首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent data on He diffusion challenge the temperature sensitivity of apatite (U–Th)/He thermochronology: the damage induced by recoil of U and Th decay series during emission of α particles (α-recoil damage) has been proposed to modify He-diffusion properties through time. However, we propose that annealing of these irradiation defects may be an important phenomenon and may be significant in case of slowly-cooled or reheated basement rocks. To test this hypothesis, we developed a quantitative model including an explicit treatment of α-recoil damage, annealing, and their effect on He-diffusion kinetics, and calibrate it against literature data. Our model is based on two hypotheses: (1) helium is in equilibrium between an apatite crystal and its defects and (2) alpha-recoil damage annealing can be described analogously to fission-track annealing. This model has been embedded into a Monte Carlo simulation of helium production/ejection/diffusion and applied to data from the French Massif Central; a complex slowly-cooled terrain with burial reheating, where the thermal history has been constrained by previous fission-track (FT) data including FT length distributions. (U–Th)/He ages are close to the FT ages from the same samples and are generally reproducible among replicates, but some samples present He-age dispersion that is not correlated with crystal size. Our model reproduces the Massif Central data very well except for three samples where He ages are older than corresponding FT ages. We show that annealing of irradiation damage has an important impact on retentivity of helium and that the He content, [He] is only a rough approximation of the damage level. In particular our results show that independence of He ages on crystal sizes, in case of reheated samples, is a clear indication of the higher He retentivity induced by α-recoil defects and that an explicit treatment of defect annealing is required for a correct interpretation of (U–Th)/He ages in such a case. More generally a correlation with the crystal size can bring information on the thermal path only if the age of defects, well represented by the fission-track age, is available, due to the dependence of the partial retention zone on damages. Conversely, in case of rapid cooling or for samples having low U and Th contents, damage effects can be ignored without significant effects on He ages.  相似文献   

2.
3.
中国东北的那丹哈达岭地区位于中亚造山带最东部,它的中新生代热演化史是认识陆内造山活动的关键,但该地区相关研究比较薄弱,其中—新生代的热演化史缺乏有效的约束.因此本文应用磷灰石裂变径迹、锆石和磷灰石(U-Th)/He等多种低温热年代学方法,对东北那丹哈达岭地区的侵入岩开展构造热演化历史研究.热年代学数据和热史模拟结果表明,该地区存在早白垩世晚期—晚白垩世(110~80Ma)、古新世—始新世(60~40 Ma)两期快速冷却事件,其冷却速率分别为3.42~4.81℃/Ma和1.43~1.83℃/Ma.结合区域构造和应力分析,我们认为两期冷却事件均受构造活动控制.第一期快速冷却事件是古太平洋板块北西向俯冲引发的构造叠加到鄂霍特莫茨克地块并与东亚大陆边缘碰撞引起;而第二期快速冷却事件是古太平洋俯冲的板片后撤使东亚陆缘处于伸展环境,造成东北大面积的剥露作用引起.这次研究增强了对东亚陆缘中新生代构造-热演化历史的认识,对于理解大陆内部造山带的构造变形过程与机理具有重要意义.  相似文献   

4.
The Ligurian Alps segment of the Alpine–Apennine orogen in NW Italy is unconformably covered by Upper Eocene to Holocene sediments in the Tertiary Piedmont Basin (TPB) and Po Plain. These sediments dip towards the north demonstrating the erosional nature of the southern border of the succession and implying that the adjacent orogenic belt formed the substratum rather than the margin of the sedimentary basin. Apatite (U–Th)/He and fission track thermochronology shows that the orogen first subsided and was buried at >4 km from 30 to 26 Ma and began its exhumation thereafter. From 26 Ma to present, this upward movement was contemporaneous with subsidence in the northern TPB. The couple exhumation in the S and subsidence in the N migrated northwards through time. Vertical movements in the area are similar to those reconstructed in Corsica. In both cases, the onset of exhumation becomes younger away from the Ligurian‐Provençal basin and has little correlation with the opening of the surrounding oceanic basins.  相似文献   

5.
李晓蓉  张波  张进江  陈思雨  张磊 《地质学报》2022,96(4):1143-1162
喜马拉雅造山带中部亚东地区位于藏南拆离系与南北向裂谷交汇处,是研究青藏高原南北向伸展和东西向伸展构造体制转换的关键地区,该地区新生代构造变形与冷却剥蚀过程对理解青藏高原的隆升历史和深部- 浅部动力学机制具有重要意义。本文对亚东地区开展两个剖面的磷灰石和锆石(U- Th)/He低温热年代学以及QTQt热史模拟分析,结果显示亚东地区大喜马拉雅结晶岩系剖面的10个磷灰石(U- Th)/He年龄分布范围为11.23~4.87 Ma,亚东- 谷露裂谷剖面的锆石和磷灰石(U- Th)/He年龄分别介于9.02~6.48 Ma和8.63~6.13 Ma。综合区域热年代学资料提出亚东地区大喜马拉雅结晶岩系自中新世以来经历了两期快速冷却事件:第一期为中新世中期(16~11 Ma),由藏南拆离系(哲古拉拆离断层)伸展拆离作用控制的快速冷却,11 Ma前后冷却速率的明显转折变化指示了剥蚀驱动机制的转变,高原伸展体制开始向东西向伸展转换;第二期为中新世晚期到上新世(10~5 Ma),期间存在由于亚东- 谷露裂谷伸展活动而导致的构造剥露,产生了9~6 Ma极快速冷却,平均冷却速率为290 ℃/Ma,约束了亚东- 谷露裂谷的启动时间为10 Ma左右。沿亚东藏南拆离系向南剖面上,磷灰石(U- Th)/He年龄数据总体呈现“老—新—老”的变化趋势,暗示了经历过部分熔融的大喜马拉雅结晶岩系通过中下地壳渠道流侧向挤出。综合已有的大喜马拉雅结晶岩系的结晶、冷却年代数据,提出大喜马拉雅结晶岩系的剥蚀冷却过程呈现多阶段和不等速特征,即存在25~11 Ma、10~5 Ma以及约3 Ma以来三个主要快速冷却阶段,受控于区域构造活动或者气候剧烈变化。  相似文献   

6.
To evaluate the potential of (U–Th)/He geochronometry and thermochronometry of zircon, we measured He diffusion characteristics in zircons from a range of quickly and slowly cooled samples, (U–Th)/He ages of zircons from the quickly cooled Fish Canyon Tuff, and age-paleodepth relationships for samples from 15 to 18 km thick crustal section of the Gold Butte block, Nevada. (U–Th)/He ages of zircons from the Fish Canyon Tuff are consistent with accepted ages for this tuff, indicating that the method can provide accurate ages for quickly cooled samples. Temperature-dependent He release from zircon is not consistent with thermally activated volume diffusion from a single domain. Instead, in most samples apparent He diffusivity decreases and activation energy (Ea) increases as cycled step-heating experiments proceed. This pattern may indicate a range of diffusion domains with distinct sizes and possibly other characteristics. Alternatively, it may be the result of ongoing annealing of radiation damage during the experiment. From these data, we tentatively suggest that the minimum Ea for He diffusion in zircon is about 44 kcal/mol, and the minimum closure temperature (Tc, for a cooling rate of 10 °C/myr) is about 190 °C. Age–paleodepth relationships from the Gold Butte block suggest that the base of the zircon He partial retention zone is at pre-exhumation depths of about 9.5–11 km. Together with constraints from other thermochronometers and a geothermal gradient derived from them in this location, the age–depth profile suggests a He Tc of about 200 °C for zircon, in reasonable agreement with our interpretation of the laboratory measurements. A major unresolved question is how and when radiation damage effects become significant for He loss from this mineral.  相似文献   

7.
A new set of apatite fission‐track and apatite (U–Th)/He data reveals a hitherto undated late Miocene exhumation pulse in the eastern part of the Eastern Alps. While distinct parts of the study area, including the Seckauer Tauern, have been at near surface conditions (<100 °C) since the Eocene, the neighbouring Niedere Tauern experienced enhanced cooling and exhumation in the middle Miocene and again at the late Miocene/Pliocene boundary. Middle Miocene exhumation is interpreted as a result of tectonic escape and convergence that operated simultaneously during lateral extrusion of the Eastern Alps. As the higher late Miocene/Pliocene exhumation rates are restricted to a single tectonic block, namely the Niedere Tauern, we infer a tectonic trigger that is probably related to a change in the external stress field that affected the Alps during this time.  相似文献   

8.
9.
Borehole and surface samples from the Archean Tanzania Craton were analysed for apatite fission track(AFT) and(U-Th)/He data with the aim of deciphering cooling histories of the basement rocks. Fission track dates from borehole and outcrop samples are Carboniferous-Permian(345± 33.3 Ma to271±31.7 Ma) whereas(U-Th)/He dates are Carboniferous-Triassic(336±45.8 Ma to 213±29 Ma) for outcrop grains and are consistently younger than corresponding AFT dates. Single grain(U-Th)/He dates from the borehole are likely to be flawed by excessive helium implantation due to their very low effective uranium contents, radiation damage and grain sizes. All AFT and(U-Th)/He dates are significantly younger than the stratigraphic ages of their host rocks, implying that the samples have experienced Phanerozoic elevated paleo-temperatures. Considerations of the data indicate removal of up to 9 km overburden since the Palaeozoic.Thermal modelling reveals a protracted rapid cooling event commencing during the early Carboniferous(ca. 350 Ma) at rates of 46 m/Ma ending in the Triassic(ca. 220 Ma). The model also suggests minor cooling during the Cretaceous of the samples to surface temperatures. The suggested later cooling event remains to be tested. The major cooling phase during the Carboniferous is interpreted to be associated with compressional tectonics during the Variscan Orogeny sensu far field induced stresses. Coeval sedimentation in the Karoo basins in the region suggests that most of the cooling of cratonic rocks during the Carboniferous was associated with denudation.  相似文献   

10.
11.
This study uses zircon and apatite fission‐track (FT) analyses to reveal the exhumation history of the granitoid samples collected from the Lesser Hinggan Mountains, northeast China. A southeast to northwest transect across the Lesser Hinggan Mountains yielded zircon FT ages between 89.8 ± 5.7 and 100.4 ± 8.6 Ma, and apatite FT ages between 50.6 ± 13.8 and 74.3 ± 4.5 Ma with mean track lengths between 11.7 ± 2.0 and 12.8 ± 1.7 µm. FT results and modelling identify three stages in sample cooling history spanning the late Mesozoic and Cenozoic eras. Stage one records rapid cooling from the closure temperature of zircon FT to the high temperature part of the apatite FT partial annealing zone (∼210–110 °C) during ca. 95 to 65 Ma. Stage two records a period of relative slow cooling (∼110–60 °C) taking place between ca. 65 and 20 Ma, suggesting that the granitoids had been exhumed to the depth of ∼1−2 km. Final stage cooling (60–20 °C) occurred since the Miocene at an accelerated rate bringing the sampled rocks to the Earth's surface. The maximum exhumation is more than 5 km under a steady‐state geothermal gradient of 35 °C/km. Integrated with the tectonic setting, this exhumation is possibly led by the Pacific Plate subduction combined with intracontinental orogeny associated with asthenospheric upwelling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
In this study (U‐Th)/He dating of the Penglai zircons, which occur as abundant megacrysts in Neogene alkaline basalts in northern Hainan Province, south‐eastern China, was undertaken. A weighted mean age of 4.06 ± 0.35 Ma (2s) with a mean square weighted deviation (MSWD) of 1.79 was obtained from eighteen fragments of four zircon megacrysts using single‐crystal laser fusion He determinations and the U‐Th isotope dilution (ID) method. The (U‐Th)/He ages are consistent, homogeneous and systematically slightly younger than the preferred 206Pb/238U age of 4.4 ± 0.1 Ma (95% confidence interval) determined by ID‐TIMS and subsequently published U‐Pb results. The U‐Pb isotopic system in zircon has a high closure temperature of ~ 900 °C, and the preferred U‐Pb age may record both the time since eruption and the zircon residence time in the magma chamber. In contrast, the closure temperature of the zircon (U‐Th)/He system is ~ 190 °C and the zircon megacrysts were brought quickly to the surface by the host basaltic magma. Thus, the (U‐Th)/He age represents the timing of the eruption. Based on the unlimited quantity, large grain size, mostly weak broad zoning, rapid cooling and homogenous (U‐Th)/He ages, we consider the Penglai zircons suitable for use as a reference material in (U‐Th)/He isotope geochronology.  相似文献   

13.
New fission‐track ages on zircon and apatite (ZFT and AFT) from the south‐western internal Alps document a diachronous cooling history from east to west, with cooling rates of 15–19 °C Ma−1. In the Monviso unit, the ZFT ages are 19.6 Ma and the AFT ages are 8.6 Ma. In the eastern Queyras, ZFT ages range from 27.0 to 21.7 Ma and AFT ages from 14.2 to 9.4 Ma. In the western Queyras, ZFT ages are between 94.7 and 63.1 Ma and AFT ages are between 22.2 and 22.6 Ma. The Chenaillet ophiolite yields ages of 118.1 Ma on ZFT and 67.9 Ma on AFT. The combination of these new FT data with the available petrological and geochronological data emphasize an earlier exhumation in subduction context before 30 Ma, then in collision associated with westward tilting of the Piedmont zone.  相似文献   

14.
(U‐Th)/He ages on apatite obtained in the vicinity of the Têt fault hydrothermal system show a large variability. In the inner damage zone adjacent to the fault core, where fluid flows are concentrated, AHe ages display a large scatter (3–41 Ma) and apatite ageing. Samples from the outer damage zone show young ages with less dispersion (0.9–21.1 Ma) and apatite rejuvenation. Outside the damage zone, ages are consistent with the regional exhumation history between 20 and 12 Ma. The important age dispersion found in the damage zone is interpreted as the result of 4He mobility during fluid infiltration. Our results show that thermochronological data close to a fault should be interpreted with caution, but may offer a new tool for geothermal exploration.  相似文献   

15.
斑岩型矿床多形成于汇聚型板块边界.由于其较浅的就位深度,大部分古老的斑岩型矿床很容易受到后期的剥蚀而消失殆尽.研究斑岩型矿床成矿后的埋藏和去顶过程对于深入理解矿床的保存条件和区域找矿前景至关重要.新疆西准噶尔西部的苏云河斑岩型钼矿床形成于晚石炭世,是一处保存良好的斑岩型矿床,为我们研究前中生代斑岩成矿系统的保存条件提供...  相似文献   

16.
An apatite fission track (AFT) study of crystalline basement in the central Gawler Craton reveals apparent ages in the range of ca 430–58 Ma. The majority of samples underwent protracted monotonic cooling related to regional Paleozoic exhumation, consistent with long-term crustal stability as expected for cratonic interiors. However, multiple samples show evidence of Late Cretaceous–early Paleogene reheating, indicating a more dynamic low-temperature history. Inverse time–temperature modelling of AFT data indicates varying degrees of thermal overprinting between ~60 and 110°C, with substantially overprinted and negligibly overprinted samples in close proximity (<1 km). Time–temperature histories for samples that experienced thermal overprinting reveal localised Late Cretaceous–early Paleogene (ca 100–50 Ma) heating that is significantly younger than the Paleozoic–early Mesozoic exhumation recorded regionally. The highly localised nature and non-systematic patterns of overprinting combined with the lack of major Mesozoic or Cenozoic fault structures are not consistent with a regional thermal event associated with substantial reburial and later exhumation. Rather, localised reheating was most likely caused by heated groundwater from the once-overlying Mesozoic Eromanga Basin aquifer system, whose modern discharge margin (~400 km north of the study area) is marked by thermal mound springs that produce fluids with temperatures up to 100°C. Only basement rocks in close proximity to fluid pathways in the overlying aquifer would have recorded reheating, resulting in the observed sporadic distribution of partially overprinted samples. Thermal history modelling indicates rejuvenated apatite grains cooled to near-surface temperatures in the latest Cretaceous–Paleogene. This was likely in response to local removal of the overlying Eromanga Basin aquifer unit due to a relatively minor degree of exhumation (≤1 km) recorded regionally, which consequently disrupted the anomalous heating mechanism. These results show that the flow of heated groundwater is a feasible reheating mechanism for low-temperature thermochronometers, resulting in cooling patterns that may become decoupled from exhumation in cratonic interiors.  相似文献   

17.
The (U‐Th)/He dating technique has been widely used for several decades to constrain the timing of low temperature geological processes. Recent research has shown that the commonly used reference material (the Durango apatite) often yields dispersed fragment dates that are beyond analytical uncertainties. Here, we report a new apatite (U‐Th)/He dating reference material, MK‐1, which was collected from the Mogok metamorphic belt in Burma. Electron probe microanalysis and backscattered electron images of two randomly selected fragments indicate that this apatite is chemically and structurally homogeneous. We performed single‐grain (U‐Th)/He dating on thirty randomly selected fragments of this material. (U‐Th)/He dating results from multiple laboratories show that fragments of the MK‐1 apatite megacryst yielded reproducible results, with a mean date of 18.0 ± 0.2 Ma. The Th/U ratio of this apatite is homogeneous. Nine randomly selected fragments registered a narrow range of effective uranium (eU) mass fractions (326–354 μg g?1), with a mean value of 336.6 ± 10.3 μg g?1. Twenty‐four in situ (U‐Th)/He dates yielded a mean value of 18.0 ± 0.2 Ma (MSWD = 0.41), indistinguishable from the results obtained by the conventional method. All the results suggest that this apatite has the potential to become a new reference material for (U‐Th)/He geochronology.  相似文献   

18.
阿尔金-祁连山位于青藏高原北缘, 其新生代的隆升-剥露过程记录了高原变形和向北扩展的历史, 对探讨高原隆升动力学具有重要意义。本文采用岩屑磷灰石裂变径迹测年分析, 利用岩屑的统计特征限定阿尔金-祁连山新生代的隆升-剥露过程。磷灰石裂变径迹测试结果表明, 阿尔金-祁连山地区存在4个阶段的抬升冷却: 21.1~19.4 Ma、13.5~10.5 Ma、9.0~7.3 Ma、4.3~3.8 Ma。其中, 4.3~3.8 Ma抬升冷却事件仅体现在祁连山地区, 9.0~7.3 Ma抬升冷却事件在区内普遍存在, 且9.0~7.3 Ma隆升-剥露造就了现代阿尔金-祁连山的地貌。区域资料分析表明, 9~7 Ma(或者8~6 Ma)期间, 青藏高原北缘、东缘, 甚至整个中国西部地区发生了大规模、区域性的抬升, 中国现今"西高"的构造地貌形态可能于当时开始形成。阿尔金-祁连山地区4期抬升冷却事件与青藏高原的隆升阶段有很好的对应关系, 应该是对印度-欧亚板块碰撞的响应。  相似文献   

19.
伊朗扎格罗斯造山带是世界上最年轻的造山带之一,前人对其构造演化历史的研究尚存争议。前陆盆地蕴藏着丰富的造山带热史信息,为研究造山带的隆升和剥露历史提供了重要途径。本研究选取位于扎格罗斯前陆盆地前缘中部的Kuh-E Bedush向斜和Kuh-E Murdeh向斜翼部出露的第三纪陆相红层(Agha Jari组)为研究对象,共采集11个粗砂岩样品进行磷灰石(U-Th)/He测试分析。11个样品共得到38个单颗粒年龄,年龄区间为0.8~79.9Ma。大部分样品的单颗粒年龄比较分散,表明这些样品没有发生完全热重置。相反,位于Murdeh向斜剖面最底部的样品,(U-Th)/He年龄小于其对应的地层年龄,并且集中分布在8.3~6.8Ma,表明该样品发生了完全重置并记录了最后一次剥露事件的时间。因此,我们认为扎格罗斯前陆盆地于晚中新世~7.5 Ma经历了一期快速剥露事件。此外,我们发现未重置的(U-Th)/He年龄大致分布在四个时间段:晚白垩纪—早古新世、早—中始新世、渐新世、早—中中新世。根据所得热年龄并结合前人研究设定了三种不同的热史,正演模拟结果与实际样品拟合较好,由此推断出前陆中部Agha J...  相似文献   

20.
To constrain the post-Pan-African evolution of the Arabian–Nubian Shield, macro-scale tectonic studies, paleostress and fission track data were performed in the Eastern Desert of Egypt. The results provide insights into the processes driving late stage vertical motion and the timing of exhumation of a large shield area. Results of apatite, zircon and sphene fission track analyses from the Neoproterozoic basement indicate two major episodes of exhumation. Sphene and zircon fission track data range from 339 to 410 Ma and from 315 to 366 Ma, respectively. The data are interpreted to represent an intraplate thermotectonic episode during the Late Devonian–Early Carboniferous. At that time, the intraplate stresses responsible for deformation, uplift and erosion, were induced by the collision of Gondwana with Laurussia which started in Late Devonian times. Apatite fission track data indicate that the second cooling phase started in Oligocene and was related to extension, flank uplift and erosion along the actual margin of the Red Sea. Structural data collected from Neoproterozoic basement, Late Cretaceous and Tertiary sedimentary cover suggest two stages of rift formation. (1) Cretaceous strike-slip tectonics with sub-horizontal σ1 (ENE/WSW) and σ3 (NNW/SSE), and sub-vertical σ2 resulted in formation of small pull-apart basins. Basin axes are parallel to the trend of Pan-African structural elements which acted as stress guides. (2) During Oligocene to Miocene the stress field changed towards horizontal NE–SW extension (σ3), and sub-vertical σ1. Relations between structures, depositional ages of sediments and apatite fission track data indicate that the initiation of rift flank uplift, erosion and plate deformation occurred nearly simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号