首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Sedimentology》2018,65(3):639-669
Active margin continental slope outcrops from the Eocene Juncal Formation, the Eocene La Jolla Group and the Miocene Capistrano Formation display sedimentary structures and depositional geometries that suggest deposition from Froude supercritical flow, based on comparison to strata produced by flume experiments. These deposits range from boulder‐size soft clasts and cobble‐size hard clasts to silt and mud, and display long‐wavelength and low‐amplitude convex‐up and concave‐up geometries that range from centimetre to hundreds of metres scale, low‐angle foresets and backsets, and common internal and bounding erosion surfaces from centimetres to tens of metres in depth. In places, planar laminations, structureless beds and normally graded beds are laterally or vertically associated with such structures. In other places, consistent backsets or deep and steep‐sided scours occur. This study aimed to discuss the origin of the observed bedforms, contributed to recognition of supercritical flow deposits on continental slopes and expanded the outcrop examples of supercritical flow deposits to silt and mud. This work implies that the erosive and powerful Froude supercritical flow turbidity currents may have a substantial impact on erosional and depositional dynamics on deepwater slopes, especially on active margins due to the steep gradients and high sediment supply.  相似文献   

2.
Supercritical‐flow phenomena are fairly common in modern sedimentary environments, yet their recognition and analysis remain difficult in the stratigraphic record. This fact is commonly ascribed to the poor preservation potential of deposits from high‐energy supercritical flows. However, the number of flume data sets on supercritical‐flow dynamics and sedimentary structures is very limited in comparison with available data for subcritical flows, which hampers the recognition and interpretation of such deposits. The results of systematic flume experiments spanning a broad range of supercritical‐flow bedforms (antidunes, chutes‐and‐pools and cyclic steps) developed in mobile sand beds of variable grain sizes are presented. Flow character and related bedform patterns are constrained through time‐series measurements of bed configurations, flow depths, flow velocities and Froude numbers. The results allow the refinement and extension of some widely used bedform stability diagrams in the supercritical‐flow domain, clarifying in particular the morphodynamic relations between antidunes and cyclic steps. The onset of antidunes is controlled by flows exceeding a threshold Froude number. The transition from antidunes to cyclic steps in fine to medium‐grained sand occurs at a threshold mobility parameter. Sedimentary structures associated with supercritical bedforms developed under variable aggradation rates are revealed by means of combining flume results and synthetic stratigraphy. The sedimentary structures are compared with examples from field and other flume studies. Aggradation rate is seen to exert an important control on the geometry of supercritical‐flow structures and should be considered when identifying supercritical bedforms in the sedimentary record.  相似文献   

3.
4.
Tsunamis versus storm deposits from Thailand   总被引:3,自引:0,他引:3  
Along the Andaman (west) coast of Thailand, the 2004 tsunami depositional features associated with the 2004 tsunami were used to describe the characteristics of tsunamis in a place far away from the effect of both recent and ancient storms. The current challenge is that a lack of precise sedimentological characteristics have been described that will differentiate tsunami deposits from storm deposits. Here, in sedimentological senses, we reviewed the imprints of the sedimentological characteristics of the 2004 tsunami and older deposits and then compared them with storm deposits, as analyzed from the deposits found along the eastern (Gulf of Thailand; GOT) coast of Thailand. We discuss the hydraulic conditions of the 2004 tsunami and its predecessors, on the Andaman coast, and compare them to storm flows found on the coast of the GOT. Similar to an extensive tsunami inflow deposit, a storm flow overwash has very similar sedimentary structures. Well-preserved sedimentary structures recognized in sand sheets from both tsunami and storms include single and multiple normal gradings, reverse grading, parallel, incline and foreset lamina, rip-up clasts, and mud drapes. All these sedimentary structures verify the similarity of tsunami and storm inflow behavior as both types of high-energy flow start to scour the beach zone. Antidunes are likely to be the only unique internal sedimentary structures observed in the 2004 tsunami deposit. Rip-up clasts are rare within storm deposits compared to tsunami deposits. We found that the deposition during the outflow from both tsunami and storms was rarely preserved, suggesting that it does not persist for very long in the geological record.  相似文献   

5.
高流态尤其是超临界流动的水动力学机制及其床沙底形演化的研究相较于次临界流动具有一定的差距。季节性河流以高流态为主要沉积搬运过程,为超临界流的形成与保存提供了有利条件,是研究超临界流沉积的重要载体。在季节性河流沉积体系研究进展调研基础上,明确了其基本定义、判别标准及沉积特征。通过对内蒙古岱海湖北部典型季节性冲积体系——半滩子河流发育的沉积构造进行研究表明:随着低流态向高流态演化,沙丘底形(Dune)逐步向上部平坦床沙底形(Upper plane bed)过渡,形成了低角度/S型交错层理;在高流态初期,形成了上部平坦床沙成因的平行层理;随着流动强度逐渐增大,流动机制演变为超临界流,平坦床沙逐渐向逆行沙丘(Antidune)过渡,形成了与平行层理伴生的逆行沙丘交错层理;当流动强度进一步增大,携带沉积物的流体发生较强的水力跳跃,形成了流槽与冲坑(Chute-and-Pool)。半滩子河流现代沉积中发育的高流态沉积与区域内气候变化具有明确的响应关系,表明河流沉积中广泛发育的高流态沉积构造指示了强烈季节性变化的气候特征。  相似文献   

6.
This study proposes a tsunami depositional model based on observations of emerged Holocene tsunami deposits in outcrops located in eastern Japan. The model is also applicable to the identification of other deposits, such as those laid down by storms. The tsunami deposits described were formed in a small bay of 10–20-m water depth, and are mainly composed of sand and gravel. They show various sedimentary structures, including hummocky cross-stratification (HCS) and inverse and normal grading. Although, individually, the sedimentary structures are similar to those commonly found in storm deposits, the combination of vertical stacking in the tsunami deposits makes a unique pattern. This vertical stacking of internal structures is due to the waveform of the source tsunamis, reflecting: 1) extremely long wavelengths and wave period, and 2) temporal changes of wave sizes from the beginning to end of the tsunamis.

The tsunami deposits display many sub-layers with scoured and graded structures. Each sub-layer, especially in sandy facies, is characterized by HCS and inverse and normal grading that are the result of deposition from prolonged high-energy sediment flows. The vertical stack of sub-layers shows incremental deposition from the repeated sediment flows. Mud drapes cover the sub-layers and indicate the existence of flow-velocity stagnant stages between each sediment flow. Current reversals within the sub-layers indicate the repeated occurrence of the up- and return-flows.

The tsunami deposits are vertically divided into four depositional units, Tna to Tnd in ascending order, reflecting the temporal change of wave sizes in the tsunami wave trains. Unit Tna is relatively fine-grained and indicative of small tsunami waves during the early stage of the tsunami. Unit Tnb is a protruding coarse-grained and thickest-stratified division and is the result of a relatively large wave group during the middle stage of the tsunami. Unit Tnc is a fine alternation of thin sand sheets and mud drapes, deposited from waning waves during the later stage of the tsunami. Unit Tnd is deposited during the final stage of the tsunami and is composed mainly of suspension fallout. Cyclic build up of these sub-layers and depositional units cannot be explained by storm waves with short wave periods of several to ten seconds common in small bays.  相似文献   


7.
ABSTRACT Mixed‐sand‐and‐gravel beaches are a distinctive type of coarse‐clastic beach. Ground‐penetrating radar (GPR) and photographic records of previous excavations are used to investigate the stratigraphy and internal sedimentary structure of mixed‐beach deposits at Aldeburgh in Suffolk, south‐east England. The principles of radar stratigraphy are used to describe and interpret migrated radar reflection profiles obtained from the study site. The application of radar stratigraphy allows the delineation of both bounding surfaces (radar surfaces) and the intervening beds or bed sets (radar facies). The deposits of the main backshore berm ridge consist of seaward‐dipping bounding surfaces that are gently onlapped by seaward‐dipping bed sets. Good correspondence is observed between a sequence of beach profiles, which record development of the berm ridge on the backshore, and the berm ridge's internal structure. The beach‐profile data also indicate that backshore berm ridges at Aldeburgh owe their origin to discrete depositional episodes related to storm‐wave activity. Beach‐ridge plain deposits at the study site consist of a complex, progradational sequence of foreshore, berm‐ridge, overtop and overwash deposits. Relict berm‐ridge deposits, separated by seaward‐dipping bounding surfaces, form the main depositional element beneath the beach‐ridge plain. However, the beach ridges themselves are formed predominantly of vertically stacked overtop/overwash units, which lie above the berm‐ridge deposits. Consequently, beach‐ridge development in this progradational, mixed‐beach setting must have occurred when conditions favoured overtopping and overwashing of the upper beachface. Interannual to decadal variations in wave climate, antecedent beach morphology, shoreline progradation rate and sea level are identified as the likely controlling factors in the development of such suitable conditions.  相似文献   

8.
Onshore tsunami deposits may consist of inflow and backflow deposits. Grain sizes can range from clay to boulders of several metres in diameter. Grain‐size distributions reflect the mode of deposition and may be used to explore the hydrodynamic conditions of transport. The absence of unique sedimentary features identifying tsunami deposits makes it difficult in some cases to distinguish inflow from backflow deposits. On Isla Mocha off central Chile, the 27 February 2010 tsunami left behind inflow and backflow deposits of highly variable character. Tsunami inflow entrained sands, gravels and boulders in the upper shoreface, beach, and along coastal terraces. Boulders of up to 12 t were transported up to 300 m inland and 13 m above sea‐level. Thin veneers of coarse sand were found up to the maximum runup at 600 m inland and 19 m above sea‐level. Backflow re‐mobilized most of the sands and gravels deposited during inflow. The orientation of erosional structures indicates that significant volumes of sediment were entrained also during backflow. A major feature of the backflow deposits are widespread prograding fans of coarse sediment developed downcurrent of terrace steps. Fan sediments are mostly structureless but include cross‐bedding, imbrication and ripples, indicating deposition from bedload traction currents. The sediments are poorly sorted, grain sizes range between medium to coarse sand to gravel and pebbles. An assessment of the backflow transport conditions of this mixed material suggests that bedload transport at Rouse numbers >2·5 was achieved by supercritical flows, whereas deposition occurred when currents had decelerated sufficiently on the low‐gradient lower coastal plain. The sedimentary record of the February 2010 tsunami at Isla Mocha consists of backflow deposits to more than 90%. Due to the lack of sedimentary structures, many previous studies of modern tsunami sediments found that most of the detritus was deposited during inflow. This study demonstrates that an uncritical use of this assumption may lead to erroneous interpretations of palaeotsunami magnitudes and sedimentary processes if unknowingly applied to backflow deposits.  相似文献   

9.
Washover sand bodies commonly develop along microtidal coastlines in beach/barrier island or spit settings. Wave runup, usually in conjunction with an abnormally high water level, may overtop the most landward berm of the beach and the foredune crest, if one exists, to produce overwash and subsequent runoff across the more landward subaerial surface. Two main elements of the resulting deposit are the washover fan and runoff channel. Newly formed, small-scale washover deposits were examined along the Outer Banks, North Carolina, near Pt Mugu, California, and at Presque Isle (Lake Erie), Pennsylvania. The fans were formed in response to unidirectional landward transport, and the runoff channels in response to unidirectional flow usually in a landward direction, but sometimes in shore-parallel then seaward direction. Where overwash carried across the fan surface and entered a pond or lagoon, a small-scale delta (microdelta) developed. In this case, the washover fan consisted of two subfacies, the wetted, but ‘subaerial’ part of the fan and the subaqueous washover delta. Flow associated with the development of the fan and runoff channel produced distinctive sets of bedforms and internal stratification. High velocity discontinuous surges moving across the fan surface resulted in the development of a plane bed and subhorizontal to low-angle (landward dipping) planar stratification which comprised the major part of the fan. Similarly, rhomboid forms were produced by high velocity sheet flow across the fan surface. Where flow carried into a standing body of water, delta-type foreset strata developed. For this case, the lateral structural sequence was subhorizontal, planar stratification merging landward into landward dipping, delta (tabular) foreset strata. In the runoff setting, where flow became channelized and continuous, both upper-flow and lower-flow regime currents were typical. Upper-flow regime bedforms included antidunes, standing waves, and plane beds. The most commonly observed lower-flow regime bedforms included microdelta-like bars, low-amplitude bars, linguoid ripples, and sinuous-crested current ripple trains. The sets of sedimentary structures comprising modern washover sand bodies provide criteria for the identification of similar deposits in ancient sediments and for more specific interpretation of the environment.  相似文献   

10.
Bedforms and associated sedimentary structures, formed under supercritical water flow over an aggrading sand bed, were studied in a laboratory flume. Although the geometry and hydraulic characteristics of these bedforms (antidunes, chutes-and-pools) are well known, their internal structures are not. The objectives of the study were to: (1) describe the three-dimensional geometry of the sedimentary structures and examine their mode of origin; (2) develop a relationship between the geometries of the sedimentary structures and the formative bedforms and; (3) identify criteria that distinguish these sedimentary structures from similar types, such as hummocky and swaley cross-strata. Sedimentary structures associated with antidunes are primarily lenticular laminasets with concave-upward erosional bases (troughs) in which laminae generally dip upstream or fill the troughs symmetrically. These laminasets are associated with growth and upstream migration of water-surface waves and antidunes, and with surface-wave breaking and filling of antidune troughs respectively. In addition, sets of downstream-dipping laminae are produced by rapid migration of asymmetrical bedwaves immediately after wave breaking. Rare convex-upward laminae define the shape of antidunes that developed under stationary water-surface waves. The laminasets and internal laminae extend across the width of the flume, but vary in thickness and inclination, indicating that the antidunes have some degree of three dimensionality. The length and maximum thickness of the lenticular laminasets are approximately half of the length and height of formative antidunes, providing a potentially useful tool for palaeohydraulic reconstructions. The sets of downstream-dipping laminae formed under antidunes are distinctive and do not occur in hummocky and swaley cross-strata. Sedimentary structures associated with chutes-and-pools are sets of upstream-dipping laminae and structureless sand.  相似文献   

11.
《Sedimentology》2018,65(2):540-560
Bedforms related to Froude‐supercritical flow, such as cyclic steps, are increasingly frequently observed in contemporary fluvial and marine sedimentary systems. However, the number of observations of sedimentary structures formed by supercritical‐flow bedforms remains limited. The low number of observations might be caused by poor constraints on criteria to recognize these associated deposits. This study provides a detailed quantification on the mechanics of a fluvial cyclic step system, and their depositional signature. A computational fluid‐dynamics model is employed to acquire a depth‐resolved image of a cyclic step system. New insights into the mechanics of cyclic steps shows that: (i) the hydraulic jump is, in itself, erosional; (ii) there are periods over which the flow is supercritical throughout and there is no hydraulic jump, which plays a significant role in the morphodynamic behaviour of cyclic steps; and (iii) that the depositional signature of cyclic steps varies with rate of aggradation. Previous work has shown that strongly aggradational cyclic steps, where most of the deposited sediment is not reworked, create packages of backsets, bound upstream and downstream by erosive surfaces. Here, the modelling work is focussed on less aggradational conditions and more transportational systems. The depositional signature in such systems is dominated by an amalgamation of concave‐up erosional surfaces and low‐angle foresets and backsets creating lenticular bodies. The difference between highly aggradational cyclic steps and low‐aggradation steps can be visible in outcrop both by the amount of erosional surfaces, as well as the ratio of foreset to backset, with backsets being indicative of more aggradation.  相似文献   

12.
A pit located near Ballyhorsey, 28 km south of Dublin (eastern Ireland), displays subglacially deposited glaciofluvial sediments passing upwards into proglacial subaqueous ice‐contact fan deposits. The coexistence of these two different depositional environments at the same location will help with differentiation between two very similar and easily confused glacial lithofacies. The lowermost sediments show aggrading subglacial deposits indicating a constrained accommodation space, mainly controlled by the position of an overlying ice roof during ice‐bed decoupling. These sediments are characterized by vertically stacked tills with large lenses of tabular to channelized sorted sediments. The sorted sediments consist of fine‐grained laminated facies, cross‐laminated sand and channelized gravels, and are interpreted as subglaciofluvial sediments deposited within a subglacial de‐coupled space. The subglaciofluvial sequence is characterized by glaciotectonic deformation structures within discrete beds, triggered by fluid overpressure and shear stress during episodes of ice/bed recoupling (clastic dykes and folds). The upper deposits correspond to the deposition of successive hyperpycnal flows in a proximal proglacial lake, forming a thick sedimentary wedge erosively overlying the subglacial deposits. Gravel facies and large‐scale trough bedding sand are observed within this proximal wedge, while normally graded sand beds with developed bedforms are observed further downflow. The building of the prograding ice‐contact subaqueous fan implies an unrestricted accommodation space and is associated with deformation structures related to gravity destabilization during fan spreading (normal faults). This study facilitates the recognition of subglacial/submarginal depositional environments formed, in part, during localized ice/bed coupling episodes in the sedimentary record. The sedimentary sequence exposed in Ballyhorsey permits characterization of the temporal framework of meltwater production during deglaciation, the impact on the subglacial drainage system and the consequences on the Irish Sea Ice Stream flow mechanisms.  相似文献   

13.
钟广法 《沉积学报》2023,41(1):52-72
超临界流在现代沉积环境中几乎无处不在,但相关沉积物却极少从地层记录中被辨识出来,这是当前沉积学研究所面临的一个困境,文中称之为“超临界流沉积问题”。按弗劳德数增大顺序,超临界流可依次形成稳定逆行沙丘、不稳定逆行沙丘、急滩—深潭及周期阶坎等底形,相应的地貌动力学也从同相位体制(逆行沙丘)逐渐过渡为水跃体制(急滩—深潭和周期阶坎)。相对于明渠流,浊流因折算密度低而更易成为超临界流。超临界浊流底形的长波长、低幅度、逆流(坡)迁移特性,决定了其沉积物发育特征的后积层理、近平行—低角度交错层理、与水跃有关的快速堆积及冲刷—充填和建造—充填构造。超临界浊流沉积可以通过沉积体的几何形态(包括波长/波高比、平面和剖面形态等)和内部沉积特征(包括波脊逆坡迁移、沉积构造、粒度变化趋势及沉积相组合等)的综合分析加以鉴别。露头、岩心分析与高分辨率地震、浅剖、多波束测深等地球物理资料的综合,是准确鉴别超临界浊流沉积单元的重要途径。本文对超临界浊流地貌动力学研究进展进行综述,并对地层记录中超临界浊流沉积的鉴别标志及相关问题进行探讨。  相似文献   

14.
Preservation of cyclic steps contrasts markedly with that of subcritical‐flow bedforms, because cyclic steps migrate upslope eroding their lee face and preserving their stoss side. Such bedforms have not been described from turbidite outcrops and cores as yet. A conceptual block diagram for recognition of cyclic steps in outcrop has been constructed and is tested by outcrop studies of deep water submarine fan deposits of the Tabernas Basin in south‐eastern Spain. Experimental data indicate that depositional processes on the stoss side of a cyclic step are controlled by a hydraulic jump, which decelerates the flow and by subsequent waxing of the flow up to supercritical conditions once more. The hydraulic jump produces a large scour with soft‐sediment deformation (flames) preserved in coarse‐tail normal‐graded structureless deposits (Bouma Ta), while near‐horizontal, massive to stratified top‐cut‐out turbidite beds are found further down the stoss side of the bedform. The architecture of cyclic steps can best be described as large, up to hundreds of metres, lens‐shaped bodies that are truncated by erosive surfaces representing the set boundaries and that consist of nearly horizontal lying stacks of top‐cut‐out turbidite beds. The facies that characterize these bedforms have traditionally been described as turbidite units in idealized vertical sequences of high‐density turbidity currents, but have not yet been interpreted to represent bedforms produced by supercritical flow. Their large size, which is in the order of 20 m for gravelly and up to hundreds of metres for sandy steps, is likely to have hindered their recognition in outcrop so far.  相似文献   

15.
X‐ray computed microtomography is used to obtain high resolution imagery of a historical tsunami deposit in Andalusia, Spain (1755 Lisbon tsunami). The technique allows characterization of grain‐size distribution, structures, component analysis and sedimentary fabric of fine‐grained unconsolidated tsunami deposits at resolutions down to particle scale. The results are validated by comparing to data obtained using other techniques such as laser diffraction, anisotropy of magnetic susceptibility and X‐ray microfluorescence on the same deposits. Specific technical details such as sampling, scanning and image processing methods, and further improvements are addressed. The use of X‐ray computed microtomography provides new insights into the stratigraphy of the deposits and gives access to significantly more detailed view of key sedimentary features such as mudlines, rip‐up clasts, crude laminations, convolutions, floating outsized clasts and contacts between successive units. This analysis of the 1755 tsunami deposits using X‐ray computed microtomography allows the proposal of new hypotheses for the sedimentary processes forming tsunami deposits. Deposition by settling is limited and the section analysed here is dominated by a high shear stress leading to the development of traction carpets, with laminated mudlines corresponding to the basal frictional region of these carpets. The onset of the tsunami backwash is marked by a micro‐vortex resembling Kelvin–Helmoltz instabilities.  相似文献   

16.
Four sand units deposited by tsunamis and one sand unit deposited by storm surge(s) were identified in a muddy marsh succession in a narrow coastal lowland along the Pacific coast of central Japan. Tsunamis in ad 1498, 1605, 1707 and 1854 that were related to large subduction‐zone earthquakes along the Nankai Trough, and storm surges in 1680 and/or 1699 were responsible for the deposition of these sand units. These sand units are distinguished by lithofacies, sedimentary structures, grain‐size and mineral composition, and radiocarbon ages; their ages are supported by events in local historical records. The tsunami deposits in the study area are massive or parallel‐laminated sands, with associated intraclasts, gravels, draping mud layers and, rarely, a return‐flow subunit. The storm surge deposits are devoid of these characteristics, and are composed of groups of thin, current ripple‐laminated sand layers. The differences in sedimentary structures between the tsunami and storm surge deposits are attributed to the different characteristics of tsunami and storm waves.  相似文献   

17.
Climbing dune‐scale cross‐statification is described from Late Ordovician paraglacial successions of the Murzuq Basin (SW Libya). This depositional facies is comprised of medium‐grained to coarse‐grained sandstones that typically involve 0·3 to 1 m high, 3 to 5 m in wavelength, asymmetrical laminations. Most often stoss‐depositional structures have been generated, with preservation of the topographies of formative bedforms. Climbing‐dune cross‐stratification related to the migration of lower‐flow regime dune trains is thus identified. Related architecture and facies sequences are described from two case studies: (i) erosion‐based sandstone sheets; and (ii) a deeply incised channel. The former characterized the distal outwash plain and the fluvial/subaqueous transition of related deltaic wedges, while the latter formed in an ice‐proximal segment of the outwash plain. In erosion‐based sand sheets, climbing‐dune cross‐stratification results from unconfined mouth‐bar deposition related to expanding, sediment‐laden flows entering a water body. Within incised channels, climbing‐dune cross‐stratification formed over eddy‐related side bars reflecting deposition under recirculating flow conditions generated at channel bends. Associated facies sequences record glacier outburst floods that occurred during early stages of deglaciation and were temporally and spatially linked with subglacial drainage events involving tunnel valleys. The primary control on the formation of climbing‐dune cross‐stratification is a combination between high‐magnitude flows and sediment supply limitations, which lead to the generation of sediment‐charged stream flows characterized by a significant, relatively coarse‐grained, sand‐sized suspension‐load concentration, with a virtual absence of very coarse to gravelly bedload. The high rate of coarse‐grained sand fallout in sediment‐laden flows following flow expansion throughout mouth bars or in eddy‐related side bars resulted in high rates of transfer of sands from suspension to the bed, net deposition on bedform stoss‐sides and generation of widespread climbing‐dune cross‐stratification. The later structure has no equivalent in the glacial record, either in the ancient or in the Quaternary literature, but analogues are recognized in some flood‐dominated depositional systems of foreland basins.  相似文献   

18.
《Sedimentology》2018,65(3):721-744
Storm surges generated by tropical cyclones have been considered a primary process for building coarse‐sand beach ridges along the north‐eastern Queensland coast, Australia. This interpretation has led to the development of palaeotempestology based on the beach ridges. To better identify the sedimentary processes responsible for these ridges, a high‐resolution chronostratigraphic analysis of a series of ridges was carried out at Cowley Beach, Queensland, a meso‐tidal beach system with a >3 m tide range. Optically stimulated luminescence ages indicate that 10 ridges accreted seaward over the last 2500 to 2700 years. The ridge crests sit +3·5 to 5·1 m above Australian Height Datum (ca mean sea‐level). A ground‐penetrating radar profile shows two distinct radar facies, both of which are dissected by truncation surfaces. Hummocky structures in the upper facies indicate that the nucleus of the beach ridge forms as a berm at +2·5 m Australian Height Datum, equivalent to the fair‐weather swash limit during high tide. The lower facies comprises a sequence of seaward‐dipping reflections. Beach progradation thus occurs via fair‐weather‐wave accretion of sand, with erosion by storm waves resulting in a sporadic sedimentary record. The ridge deposits above the fair‐weather swash limit are primarily composed of coarse and medium sands with pumice gravels and are largely emplaced during surge events. Inundation of the ridges is more likely to occur in relation to a cyclone passing during high tide. The ridges may also include an aeolian component as cyclonic winds can transport beach sand inland, especially during low tide, and some layers above +2·5 m Australian Height Datum are finer than aeolian ripples found on the backshore. Coarse‐sand ridges at Cowley Beach are thus products of fair‐weather swash and cyclone inundation modulated by tides. Knowledge of this composite depositional process can better inform the development of robust palaeoenvironmental reconstructions from the ridges.  相似文献   

19.
Sediments exposed at low tide on the transgressive, hypertidal (>6 m tidal range) Waterside Beach, New Brunswick, Canada permit the scrutiny of sedimentary structures and textures that develop at water depths equivalent to the upper and lower shoreface. Waterside Beach sediments are grouped into eleven sedimentologically distinct deposits that represent three depositional environments: (1) sandy foreshore and shoreface; (2) tidal‐creek braid‐plain and delta; and, (3) wave‐formed gravel and sand bars, and associated deposits. The sandy foreshore and shoreface depositional environment encompasses the backshore; moderately dipping beachface; and a shallowly seaward‐dipping terrace of sandy middle and lower intertidal, and muddy sub‐tidal sediments. Intertidal sediments reworked and deposited by tidal creeks comprise the tidal‐creek braid plain and delta. Wave‐formed sand and gravel bars and associated deposits include: sediment sourced from low‐amplitude, unstable sand bars; gravel deposited from large (up to 5·5 m high, 800 m long), landward‐migrating gravel bars; and zones of mud deposition developed on the landward side of the gravel bars. The relationship between the gravel bars and mud deposits, and between mud‐laden sea water and beach gravels provides mechanisms for the deposition of mud beds, and muddy clast‐ and matrix‐supported conglomerates in ancient conglomeratic successions. Idealized sections are presented as analogues for ancient conglomerates deposited in transgressive systems. Where tidal creeks do not influence sedimentation on the beach, the preserved sequence consists of a gravel lag overlain by increasingly finer‐grained shoreface sediments. Conversely, where tidal creeks debouch onto the beach, erosion of the underlying salt marsh results in deposition of a thicker, more complex beach succession. The thickness of this package is controlled by tidal range, sedimentation rate, and rate of transgression. The tidal‐creek influenced succession comprises repeated sequences of: a thin mud bed overlain by muddy conglomerate, sandy conglomerate, a coarse lag, and capped by trough cross‐bedded sand and gravel.  相似文献   

20.
The 1918 eruption of the glacially capped Katla volcano, southern Iceland, generated a violent jökulhlaup, or glacial outburst flood, inundating a large area of Mýrdalssandur, the proglacial outwash plain, where it deposited ca 1 km3 of volcaniclastic sediment. The character of the 1918 jökulhlaup is contentious, having been variously categorized as a turbulent water flow, a hyperconcentrated flow or as a debris flow, based on localized outcrop analysis. In this study, outcrop‐based architectural analyses of the 1918 deposits reveal the presence of lenticular and tabular bedsets associated with deposition from quasi‐stationary antidunes and down‐current migrating antidunes, and from regular based bedsets, associated with transient chute‐and‐pool bedforms, all of which are associated with turbulent, transcritical to supercritical water flow conditions. Antidune wavelengths range from 24 to 96 m, corresponding to flow velocities of 6 to 12 m sec?1 and average flow depths of 5 to 19 m. This range of calculated flow velocities is in good agreement with estimates made from eyewitness accounts. Architectural analysis of the 1918 jökulhlaup deposits has led to an improved estimation of flow parameters and flow hydraulics associated with the 1918 jökulhlaup that could not have been achieved through localized outcrop analysis. The observations presented here provide additional sedimentological and architectural criteria for the recognition of deposits associated with transcritical and supercritical water flow conditions. The physical scale of sedimentary architectures associated with the migration of bedforms is largely dependent on the magnitude of the formative flow events or processes; sedimentary analyses must therefore be undertaken at the appropriate physical scale if reliable interpretations, regarding modes of deposition and formative flow hydraulics, are to be made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号