首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deep lower crustal intraplate earthquakes are infrequent and the mechanism of their occurrence is not well understood. The Narmada-Son-lineament region in central India has experienced two such events, the 1938 Satpura earthquake and the 1997 Jabalpur earthquake, having a focal depth of more than 35 km. We have estimated elastic stresses due to the crustal density and mechanical properties heterogeneities along the Hirapur-Mandla profile passing through the Jabalpur earthquake region to analyse conditions suitable for the concentration of shear stresses in the hypocentral region of this earthquake. Elastic stresses have been computed by a finite element method for a range of material parameters. The results indicate that the shear stresses generated by the density heterogeneities alone are not able to locally enhance the stress concentration in the hypocentral region. The role of mechanical properties of various crustal layers is important in achieving this localization of stresses. Among a range of material parameters analysed, the model with a mechanically strong lower crust overlying a relatively weak sub-Moho layer is able to enhance the stress concentration in the hypocentral region, implying a weaker mantle in comparison to the lower crust for this region of central India.  相似文献   

2.
We estimate detailed three-dimensional seismic velocity structures in the subducting Pacific slab beneath Hokkaido, Japan, using a large number of arrival-time data from 6902 local earthquakes. A remarkable low-velocity layer with a thickness of ~ 10 km is imaged at the uppermost part of the slab and is interpreted as hydrated oceanic crust. The layer gradually disappears at depths of 70–80 km, suggesting the breakdown of hydrous minerals there. We find prominent low-velocity anomalies along the lower plane of the double seismic zone and above the aftershock area of the 1993 Kushiro-oki earthquake (M7.8). Since seismic velocities of unmetamorphosed peridotite are much higher than the observations, hydrous minerals are expected to exist in the lower plane as well as the hypocentral area of the 1993 earthquake. On the other hand, regions between the upper and lower planes, where seismic activity is not so high compared to the both planes, show relatively high velocities comparable to those of unmetamorphosed peridotite. Our observations suggest that intermediate-depth earthquakes occur mainly in regions with hydrous minerals, which support dehydration embrittlement hypothesis as a cause of earthquake in the subducting slab.  相似文献   

3.
《Gondwana Research》2010,17(3-4):470-481
We estimate detailed three-dimensional seismic velocity structures in the subducting Pacific slab beneath Hokkaido, Japan, using a large number of arrival-time data from 6902 local earthquakes. A remarkable low-velocity layer with a thickness of ~ 10 km is imaged at the uppermost part of the slab and is interpreted as hydrated oceanic crust. The layer gradually disappears at depths of 70–80 km, suggesting the breakdown of hydrous minerals there. We find prominent low-velocity anomalies along the lower plane of the double seismic zone and above the aftershock area of the 1993 Kushiro-oki earthquake (M7.8). Since seismic velocities of unmetamorphosed peridotite are much higher than the observations, hydrous minerals are expected to exist in the lower plane as well as the hypocentral area of the 1993 earthquake. On the other hand, regions between the upper and lower planes, where seismic activity is not so high compared to the both planes, show relatively high velocities comparable to those of unmetamorphosed peridotite. Our observations suggest that intermediate-depth earthquakes occur mainly in regions with hydrous minerals, which support dehydration embrittlement hypothesis as a cause of earthquake in the subducting slab.  相似文献   

4.
We studied the continental deformation and modelled the contemporary flow and stress distribution in the lithosphere beneath Central Italy. We made use of a revisited crust and uppermost mantle Earth structure that supports delamination processes. The model behaviour is primarily determined by the thick high density lithospheric root to the east and the low‐viscosity shallow mantle wedge to the west. The rate of the modeled crustal motion is in agreement with GPS data and the pattern of lithospheric flow explains the heat flux, the regional geology and provides a new background for the genesis and age of the recent Tuscan magmatism. The modelled stress in the lithosphere is spatially correlated with the prevailing stress field and the gravitational potential energy patterns and shows that buoyancy forces, solely, can explain the coexisting regional contraction and extension and the unusual sub‐crustal seismicity.  相似文献   

5.
We describe three study cases in which we used local earthquake and shot travel-time residuals to investigate the upper crustal structure of three regions in Italy. We inverted for velocity and hypocentral parameters using a damped least-squares technique making use of parameter (velocity and hypocentre) separation. The three studied regions are in Italy, namely (a) the Vulsinian Volcanic Complex (Latium), where there is an active geothermal field; (b) the Irpinia (Campania–Lucania) region, in the Southern Appennines, site of the strongest earthquake in Italy for at least 65 years (November 1980, Ms= 6.9); (c) the Friuli region, in Northeastern Italy, where another strong earthquake (Ms= 6.5) occurred in 1976. The computed shallow velocity models generally correspond with surface geological structures. For the three studied areas, the main results are, respectively: (a) A low-velocity anomaly detected in the centre of the Vulsinian Volcanic Complex at a depth of 5–8 km, probably due to anomalous heat flow caused by a partially molten or cooling intrusive body; (b) the identification of a deep (10 km) discontinuity in the crust beneath the Irpinia fault zone, approximately corresponding with the fault extension at depth; (c) the detection of a wedge of high-velocity, high density material at seismogenic depth (5–10 km) beneath the Friuli region, interpreted as a buried thrust of the metamorphic basement.  相似文献   

6.
The data on catastrophic earthquakes with magnitudes of 8.3 and 8.1 that occurred in the Simushir Island area on November 15, 2006, and January 13, 2007, respectively, were compared with the results of land-sea deep seismic studies by different methods (deep seismic sounding, the correlation method of refracted waves, the earthquake converted-wave method, the common mid-point) in the Central Kuril segment. The structure of the Earth’s crust and the hypocentral zones of these earthquakes were analyzed. It was established that the hypocenter of the main shock of the first earthquake was located at the bend of the seismofocal zone under the island slope of the trench on the outer side of the subsiding lithospheric plate in the rapidly rising granulite-basite (ìbasalticî) crustal layer, which, at depths of 7–15 km, replaced the granulite-gneiss layer. This was accompanied by an increase of the seismic wave velocity from 6.4 to 7.1 km/s. The focus of the second earthquake was located beneath the axis of the deep-sea trench. The aftershocks were concentrated in two bands 60–120 km wide that extend along the trench, as well as in the third zone orthogonal to the island arc. It was shown that the epicenters of the earthquakes are linked with regional faults. The main shock of the first earthquake (November 15, 2006) was interpreted as a thrust fault and the second one (January 13, 2007) was attributed to a normal fault.  相似文献   

7.

The 1979 Cadoux earthquake (magnitude Ms ~ 6.0), which caused over $4 million damage in 1979, occurred in the Southwest Seismic Zone (SWSZ) of Western Australia and produced a shallow dipping thrust fault with an average strike close to north‐south. The fault length was approximately 15 km and the maximum displacement close to 1 m. The seismic moment is estimated to be 1.8 ±0.1 X 1018 Nm and the earthquake was, like the 1968 Meckering earthquake, caused by east‐west compressive stress in the crust. Aftershocks of the Cadoux earthquake are still continuing (1986) at the northern and southern ends of the area affected by the main earthquake; strain‐release data from the aftershocks indicate that significant strain energy is yet to be released in the region. Overcoring measurements in the SWSZ indicated high stress (up to 30 MPa) at shallow depths (~ 10 m). Near the epicentre of the Cadoux earthquake overcoring measurements revealed stress levels ranging from about 4 MPa, less than 1 km from the fault trace, to about 20 MPa at 15 km from the fault. This difference in stress at the two locations is much larger than the stress drop associated with the Cadoux earthquake (~ 1 MPa) obtained from seismological observations. However, the maximum compressive stress direction is consistent with the direction of the P‐axis obtained from the focal mechanism. Reliable hydro fracturing results, from a depth of 65 m, were similar to the stress directions and magnitudes obtained from overcoring measurements made at the same site. It appears that the crust in the SWSZ is under compressive stress and that earthquake activity releases this stress in small areas rather than along linear fault zones. Shallow earthquakes of similar magnitude could well take place in the SWSZ during the next 50 years.  相似文献   

8.
Crustal heterogeneity and seismotectonics of the region around Beijing, China   总被引:18,自引:0,他引:18  
Jinli Huang  Dapeng Zhao   《Tectonophysics》2004,385(1-4):159-180
A detailed three-dimensional (3-D) P-wave velocity model of the crust and uppermost mantle under the Chinese capital (Beijing) region is determined with a spatial resolution of 25 km in the horizontal direction and 4–17 km in depth. We used 48,750 precise P-wave arrival times from 2973 events of local crustal earthquakes, controlled seismic explosions and quarry blasts. These events were recorded by a new digital seismic network consisting of 101 seismic stations equipped with high-sensitivity seismometers. The data are analyzed by using a 3-D seismic tomography method. Our tomographic model provides new insights into the geological structure and tectonics of the region, such as the lithological variations and large fault zones across the major geological terranes like the North China Basin, the Taihangshan and the Yanshan mountainous areas. The velocity images of the upper crust reflect well the surface geological and topographic features. In the North China Basin, the depression and uplift areas are imaged as slow and fast velocities, respectively. The Taihangshan and Yanshan mountainous regions are generally imaged as broad high-velocity zones, while the Quaternary intermountain basins show up as small low-velocity anomalies. Velocity changes are visible across some of the large fault zones. Large crustal earthquakes, such as the 1976 Tangshan earthquake (M=7.8) and the 1679 Sanhe earthquake (M=8.0), generally occurred in high-velocity areas in the upper to middle crust. In the lower crust to the uppermost mantle under the source zones of the large earthquakes, however, low-velocity and high-conductivity anomalies exist, which are considered to be associated with fluids. The fluids in the lower crust may cause the weakening of the seismogenic layer in the upper and middle crust and thus contribute to the initiation of the large crustal earthquakes.  相似文献   

9.
Events induced by deep gold-mining activity on the edge of the Witwatersrand basin dominate the seismicity of South Africa. The deployment of 54 broad-band seismic stations at 84 separate locations across southern Africa between April 1997 and April 1999 (Kaapvaal network) enabled the seismicity of South Africa to be better defined over a 2-year period. Seismic events located by the South African national network, and by localized seismic networks deployed in mines or across gold-mining areas, were used to evaluate earthquake location procedures and to show that the Kaapvaal network locates mining-induced tremors with an average error of 1.56±0.10 km compared with 9.50±0.36 km for the South African network. Travel times of seismic events from the mines recorded at the Kaapvaal network indicate regional variations in the thickness of the crust but no clearly resolved variations in seismic wavespeeds in the uppermost mantle. Greater average crustal thicknesses (48–50 km compared with 41–43 km) are observed in the northern parts of the Kaapvaal craton that were affected by the Bushveld magmatism at 2.05 Ga. Estimates of average crustal thickness for the southern part of the Kaapvaal craton from receiver functions (38 km) agree well with those from refracted arrivals from mining-induced earthquakes if the crustal thicknesses below the sources are assumed to be 40–43 km. In contrast, the average crustal thickness inferred from refracted arrivals for the northern part of the Kaapvaal craton is larger by about 7 km (51 km) than that inferred from receiver functions (44 km), suggesting a thick mafic lower crust of variable seismic properties due to variations in composition and metamorphic grade. Pn wavespeeds are high (8.3–8.4 km/s), indicating the presence of highly depleted magnesium-rich peridotite throughout the uppermost mantle of the craton. Seismic Pg and Sg phases indicate that the upper crust around the Witwatersrand basin is comparatively uniform in composition when averaged over several kilometres.  相似文献   

10.
We obtain a lithospheric shear‐wave velocity model across the Tien Shan orogenic belt by jointly inverting Rayleigh wave group velocities and teleseismic P‐wave receiver functions at 61 broadband seismic stations deployed in this region. Our new model reveals prominent lateral variations of shear‐wave velocity in both the crust and uppermost mantle. This model reveals different structures in the upper and middle crust across the Talas Fergana Fault, which may suggest the presence of a tectonic boundary between the western and central Tien Shan beneath the fault. According to the velocity images, the depth extent of the fault is ~40 km and this is confined to the crust. Pronounced low‐velocity anomalies are imaged in the middle crust and uppermost mantle beneath the southern and middle Tien Shan, implying that the upwelling of the materials from the upper mantle could have played an important role in the mountain building.  相似文献   

11.
The catastrophic Shikotan earthquake of October 4 (5), 1994, occurred in the Pacific Ocean. Its focus was located 80 km eastward of Shikotan Island. The stress state of the Earth’s crust in this area was estimated by the method of the cataclastic analysis of the whole range of the earthquake mechanisms. The performed reconstruction of the parameters of the current stress state of the Earth’s crust and the upper mantle in the area of the Southern Kuril Islands made it possible to establish that this area is characterized, on the one hand, by the presence of extensive areas of steady behavior of the stress tensor parameters and, on the other hand, by the presence of local sections of anomalously fast changes in these parameters.  相似文献   

12.
We have studied the structures of the Earth’s crust and upper mantle of the Asian continent using a representative sample of dispersion curves of group velocities of fundamental-mode Rayleigh and Love waves for more than 3200 seismic paths. Maps of distributions of variations in group velocities with periods of 10 to 250 s over a spherical surface were calculated by the 2D tomography method. The maps reflect the deep structure of the Earth’s crust and upper mantle of the study area and give a tentative idea of the horizontal distribution of the anisotropic properties of the mantle matter. The obtained data are confirmed by the calculations of the velocity profiles of SV- and SH-waves for the entire Asian continent and for its regions. Vertically, anisotropy is observed to the depths of ~ 250 km, with its maximum in the depth range from the bottom of the crust to 150 km.  相似文献   

13.
龙门山断裂带深部构造和物性分布的分段特征   总被引:8,自引:0,他引:8  
根据龙门山断裂带周边的固定数字地震台网和流动地震观测获得的宽频带地震记录,用多种地震学方法研究该地区的地壳上地幔结构。深部结构研究表明,龙门山断裂带物性分布具有显著的分段特征。用远震接收函数H-k叠加方法计算了各个台站的地壳厚度和波速比。地壳厚度总体变化是,地壳从东向西增厚,最小厚度为37.8 km,最大厚度是68.1 km。从东南向西北横跨龙门山断裂带的地壳急剧增厚,从41.5 km增厚至52.5 km。但是,龙门山断裂带两侧地壳厚度的差异在断裂带的南段和北段是不同的。在南段,地壳厚度急剧变化的分界线在中央断裂附近;在中段,分界线在后山断裂附近;在北段,则断裂带两侧地壳厚度差异很小。泊松比的空间分布是,松潘—甘孜地体北部和西秦岭造山带具有低泊松比(ν<0.26),扬子地台具有低—中泊松比(ν<0.27),松潘—甘孜地体南部、三江褶皱带和四川盆地具有中—高泊松比(0.26<ν<0.29)。除龙门山断裂带南段及其附近,大部分地区均不具有超高的泊松比(ν>0.30)。龙门山断裂带南段地壳具有高泊松比(ν>0.30),而北段地壳则为中—低泊松比。高泊松比可以看成是铁镁质组分增加和/或部分熔融的证据,表明那里的下地壳部分熔融是可能的。松潘—甘孜地体东南部地区的下地壳处于富含流体或温度较高的部分熔融状态,它有助于青藏高原的下地壳物质向东运动。青藏高原东部中、上地壳向东运动受刚性强度较大的扬子地台的阻挡,沿龙门山断裂带产生应变能积累。当应变达到临界值,发生急剧的摩擦滑动,释放积累的应变能,产生汶川Ms8.0地震。汶川地震在龙门山断裂带不同地段,表现出不同的破裂特征和余震分布,可能与断层带的分段深部构造差异有关。  相似文献   

14.
Teleseismic body waves from broadband seismic stations are used to investigate the crustal and uppermost mantle structure of Stromboli volcano through inversion of the receiver functions (RFs). First, we computed RFs in the frequency domain using a multiple-taper spectral correlation technique. Then, the non-linear neighbourhood algorithm was applied to estimate the seismic shear wave velocity of the crust and uppermost mantle and to define the main seismic velocity discontinuities. The stability of the inversion solution was tested using a range of initial random seeds and model parameterizations. A shallow Moho, present at depth of 14.8 km, is evidence of a thinned crust beneath Stromboli volcano. However, the most intriguing and innovative result is a low S velocity layer in the uppermost mantle, below 32 km. The low S velocity layer suggests a possible partial melt region associated with the volcanism, as also recently supported by tomographic studies and petrological estimations.  相似文献   

15.
The SUDETES 2003 wide-angle refraction/reflection experiment covered the area of the south-western Poland and the northern Bohemian Massif. The good quality data that were gathered combined with the data from previous experiments (POLONAISE'97, CELEBRATION 2000) allowed us to prepare a 3D seismic model of the crust and uppermost mantle for this area. We inverted travel times of both refracted and reflected P waves using the JIVE3D package. This allowed us to obtain a model of P-wave velocity distribution as well as the shape of major boundaries in the crust. We also present a detailed uncertainty analysis for both the boundary depths and the velocity field. In doing the uncertainty analysis we found an interesting, strong dependence between uncertainty and inversion scheme (order of used phases). We also compared the model with surface geology and found good correlation between velocity inhomogeneities in the uppermost crust (down to 2 km) and major geological units. The higher velocity lower crust (6.9–7.2 km/s) could result from remelting of the lower crust or magmatic underplating.  相似文献   

16.
A two‐dimensional thermorheological model of the Central Alps along a north–south transect is presented. Thermophysical and rheological parameters of the various lithological units are chosen from seismic and gravity information. The inferred temperature distribution matches surface heat flow and results in Moho temperatures between 500 and 800 °C. Both European and Adriatic lithospheres have a ‘jelly‐sandwich’ structure, with a 15–20 km thick brittle upper crust overlying a ductile lower crust and a mantle lid whose uppermost part is brittle. The total strength of the lithosphere is of the order of 0.5–1.0 × 1013 N m−1 if the upper mantle is dry, or slightly less if the upper mantle is wet. In both cases, the higher values correspond to the Adriatic indenter.  相似文献   

17.
The Na, K, Mg and Ca contents of certain deep‐origin groundwater discharges have been used by Giggenbach (1988) to define a series of ‘geoindicators’, which may provide hints on the up‐flow depth of origin, on the duration of the fluid ascent to the ground surface and on the associated CO2 flux. On occurrence of a Mw = 6.0 Vrancea earthquake, significant fluctuations of Giggenbach’s geoindicators have been recorded in a saline spring, some 50 km away from the epicentre. A pre‐seismic overall anomaly was monitored for 1 year and a half, the sharpest variations occurring about 3 months before the earthquake. Processes controlling the geoindicator fluctuations assumedly took place at 7–8 km depth, while the earthquake hypocenter depth was about 100 km. This could be an evidence for a mechanical coupling still existing between the seismogenic body in the lithosphere and the overlying crust.  相似文献   

18.
Rrapo Ormeni 《Tectonophysics》2011,497(1-4):114-121
This paper describes the one-dimensional (1D) velocity model computed by VELEST in the SEISAN seismic analysis system, inverting re-picked P-wave and S-wave arrival times recorded during 2002–2006 by the Albanian, Montenegro, Thessalonica and Macedonia seismic networks. The re-picked data yield P-wave and S-wave velocities proved to be more suitable compared to bulletin data for this detailed inversion study. Seismic phases recorded by the Albania seismic network and integrated with data from the Montenegro, Thessalonica and Macedonia networks are used to prepare the Albanian seismic bulletin. Earthquake hypocenters from the Albanian bulletins have also location errors that are negligible for civil protection purposes, large scale seismotectonic analyses and more accurate hypocentral determinations which are necessary for detailed seismotectonic and geodynamic studies.It was noted that the smoothness of the velocity variation increased with depth. A velocity of 5.5 km/s was calculated for the upper crust, 6.1 km/s was calculated for the middle crust and 6.9 km/s was computed for the lower crust. P wave velocity was 7.85 km/s at depth of 50 km and for the upper mantle it is 8.28 km/s. Using the improved velocity model, the earthquakes which occurred in Albania in the past 5 years were able to be relocated, achieving constrained hypocentral determinations for events in Albania. The interpretation of the 1 D velocity models infers interesting features of the deep structure of Albania. These results represent an important step towards more detailed seismotectonic analyses.  相似文献   

19.
青藏高原东北缘岩石圈密度与磁化强度及动力学含义   总被引:4,自引:0,他引:4  
利用横贯柴达木盆地南北的格尔木—花海子剖面岩石圈二维P波速度结构以及地震波速度与介质密度之间的关系,建立了该剖面岩石圈二维密度结构与二维磁化强度的初始模型。依据重磁同源原理,在柴达木盆地重、磁异常的二重约束下完成了重磁联合反演,获得了该剖面岩石圈二维密度结构与二维磁化强度分布。结果表明:柴达木盆地地壳厚度沿测线变化较大,平均厚度约60km。在柴达木盆地南缘地壳厚约50km,达布逊湖附近地壳最厚为63km左右,大柴旦附近地壳较薄,为50km左右。柴达木盆地的地壳纵向上可分为三层,即上地壳、中地壳与下地壳。位于盆地中部的中、下地壳分别发育大范围的壳内低密度体,并处于上地幔隆起的背景之上;横向上可将盆地分成南北两个部分,分界在达布逊湖附近。整个剖面结晶基底埋深变化也很大,在达布逊湖附近为12km,在昆仑山北缘基底几乎出露地表。结晶基底的展布形态与地壳底界,即莫霍面呈近似镜像对称。综合研究认为,柴达木盆地的岩石圈结构存在着明显的南北差异,其分界在达布逊湖的北面。在盆地南部,岩石圈介质横向变化较小,各层介质分布正常;在盆地的北侧,岩石圈结构特别在中、下地壳和上地幔顶部横向上发生了变化。壳内低密度体的存在意味着柴达木盆地具有较热的岩石圈和上地幔,加之基底界面与莫霍面的镜像对称分布,形成与准噶尔盆地和塔里木盆地的构造差异。多种地球物理参数所揭示的地壳上地幔结构及其横向变化特点为柴达木盆地构造演化及青藏高原北部边界的地球动力学研究提供了岩石圈尺度的地球物理证据。  相似文献   

20.
对西准噶尔及周边地区壳幔结构的研究是揭示准噶尔盆地演化的重要基础.利用最新的卫星重力场模型, 通过计算得到西准噶尔及周边地区的布格重力异常, 进而采用三维反演技术, 对西准噶尔及周边地区的地壳与上地幔顶部进行密度成像, 得到了0~80 km深度范围的密度异常结构.地壳密度分布显示古准噶尔洋壳有可能向NE和NW分别俯冲于西伯利亚板块和西准噶尔地块之下.上地幔顶部密度变化表明: 阿尔泰褶皱带具有相对较低的密度, 可能为古大陆巨厚的硅铝层所致; 哈萨克斯坦-准噶尔盆地具有相对完整的高密度结构; 天山褶皱带区域的密度大幅度变化刻画了超岩石圈断裂对岩石圈的切割以及岩石圈形变与构造活动的痕迹.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号