of the South Qiangtang Terrane was initiated at around 150 Ma. This exhumation event is interpreted to reflect collision between the Lhasa and South Qiangtang Terranes after closure of the Bangong Ocean, associated with crustal thickening via thick‐skinned folding and thrusting within the South Qiangtang Terrane. The amalgamation of the Lhasa and South Qiangtang Terranes recorded here may represent the first stage of crustal thickening in the central Tibetan Plateau.  相似文献   

19.
In North Africa, the Algerian margin is made of basement blocks that drifted away from the European margin, namely the Kabylia, and docked to the African continental crust in the Early Miocene. This young margin is now inverted, as dated Miocene (17 Ma) granites outcrop alongshore, evidencing kilometre‐scale exhumation since their emplacement. Age of inversion is actually unknown, although Pliocene is often considered in the offshore domain. To decipher the exhumation history of the margin between 17 and 5 Ma, we performed a coupled apatite fission track (AFT) and (U–Th–Sm)/He (AHe) study in the Cap Bougaroun Miocene granite. AFT dates range between 7 ± 1 and 10 ± 1 Ma, and mean AHe dates between 8 ± 2 and 10 ± 1 Ma. These data evidence rapid and multi‐kilometre exhumation during Tortonian times. This event cannot be related to slab break‐off but instead to the onset of margin inversion that has since developed as an in‐sequence north‐verging deforming prism.  相似文献   

20.
The Brenner Base Tunnel will connect Innsbruck (Austria) and Franzensfeste (Italy) by piercing two of the most important fault structures of the Alps: the Periadriatic fault system (PFS) and the Southern limit of Alpine metamorphism (SAM). (U‐Th)/He dating (apatite) and fission‐track analysis (apatite and zircon) on samples taken during excavation reveal a complex pattern of exhumation through time. The results yield temporal constraints for relative vertical block movement and fault activity. Furthermore, they indicate differential uplift of the northern block along the ~E–W striking PFS and allow locating the position of the SAM in the overtilted nappe stack south of the Tauern Window. Our data strongly support, for the first time, an ongoing north‐side‐up movement along this section of the PFS until at least the end of Miocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号