首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Middle–Late Miocene age siliceous formations outcropping along the northwestern side of Honshu Island are considered prospective source rocks for hydrocarbons. An analysis of geophysical, sedimentological, and geochemical properties is essential to evaluate the formations' source potential, and to understand the factors that determined the accumulation and preservation of organic matter. This study investigates the Middle–Late Miocene geological record of the Tsugaru back‐arc basin, located in the western part of Aomori prefecture, through an analysis of a 200 m long portion of a core from the DTH27‐1 well; this core is composed of the diatomaceous siltstones of the Akaishi Formation and the siliceous mudstones of the Odoji Formation. Sedimentological and geophysical characterization showed that the Akaishi Formation's diatomaceous siltstones are mostly massive and bioturbated, have low magnetic susceptibility, and demonstrate moderate natural radioactivity. Although the Odoji Formation's siliceous mudstones are massive, they have exceedingly low magnetic susceptibility and high natural radioactivity. Geochemical data from a Rock‐Eval Pyrolysis such as total organic carbon and generative potential (S1 + S2) revealed that, in the Tsugaru area, only the Odoji Formation is a likely prospective source rock for hydrocarbons. On the other hand, Tmax values indicate that both the formations are thermally immature for generating hydrocarbons. The difference between the Akaishi and Odoji Formation in the sedimentological facies, in terms of the degree of bioturbation and the organic carbon content, indicates variations in lithological properties, such as porosity and grain size; moreover, this difference indicates a variation in the paleo‐oxygenation of bottom waters, with the transition from oxygen‐deficient conditions in the Middle Miocene to the more oxygenated conditions in the Late Miocene. Both the lithological and paleo‐environmental factors possibly influenced the organic richness in the two formations.  相似文献   

2.
Ocean plate stratigraphy (OPS) within an ancient accretionary complex provides important information for understanding the history of an oceanic plate from its origin at a mid‐ocean ridge to its subduction at a trench. Here, we report a recently discovered chert–clastic sequence (CCS) that comprises a continuous succession from pelagic sediments to terrigenous clastics and which constitutes part of the OPS in the Akataki Complex within the Cretaceous Shimanto Accretionary Complex on the central Kii Peninsula, SW Japan. As well as describing this sequence, we present U–Pb ages of detrital zircons from terrigenous clastic rocks in the CCS, results for which show that the youngest single grain and youngest cluster ages belong to the Santonian–Campanian and are younger than the radiolarian age from the underlying pelagic sedimentary rock (late Albian–Cenomanian). Thus, the CCS records the movement history of the oceanic plate from pelagic sedimentation (until the late Albian–Cenomanian) to a terrigenous sediment supply (Santonian–Campanian).  相似文献   

3.
Alternating chert–clastic sequences juxtaposed with limestone blocks, which are units typical of accretionary complexes, constitute the Buruanga peninsula. New lithostratigraphic units are proposed in this study: the Unidos Formation (Jurassic chert sequence), the Saboncogon Formation (Jurassic siliceous mudstone–terrigenous mudstone and quartz‐rich sandstone), the Gibon Formation (Jurassic(?) bedded pelagic limestone), the Libertad Metamorphics (Jurassic–Cretaceous slate, phyllite, and schist) and the Buruanga Formation (Pliocene–Pleistocene reefal limestone). The first three sedimentary sequences in the Buruanga peninsula show close affinity with the ocean plate stratigraphy of the North Palawan terrane in Busuanga Island: Lower–Middle Jurassic chert sequences overlain by Middle–Upper Jurassic clastics, juxtaposed with pelagic limestone. Moreover, the JR5–JR6 (Callovian to Oxfordian) siliceous mudstone of the Saboncogon Formation in the Buruanga peninsula correlates with the JR5–JR6 siliceous mudstone of the Guinlo Formation in the Middle Busuanga Belt. These findings suggest that the Buruanga peninsula may be part of the North Palawan terrane. The rocks of the Buruanga peninsula completely differ from the Middle Miocene basaltic to andesitic pyroclastic and lava flow deposits with reefal limestone and arkosic sandstone of the Antique Range. Thus, the previously suggested boundary between the Palawan microcontinental block and the Philippine Mobile Belt in the central Philippines, which is the suture zone between the Buruanga peninsula and the Antique Range, is confirmed. This boundary is similarly considered as the collision zone between them.  相似文献   

4.
The Anyui Metamorphic Complex (AMC) of Cretaceous age is composed of metachert, schist, gneiss, migmatite and ultramafic rocks, and forms a dome structure within the northernmost part of the Jurassic accretionary complex of the Samarka terrane. The two adjacent geological units are bounded by a fault, but the gradual changes of grain size and crystallinity index of quartz in chert and metachert of the Samarka terrane and the AMC, together with the gradual lithological change, indicate that at least parts of the AMC are metamorphic equivalents of the Samarka rocks. Radiolarian fossils from siliceous mudstone of the Samarka terrane indicates Tithonian age (uppermost Jurassic), and hence, form a slightly later accretion. This signifies that the accretionary complex in the study area is one of the youngest tectonostratigraphic units of the Samarka terrane. The relationship between the Samarka terrane and AMC, as well as their ages and lithologies, are similar to those of the Tamba–Mino–Ashio terrane and Ryoke Metamorphic Complex in southwest Japan. In both areas the lower (younger) part of the Jurassic accretionary complexes were intruded and metamorphosed by Late Cretaceous granitic magma. Crustal development of the Pacific‐type orogen has been achieved by the cycle of: (i) accretion of oceanic materials and turbidites derived from the continent; and (ii) granitic intrusion by the next subduction and accretion events, accompanied by formation of high T/P metamorphic complexes.  相似文献   

5.
The dating of radiolarian biostratigraphic zones from the Silurian to Devonian is only partially understood. Dating the zircons in radiolarian‐bearing tuffaceous rocks has enabled us to ascribe practical ages to the radiolarian zones. To extend knowledge in this area, radiometric dating of magmatic zircons within the radiolarian‐bearing Hitoegane Formation, Japan, was undertaken. The Hitoegane Formation is mainly composed of alternating beds of tuffaceous sandstones, tuffaceous mudstones and felsic tuff. The felsic tuff and tuffaceous mudstone yield well‐preserved radiolarian fossils. Zircon grains showing a U–Pb laser ablation–inductively coupled plasma–mass spectrometry age of 426.6 ± 3.7 Ma were collected from four horizons of the Hitoegane Formation, which is the boundary between the Pseudospongoprunum tauversi to Futobari solidus–Zadrappolus tenuis radiolarian assemblage zones. This fact strongly suggests that the boundary of these assemblage zones is around the Ludlowian to Pridolian. The last occurrence of F. solidus is considered to be Pragian based on the reinterpretation of a U–Pb sensitive high mass‐resolution ion microprobe (SHRIMP) zircon age of 408.9 ± 7.6 Ma for a felsic tuff of the Kurosegawa belt, Southwest Japan. Thus the F. solidus–Z. tenuis assemblage can be assigned to the Ludlowian or Pridolian to Pragian. The present data also contribute to establishing overall stratigraphy of the Paleozoic rocks of the Fukuji–Hitoegane area. According to the Ordovician to Carboniferous stratigraphy in this area, Ordovician to Silurian volcanism was gradually reduced to change the sedimentary environment into a tropical lagoon in the early Devonian. And the quiet Carboniferous environment was subsequently interrupted, throwing it once more into the volcanic conditions in the Middle Permian.  相似文献   

6.
Sergei V.  Zyabrev 《Island Arc》1996,5(2):140-155
Abstract The Kiselyovsky subterrane is the northeastern section of the Kiselyovsko-Manominsky terrane, a distinguishable tectonic unit in the north of the Sikhote-Alin Range. The terrane has been treated as part of the accretionary wedge belonging to the Khingan-Okhotsk active continental margin, but its structure and stratigraphy have been poorly understood. This paper presents new data on the subterrane structure, lithology and radiolarian biostratigraphy. The following lithostratigraphic units are established in the terrane: a ribbon chert unit, a siliceous mudstone unit and a elastics unit. Abundant Valanginian to late Hauterivian-early Barremian radiolarian assemblages are obtained from the upper part of the chert unit in addition to the known Jurassic radiolarians. The radiolarian age of the lower part of the siliceous mudstone unit (red siliceous mudstone) is determined as early Hauterivian-early Aptian. The unit's upper part (greenish-gray siliceous mudstone and dark-gray silicified mudstone) and the clastics unit contain Albian-Cenomanian assemblages. The arrangement of the units is treated as a chert-elastics sequence, whose vertical lithologic variations indicate environmental changes from a remote ocean to a convergent margin, reflecting an oceanic plate motion towards a subduction zone. The subterrane structure is a stack of imbricated slabs composed of various lithostratigraphic units, and is complicated by folding. The structure's origin is related to subduction-accretion, which occurred in the Albian-Cenomanian. The data presented provide a unique basis for accretionary wedge terranes correlation in the circum-Japan Sea Region, and the Kiselyovsky subterrane is correlated in this study with the synchronous parts of the East Sakhalin, Hidaka and Shimanto terranes. The Albian-Cenomanian radiolarian assemblages were deposited in the Boreal realm, while Valanginian ones are Tethyan; this indicates a long oceanic plate travelling to the north. The former assemblages contain an admixture of older species, redeposited by bottom traction currents and turbidite flows in trench environments.  相似文献   

7.
The main tectono‐stratigraphic unit (Shirataki unit) of the Sanbagawa metamorphic complex in central Shikoku is characterized by abundant mafic schist layers that show the mid‐ocean ridge basalt (MORB) affinity. These MORB‐derived schist layers are absent in a southern (structurally lower) domain within the unit. Instead, sporadic occurrences of small metabasite lenses that contain relict igneous minerals (Ti‐rich augite and kaersutite) indicative of alkali basalt magmatism are newly recognized in the southern domain. Compositions of relict clinopyroxene in metabasalt are useful to identify the tectonic setting and origin of the protolith basalt, and those in each unit of the Sanbagawa metamorphic complex are presented. The metamorphic grade of the Shirataki unit generally increases structurally upwards in the southern side of the highest‐grade zone, and metamorphic zonation is subparallel to lithostratigraphic succession. The protolith assemblage of the Shirataki unit shows a distinct change from the southern low‐grade domain (lower Shirataki subunit) composed of terrigenous sedimentary rocks (mudstone and sandstone) with minor alkali basalt to the northern higher‐grade domain (upper Shirataki subunit) consisting of terrigenous and pelagic sedimentary rocks with abundant MORB. The youngest detrital zircon U–Pb ages (ca 95–90 Ma) suggest that both domains have Late Cretaceous depositional ages at the trench. Progressive peeling of oceanic plate stratigraphy during subduction can account for the observed change of lithological association in the Shirataki unit.  相似文献   

8.
Hroaki  Ishiga  Kotaro  Ishida  Kaori  Dozen Makoto  Musashino 《Island Arc》1996,5(2):180-180
Abstract Geochemical characteristics, mainly of major and trace elements and REE (rare earth elements) of bedded chert and shale/mudstone sequences, across the Permian/Triassic boundary in southwest Japan are examined. The boundary is characterized by the disappearance of bedded cherts, and the interval between the Upper Permian cherts and Lower Triassic (probably Smithian) cherts comprises siliceous shales and organic black mudstones. Bedded cherts are characterized by a gradual depletion of chemical elements from Middle to Upper Permian. However, overlying siliceous shales exhibit a clear enrichment in some elements, especially alkaline metals (such as K, Rb and Cs) and Ti, Th, Y, P2O5, and REE in comparison with elements of the PAAS (post Archean Australian shales). This indicates that average components of the upper continental crust were transported in the boundary interval, possibly caused by volcanic activity. Ce-negative shifting in NASC (North American Shales Composite)-normalized REE patterns is characteristic of this interval, and could be related to the deposition of siliceous rocks in Ce-depleted seawater. This was probably caused by an invasion of water mass with a Ce-negative anomaly into the previously existing water mass of the Paleo-Tethys. Weak negative Eu-anomalies in this interval are suggestive of plagioclase fractionation caused by acid volcanisms and the LREE/HREE ratios in the interval show a slightly light-REE enrichment. Organic black mudstones are characteristically intercalated in the interval. These rocks are usually regarded as a product of oceanic deterioration, but in pelagic conditions, organic materials were formed by high primary production that resulted from the active upwelling of ocean floor water currents with rich nutrients. This may have been caused by the inferred mixing of water masses of the Paleo-Tethys and of the Panthalassa in Early Triassic time which was regarded as an event synchronous with an increase in volcanic activity on highly matured island arcs and/or continents.  相似文献   

9.
The Upper Cretaceous Himenoura Group in the Amakusa‐Kamishima Island area, southwest Japan is subdivided into the Hinoshima and Amura Formations. In order to determine the numerical depositional age of the formations, zircon U–Pb ages were investigated using laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) for acidic tuff samples from the lower part of the Hinoshima Formation and the upper part of the Amura Formation. Although the two samples contain some accidental zircons, the samples have a definite youngest age cluster and their weighted mean ages are 85.4 ± 1.3 and 81.5 ± 1.1 Ma, respectively (errors are 95 % confidence interval). These age data indicate that the Himenoura Group in the Amakusa‐Kamishima Island area was deposited mainly in the early Santonian to early Campanian which is consistent with biostratigraphic ages. Additionally, zircon age distributions of the two tuff samples from the upper part of the Hinoshima Formation do not show a distinct youngest peak of eruption age but characteristics of detrital zircons suggestive of maximum depositional age of the host sediments. These results demonstrate that the mean age of the youngest zircon age cluster of a tuff sample does not always indicate depositional age of the tuff, and statistical evaluation of age data is effective to determine depositional age of a tuff bed using zircon U–Pb ages.  相似文献   

10.
Yujiro  Nishimura  Philippa M.  Black  Tetsumaru  Itaya 《Island Arc》2004,13(3):416-431
Abstract A southwest dipping Mesozoic accretionary complex, which consists of tectonically imbricated turbiditic mudstone and sandstone, hemipelagic siliceous mudstone, and bedded cherts and basaltic rocks of pelagic origin, is exposed in northern North Island, New Zealand. Interpillow limestone is sometimes contained in the basaltic rocks. The grade of subduction‐related metamorphism increases from northeast to southwest, indicating an inverted metamorphic gradient dip. Three metamorphic facies are recognized largely on the basis of mineral parageneses in sedimentary and basaltic rocks: zeolite, prehnite‐pumpellyite and pumpellyite‐actinolite. From the apparent interplanar spacing d002 data for carbonaceous material, which range from 3.642 to 3.564 Å, the highest grade of metamorphism is considered to have attained only the lowermost grade of the pumpellyite‐actinolite facies for which the highest temperature may be approximately 300°C. Metamorphic white mica K–Ar ages are reported for magnetic separates and <2 µm hydraulic elutriation separates from 27 pelitic and semipelitic samples. The age data obtained from elutriation separates are approximately 8 m.y. younger, on average, than those from magnetic separates. The age difference is attributed to the possible admixture of nonequilibrated detrital white mica in the magnetic separates, and the age of the elutriation separates is considered to be the age of metamorphism. If the concept, based on fossil evidence, of the subdivision of the Northland accretionary complex into north and south units is accepted, then the peak age of metamorphism in the north unit is likely to be 180–130 Ma; that is, earliest Middle Jurassic to early Early Cretaceous, whereas that in the south unit is 150–130 Ma; that is, late Late Jurassic to early Early Cretaceous. The age cluster for the north unit correlates with that of the Chrystalls Beach–Taieri Mouth section (uncertain terrane), while the age cluster for the south unit is older than that of the Younger Torlesse Subterrane in the Wellington area, and may be comparable with that of the Nelson and Marlborough areas (Caples and Waipapa terranes).  相似文献   

11.
A Middle to Late Triassic (Ladinian–Carnian) radiolarian fauna was discovered in cherts of the Situlanglang Member of the Garba Formation, South Sumatra, which is generally regarded as of Late Jurassic–Early Cretaceous age. This fauna is characterized by the presence of Annulotriassocampe sulovensis, Triassocampe postdeweveri, Spongotortilispinus tortilis, Poulpus piabyx, Canoptum levis and others. This evidence possibly indicates that the deposition of the Situlanglang cherts took place after the collision of the Sibumasu and East Malaya blocks recorded in the Bentong–Raub Suture in Peninsular Malaysia in Late Permian–Early Triassic times. During the Middle–Late Triassic Sumatra and Peninsular Malaysia consisted of submarine horst and graben structures. It is possible that a submarine graben, the Tuhur basin, whose southern boundary was formerly undefined, extends into South Sumatra, to the area in which the Situlanglang cherts were deposited. The Situlanglang Member is proposed to be a rock unit stratigraphically contemporaneous with those of the Middle–Upper Triassic Kualu and Tuhur Formations in North and Central Sumatra.  相似文献   

12.
The Indosinian Orogeny plays a significant role in tectonic background and magmatic evolution in Indochina and surrounding regions. Being a part product of the Indosinian magmatism in northwest Vietnam during late Permian–middle Triassic period, Muong Luan granitoid pluton dominantly consists of granodiorite, less diorite and granite. This pluton is located in the Song Ma suture and assigned to the Dien Bien complex. Geochemically, the Muong Luan granitoid rocks are characterized by a wide range of SiO2 contents (59.9–75.1 wt%) and high K2O contents. They display typical features of I‐type granites. The presence of hornblende and no muscovite and cordierite in the rocks further supports for I‐type character of granitoids. The emplacement age of the Muong Luan pluton obtained by LA–ICP–MS U–Pb zircon is at 242–235 Ma, corresponding to Indosinian time. Zircon εHf values of –5.6 to –10.4, in combination with moderate Mg values of 34–45 suggested that the Muong Luan granitoid was derived from partial melting of mafic crustal source rocks, which are probably Paleoproterozoic in age as revealed by Hf model ages (TDM2 = 1624–1923 Ma).  相似文献   

13.
The Sindong Group forms the lowermost basin‐fill of the Gyeongsang Basin, the largest Cretaceous nonmarine basin located in southeastern Korea, and comprises the Nakdong, Hasandong, and Jinju Formations with decreasing age. The depositional age of the Sindong Group has not yet been determined well and the reported age ranges from the Valanginian to Albian. Detrital zircons from the Sindong Group have been subjected to U–Pb dating using laser ablation inductively coupled plasma mass spectrometry. The Sindong Group contains noticeable amounts of detrital magmatic zircons of Cretaceous age (138–106 Ma), indicative of continuous magmatic activity prior to and during deposition of the Sindong Group. The youngest detrital zircon age of three formations becomes progressively younger stratigraphically: 118 Ma for the Nakdong Formation, 109 Ma for the Hasandong Formation, and 106 Ma for the Jinju Formation. Accordingly, the depositional age of the Sindong Group ranges from the late Aptian to late Albian, which is much younger than previously thought. Lower Cretaceous magmatic activity, which supplied detrital zircons to the Sindong Group, changed its location spatially through time; it occurred in the middle and northern source areas during the early stage, and then switched to the middle to southern source areas during the middle to late stages. This study reports first the Lower Cretaceous magmatic activity from the East Asian continental margin, which results in a narrower magmatic gap (ca 20 m.y.) than previously known.  相似文献   

14.
The Okinoshima Formation crops out on Okinoshima Island and comprises a thick sequence (> 200 m) of pyroclastic rocks and alternating beds of sandstone and mudstone. Because Okinoshima Island is located between Honshu and Tsushima Island, the Okinoshima Formation potentially provides an important record of volcanism during the opening of the Japan Sea in northwest Kyushu, as well as a record of the formation of the present Genkai Sea region. In consideration of the lack of previous geochronological work, dating (fission‐track and U–Pb) of igneous zircons extracted from the Okinoshima Formation were undertaken and studied the clay mineral alteration in the pyroclastic material in order to reveal its thermal history. These data are used to constrain the age of the Okinoshima Formation and the present Genkai Sea region. Our results show that no thermal event has reset the fission‐track age after deposition of the pyroclastic rocks, and that the Okinoshima Formation was deposited at 16.2 Ma. The present Genkai Sea region is a deep‐sea basin, and its formation at 16.2 Ma was accompanied by submarine volcanism and rapid subsidence that marked the climactic stage of Japan Sea formation. After 16 Ma, the tectonic setting of the present Genkai Sea region changed from one of extension (related to the formation of the Japan Sea) to one of compression, with uplift occurring under the influence of the clockwise rotation of southwest Japan. Consequently, after 16 Ma the present Genkai Sea region became isolated from the forming processes of the Japan Sea.  相似文献   

15.
Northwestern Ilocos Norte in Luzon, Philippines, exposes cherts, peridotite and a variety of metamorphic rocks including chlorite schist, quartzo‐feldspathic schist, muscovite schist and actinolite schist. These rocks are incorporated within a tectonic mélange, the Dos Hermanos Mélange, which is thrust onto the turbidite succession of the Eocene Bangui Formation and capped by the Upper Miocene Pasuquin Limestone. The radiolarian assemblages constrain the stratigraphic range of the cherts to the uppermost Jurassic to Lower Cretaceous. Stratigraphically important species include Eucyrtidiellum pyramis (Aita), Hiscocapsa acuta (Hull), Protunuma japonicus (Matsuoka & Yao), Archeodictyomitra montisserei (Squinabol), Hiscocapsa asseni (Tan), Cryptamphorella conara (Foreman) and Pseudodictyomitra carpatica (Lozyniak). The radiolarian biostratigraphic data provide evidence for the existence of a Mesozoic basinal source from which the cherts and associated rocks were derived. Crucial to determining the origin of these rocks is their distribution and resemblance with known mélange outcrops in Central Philippines. The mélange in the northwestern Ilocos region bears similarities in terms of age and composition with those noted in the western part of the Central Philippines, particularly in the islands of Romblon, Mindoro and Panay. The existence of tectonic mélanges in the Central Philippines has been attributed to the Early to Middle Miocene arc–continent collision. This event involved the Philippine Mobile Belt and the Palawan Microcontinental Block, a terrane that drifted from the southeastern margin of mainland Asia following the opening of the South China Sea. Such arc–continent collision event could also well explain the existence of a tectonic mélange in northwestern Luzon.  相似文献   

16.
Lithological and geochemical features of platformal carbonates record the signatures of the global climates and the regional environmental settings and also reconstruct the diagenetic history and porosity evolution, which are essential to evaluate the potential of hydrocarbon reservoirs. This study investigates the platformal carbonates of the Oligo‐Miocene Krunji Formation of North East Java Basin, which are potentially significant hydrocarbon reservoirs. The carbonate sequence in a 283 m thick section at Kranji in East Java is subdivided into three lithological units: limestone unit 1, dolostone unit 2, and limestone unit 3, in ascending order. The strontium‐isotope ratios of well‐preserved calcite samples indicate the depositional period from Chattian (late Oligocene) to Burdigalian (early Miocene), which is consistent with ages of the foraminifer assemblages. Unit 1 consists of low‐porosity limestone, in which two horizons of subaerial exposure are recognized by the occurrence of red‐colored matrix and lower δ13C values. Unit 2 consists of dolomitic rock and exhibits coarse‐grained calcitic grains and cross‐stratified structure. Considering that this unit has been subject to dolomitization, the sediment of unit 2 was initially permeable and was likely deposited in a shoal setting. The overlying unit 3 of Aquitanian–Burdigalian age is characterized by a highly granular texture. High porosity and uniformly low δ13C and δ18O values indicate that Unit 3 was subjected to more intense meteoric diagenesis than the Chattian unit 1. This was likely a consequence of the Antarctic ice‐sheet expansion during the Oligocene/Miocene transition, which amplified sea level change. The unit 2 dolomite has high δ13C and δ18O values and a high 87Sr/86Sr ratio which resulted from the reflux of seawater into permeable the sediment body in middle‐late Miocene (Burdigalian Tortonian) following the deposition of unit 3. The porosity and permeability of the Kujung Formation were initially controlled by sedimentological processes, but largely modified by later diagenetic processes.  相似文献   

17.
The peri‐Arabian ophiolite belt, from Cyprus in the west, eastward through Northwest Syria, Southeast Turkey, Northeast Iraq, Southwest Iran, and into Oman, marks a 3000 km‐long convergent margin that formed during a Late Cretaceous (ca 100 Ma) episode of subduction initiation on the north side of Neotethys. The Zagros ophiolites of Iran are part of this belt and are divided into Outer (OB) and Inner (IB) Ophiolitic Belts. We here report the first Nd–Hf isotopic study of this ophiolite belt, focusing on the Dehshir ophiolite (a part of IB). Our results confirm the Indian mid‐oceanic ridge basalt (MORB) mantle domain origin for the Dehshir mafic and felsic igneous rocks. All lavas have similar Hf isotopic compositions, but felsic dikes have significantly less‐radiogenic Nd isotopic compositions compared to mafic lavas. Elevated Th/Nb and Th/Yb in felsic samples accompany nonradiogenic Nd, suggesting the involvement of sediments or continental crust.  相似文献   

18.
To constrain the depositional age of the lowermost Nakdong Formation in the Early Cretaceous Gyeongsang Basin, SHRIMP U–Pb age determination was carried out on zircon separates. The U–Pb compositions of detrital zircons from the Nakdong Formation yield a wide range of ages from the Archean to the Cretaceous but show a marked contrast in age distribution according to the geographical locations within the basin. The provenance of the southern Nakdong Formation is dominantly the surrounding Yeongnam Massif, which is composed of Paleoproterozoic metamorphic rocks and Triassic to Jurassic plutonic rocks, whereas the central to northern Nakdong Formation records significant sediment derivation from the Okcheon Metamorphic Belt, which is distributed to the northwest, in addition to the contribution from the Yeongnam Massif. It is suggested that the maximum depositional age of the Nakdong Formation is ca 127 Ma, based on its youngest detrital zircon age population. The onset of its deposition at 127 Ma coincided with the tectonic inversion in East Asia from a compressional to an extensional geodynamic setting, probably due to the contemporaneous change in the drift direction of the Izanagi Plate and its subsequent oblique subduction.  相似文献   

19.
In order to provide references of the subduction process of the Paleo‐Pacific Plate beneath the Jiamusi Block, this paper studied the clastic rocks of the Nanshuangyashan Formation using modal analysis of sandstones, mudstone elements geochemistry, and detrital zircon U–Pb dating. These results suggest the maximum depositional age of the Nanshuangyashan Formation was between the Norian and Rhaetian (206.8 ±4.6 Ma, mean standard weighted deviation (MSWD) = 0.17). Whole‐rock geochemistry of mudstone indicates that source rocks of the Nanshuangyashan Formation were primarily felsic igneous rocks and quartzose sedimentary rocks, which were mainly derived from the stable continental block and a magmatic arc. Detrital zircon analysis showed the Nanshuangyashan Formation samples recorded four main age groups: 229–204 Ma, 284–254 Ma, 524–489 Ma and 930–885 Ma, and the provenances were attributed to the Jiamusi Block and a Late Triassic magmatic arc near the study area. Furthermore, the eastern Jiamusi Block was a backarc basin, affected by the subduction of the Paleo‐Pacific Plate in the Late Triassic, but the magmatic arc related to the subduction near the study area finally died out due to tectonic changes and stratigraphic erosion.  相似文献   

20.
Zircon U–Pb ages of two acidic tuff and two turbidite sandstone samples from the Nakanogawa Group, Hidaka Belt, were measured to estimate its depositional age and the development of the Hokkaido Central Belt, northeast Japan. In the northern unit, homogeneous zircons from pelagic acidic tuff from a basal horizon dated to 58–57 Ma, zircons from sandstone from the upper part of the unit dated to 56–54 Ma, and zircons from acidic tuff from the uppermost part dated to 60–56 Ma and 69–63 Ma. Both of the tuff U–Pb ages are significantly older than the youngest radiolarian fossil age (66–48 Ma). Therefore, the maximum depositional age of the turbidite facies in the northern unit is 58 Ma and the younger age limit, estimated from the fossil age, is 48 Ma. In the southern unit, homogeneous zircons from turbidite sandstone dated to 58–57 Ma. Thus the depositional age of this turbidite facies was interpreted to be 66–56 Ma from the fossil age, probably close to 57 Ma. Most of the zircon U–Pb ages from the Nakanogawa Group are younger than 80 Ma, with a major peak at 60 Ma. This result implies that around Hokkaido volcanic activity occurred mainly after 80 Ma. Older zircon ages (120–80 Ma, 180–140 Ma, 340–220 Ma, 1.9 Ga, 2.2 Ga, and 2.7 Ga) give information about the provenance of other rocks in the Hidaka Belt. It is inferred that the Nakanogawa Group comprises protoliths of the upper sequence of the Hidaka Metamorphic Zone, which therefore has the same depositional age as the Nakanogawa Group (66–48 Ma). The depositional ages of the lower sequence of the Hidaka Metamorphic Zone and the Nakanogawa Group are probably the same.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号