首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cold seeps have recently been discovered in the Nile deep‐sea fan (Eastern Mediterranean), and data regarding associated fauna are still scarce. In this study, two bivalve species associated with carbonate crusts and reduced sediment are identified based on sequence analysis of their 18S and 28S rRNA‐encoding genes, and associated bacterial symbioses are investigated using 16S rRNA gene sequencing and microscopy‐based approaches. The specimens are closely related to Myrtea spinifera and Thyasira flexuosa, two species previously documented at various depths from other regions but not yet reported from the Eastern Mediterranean. Both species harbour abundant gammaproteobacterial endosymbionts in specialized gill epithelial cells. The Myrtea‐associated bacterium is closely related to lucinid symbionts from both deep‐sea and coastal species, whereas the Thyasira‐associated bacterium is closely related to the symbiont of a T. flexuosa from coastal waters off the U.K. An epsilonproteobacterial sequence has also been identified in Thyasira which could correspond to a helicoid‐shaped morphotype observed by electron microscopy, but this was not confirmed using fluorescent in situ hybridization. Virus‐like particles were observed within some symbionts in Thyasira, mostly in bacteriocytes localized close to the ciliated zone of the gill filament. Overall, results indicate that very close relatives of shallow species M. spinifera and T. flexuosa occur at cold seeps in the Eastern Mediterranean and harbour chemoautotrophic symbioses similar to those found in their coastal relatives.  相似文献   

2.
Anammox is the anaerobic oxidation of ammonium by nitrite or nitrate to yield N2. This process, along with conventional denitrification, contributes to nitrogen loss in oxygen-deficient systems. Anammox is performed by a special group of bacteria belonging to the Planctomycetes phylum. However, information about the distribution, activity, and controlling factors of these anammox bacteria is still limited. Herein, we examine the phylogenetic diversity, vertical distribution, and activity of anammox bacteria in the coastal upwelling region and oxygen minimum zone off northern Chile. The phylogeny of anammox bacteria was studied using primers designed to specifically target 16S rRNA genes from Planctomycetes in samples taken during a cruise in 2004. Anammox bacteria-like sequences affiliated with Candidatus “Scalindua spp.” dominated the 16S rRNA gene clone library. However, 62% of the sequences subgrouped separately within this cluster and together with a single sequence retrieved from the suboxic zone of the freshwater Lake Tanganyika. The vertical distribution and activity of anammox bacteria were explored through CARD-FISH (fluorescence in situ hybridization with catalyzed reporter deposition) and 15N labeling incubations, respectively, at two different open-ocean stations during a second cruise in 2005. Anammox bacterial CARD-FISH counts (up to 3000 cells ml−1) and activity (up to 5.75 nmol N2 L−1 d−1) were only detected at the station subjected directly to the upwelling influence. Anammox cell abundance and activity were highest at 50 m depth, which is the upper part of the OMZ. In this layer, a high abundance of cyanobacteria and a marked nitrogen deficit were also observed. Thus, our results show the presence of a new subcluster within the marine anammox phylogeny and indicate high vertical variability in the abundance and activity of anammox bacteria that could be related to an intensification of carbon and nitrogen cycling in the upper part of the OMZ.  相似文献   

3.
Mangroves are coastal ecosystems, found in tropical and subtropical regions around the world. They are found in the transitional zones between land, sea, and rivers. Petroleum hydrocarbons are the most common environmental pollutants, and oil spills pose a great hazard to mangroves forests. This research was focused on the isolation and characterization of crude oil‐degrading bacteria from mangrove ecosystems at the Persian Gulf. Sixty‐one crude oil‐degrading bacteria were isolated from mangrove samples (plant, sediment, and seawater) that enriched in ONR7a medium with crude oil as only carbon source. Some screening tests such as growth at high concentration of crude oil, bioemulsifier production, and surface hydrophobicity were done to select the most efficient strains for crude oil degradation. Molecular identification of strains was carried out by amplification of the 16S rRNA gene by PCR. The results of this study were indicated that the quantity of crude oil‐degrading bacteria was higher in the root of mangrove plants compare to other mangrove samples (sediment and seawater). Also, identification results confirmed that these isolated strains belong to Vibrio sp. strain NW4, Idiomarina sp. strain BW32, Kangiella sp. strain DP40, Marinobacter sp. strain DW44, Halomonas sp. strain BS53, and Vibrio sp. strain DS35. The application of bioremediation strategies with these bacteria can reduce crude oil pollution in this important marine environment.  相似文献   

4.
The San Clemente cold seep lies within 100–200 km of other reducing habitats in the NE Pacific, offering an opportunity to compare diversity and species overlap among reducing habitats (i.e. whale‐, kelp‐, and wood‐falls) at similar depths within a single region. Video observations from the research submersible Alvin at the San Clemente seep (1800 m depth) indicated clumps (‘thickets’) of vestimentiferans distributed as meter‐scale patches interspersed with vesicomyid clam beds and black sediments. Sediment‐core samples were collected at distances of 0 to 80–200 m along randomly oriented transects radiating outward from vestimentiferan thickets to evaluate changes in macrofaunal community structure from thickets into the background community. Macrofaunal abundance was elevated at distances of 0–1 m compared to 80–200 m (i.e. the ‘background’ community). The tube‐building frenulate worms Siboglinum spp., along with peracarid crustaceans, dominated sediments within 1 m of vestimentiferan thickets. Species diversity was depressed within 1 m of thickets but with high rates of species accumulation, suggesting that seep sites greatly increase sediment heterogeneity and facilitate colonization by non‐background macrofaunal species. Stable isotope data indicate chemosynthetic nutrition for some dominant macrofaunal species within 1 m of tubeworm thickets. The macrofaunal community near vestimentiferan thickets in San Clemente seep contains intermediate levels of species richness and diversity compared to other deep‐sea seep areas in the northeast Pacific. There was low species overlap between the San Clemente seep macrofauna and communities in reducing habitats near wood‐, whale‐, and kelp‐falls at similar depths within the region, suggesting that seeps harbor a distinct infaunal community.  相似文献   

5.
Marine sediments in continental shelf ecosystems harbor a rich biodiversity of benthic communities. In this study, the spatial and temporal diversity and community assemblages of free‐living marine nematodes were studied by sampling at six depths and over 3 years from the southwest continental shelf off Bay of Bengal, one of the least explored tropical shelf ecosystems. The dominant marine nematode species were related with abiotic variables as part of this study. The effects of sediment granulometry generally decreased with increasing depth and the highest nematode density and species diversity were recorded on coarse sand (shallower depths). Multivariate analysis of the nematode community data showed that community structure differed significantly among depths as well as among years. Statistical analyses showed significant correlations between the nematode community and abiotic variables. Sediment texture, organic matter, water pressure and depth profile were crucial factors for determining diversity, vertical profile and feeding types of the nematode community. Other environmental factors, including anthropogenic pressure, did not have an effect on nematode diversity except for the presence of some tolerant species (Metachromadora spp., Sabatieria spp. and Siplophorella sp.). This study represents a baseline of knowledge of free‐living marine nematode communities that can be used in the future to compare nematode assemblages from temperate shelf ecosystems.  相似文献   

6.
A giant 800-m-diameter pockmark named REGAB was discovered on the Gabon continental margin actively emitting methane at a water depth of 3200 m. The microbial diversity in sediments from four different assemblages of chemosynthetic organisms, Mytilidae, Vesicomyidae, Siboglinidae and a bacterial mat, was investigated using comparative 16S rRNA gene sequence analysis. Aggregates of anaerobic methanotrophic archaea (ANME-2) and bacteria of the Desulfosarcina/Desulfococcus cluster were found in all four chemosynthetic habitats. Fluorescence in situ hybridization targeting the ANME-2/Desulfosarcina/Desulfococcus aggregates showed their presence few centimeters (3–5 cm) below the surface of sediment. 16S rRNA gene sequences from all known marine ANME groups were detected in the pockmark sediments, as well as from both known bacterial partners. The archaeal diversity was limited to the ANME cluster for all investigated samples. The bacterial diversity included members of the Proteobacteria, Bacilliales, Cytophaga/Flavobacteria, Verrucomicrobia, JS1 and Actinobacteria clusters. Bacterial 16S rRNA gene sequences related to those of known sulphide-oxidizing symbionts were recovered from tissues of several invertebrates including vesicomyid clams and siboglinid tubeworms of REGAB.  相似文献   

7.
The Po River runoff strongly affects the oceanographic and ecological characteristics of the Northern Adriatic Sea. Catalysed reported deposition ‐ fluorescence in situ hybridization (CARD‐FISH) analysis was employed to assess how the composition of the coastal bacterioplankton community is influenced by the river runoff in two different seasons (spring and autumn). Samples were collected from the water column along a coastal–offshore transect in the Northern Adriatic Sea at different depths. Four clone libraries were then constructed from coastal (0 m) and offshore waters (?65 m). Higher abundances of bacteria were recorded in coastal waters as compared with the offshore samples. This result was mainly due to the trophic state of the water column, and it was related to salinity. Particularly, Actinobacteria and Gammaproteobacteria were affected by the riverine inputs, whereas Bacteroidetes and Alphaproteobacteria showed only minor responses. This was particularly clear in the autumn sample, in which a clear difference between the coastal and the offshore samples was found due to a strong influence of the less saline river water with high nutrient concentrations. Analysis of 205 partial length 16S rRNA gene sequences indicated a high diversity with the dominance of Alphaproteobacteria, Bacteroidetes and Gammaproteobacteria mainly affiliated to coastal and marine bacterioplankton clades. Actinobacteria were also detected and, together with Gammaproteobacteria, strongly follow the freshwater intrusion. Overall, our results indicate that the seasonal difference in the Po River discharge greatly affects the bacterioplankton community. In spring we observed a smooth transition from coastal to open‐sea conditions owing to the more superficial freshwater plume. In autumn the deeper freshwater intrusion in the coastal site and thermal stratification offshore resulted in a marked difference between the coastal and offshore microbial communities.  相似文献   

8.
Abstract. Much of the discussion of high deep‐sea diversity has assumed that asymmetric inter‐specific competition will rapidly lead to the elimination of many species unless restrained by extensive differentiation of niches, or the action of predation and/or environmental disturbance. This is true for some habitats, including rocky shores. However, experimental studies indicate that marine soft sediment communities do not function like this. In shallow‐water sediments, competition is usually symmetric and relatively weak. Asymmetric competition that leads to the elimination of one species by another on time scales shorter than one generation is rare, apart from interactions that involve large‐scale modification or disturbance of the sediment. Competition is therefore relatively unimportant as a process structuring communities and the impact of predation is usually to reduce rather than enhance diversity. These results have been largely ignored by the literature on deep‐sea diversity. If deep‐sea communities function in similar ways, coexistence of many species within small areas on short time scales does not need further explanation. We do , however, need to explain why abundances of all species remain bounded on large spatial scales and time scales of several generations. The model of diversity maintenance proposed by Huston (1979) and applied to the deep sea by Rex (1983) achieves this by implicit intra‐specific, density‐dependent processes that increase the population growth rate of species that have become locally rare. This would give robust maintenance of diversity, but there is no evidence for density dependence of this type in the deep sea, and no plausible mechanisms by which it could occur. Alternative models require either spatial heterogeneity on a scale much larger than that envisaged by the grain‐matching hypothesis or the placing of a cap on the abundance of common species, perhaps by frequency‐dependent predation. Arbitrating between these possibilities will require assessments of the population dynamics and spatial distribution of individual species on spatial and temporal scales much greater than those usually considered in the deep sea.  相似文献   

9.
The precious red coral Corallium rubrum (L., 1758) lives in the Mediterranean Sea and adjacent Eastern Atlantic Ocean on subtidal hard substrates. Corallium rubrum is a long‐lived gorgonian coral that has been commercially harvested since ancient times for its red axial calcitic skeleton and which, at present, is thought to be in decline because of overexploitation. The depth distribution of C. rubrum is known to range from c. 15 to 300 m. Recently, live red coral colonies have been observed in the Strait of Sicily at depths of c. 600–800 m. This record sheds new light on the ecology, biology, biogeography and dispersal mechanism of this species and calls for an evaluation of the genetic divergence occurring among highly fragmented populations. A genetic characterization of the deep‐sea red coral colonies has been done to investigate biological processes affecting dispersal and population resilience, as well as to define the level of isolation/differentiation between shallow‐ and deep‐water populations of the Mediterranean Sea. Deep‐water C. rubrum colonies were collected at two sites (south of Malta and off Linosa Island) during the cruise MARCOS of the R/V Urania. Collected colonies were genotyped using a set of molecular markers differing in their level of polymorphism. Microsatellites have been confirmed to be useful markers for individual genotyping of C. rubrum colonies. ITS‐1 and mtMSH sequences of deep‐water red coral colonies were found to be different from those found in shallow water colonies, suggesting the possible occurrence of genetic isolation among shallow‐ and deep‐water populations. These findings suggest that genetic diversity of red coral over its actual range of depth distribution is shaped by complex interactions among geological, historical, biological and ecological processes.  相似文献   

10.
The use of environmental data in biogeographic studies of the deep sea is providing greater insight into the processes underlying large‐scale patterns of diversity. Recent surveys of Australia's western continental margin (~100–1100 m) provide systematic sampling of invertebrate megafauna along a gradient of 22° of latitude (13–35° S). Diversity patterns of decapod crustaceans were examined and we investigated the relative importance of environmental and spatial predictor variables on both species richness (alpha diversity) and species turnover. Distance‐based linear models (DistLM) indicated a suite of variables were important in predicting species turnover, of which temperature and oxygen were the most influential. These reflected the oceanographic features that dominate distinct depth bathomes along the slope. The numbers of species within samples were highly variable; a small but significant increase in diversity towards the tropics was evident. Replicated sampling along the margin at ~100 m and ~400 m provided an opportunity to compare latitudinal patterns of diversity at different depths. On the shallow upper slope (~400 m) temperature was disassociated from latitude and the latter proved to be the best predictor of sample species richness. The predictive power of latitude over other variables indicates that proximity to the highly diverse Indo‐West Pacific (IWP) may be important, especially considering that almost 40% of species in this study had a wide IWP distribution. In the management of Australia's marine environments, geomorphic surrogates have been emphasised when defining areas for protection. We found sea‐floor characteristics were relatively less important in predicting richness or community composition.  相似文献   

11.
Free gas is ubiquitous at shallow sediment depths of the northern margin of the Gulf of Mexico. Gassy sediment patches are between 250 and 500 m in horizontal size. Often the gassy layers are within 100 m from the sea floor and are only a few meters thick. Both biogenic and thermogenic gas hydrates have been recovered. Stability values of temperature and pressure indicate that hydrates can exist in water depths less than 500 m. Gassy sediment geoacoustic parameter values are not well constrained because of a lack of concurrent measurements of acoustic properties and sediment gas content. For Gulf of Mexico gassy sediment, some reportedin situ values of sound speed are reduced by an order of magnitude below values for water saturated sediments. More commonly, sound speed is reduced from water saturated sediment values by only 15 to 50 percent.  相似文献   

12.
We applied DNA‐based faecal analysis to determine the diet of female Australian sea lions (n = 12) from two breeding colonies in South Australia. DNA dietary components of fish and cephalopods were amplified using the polymerase chain reaction and mitochondrial DNA primers targeting the short (~100 base pair) section of the 16S gene region. Prey diversity was determined by sequencing ~50 amplicons generated from clone libraries developed for each individual. Faecal DNA was also combined and cloned from multiple individuals at each colony and fish diversity determined. Diets varied between individuals and sites. Overall, DNA analysis identified a broad diversity of prey comprising 23 fish and five cephalopod taxa, including many species not previously described as prey of the Australian sea lion. Labridae (wrasse), Monacanthidae (leatherjackets) and Mullidae (goat fish) were important fish prey taxa. Commonly identified cephalopods were Octopodidae (octopus), Loliginidae (calamary squid) and Sepiidae (cuttlefish). Comparisons of fish prey diversity determined by pooling faecal DNA from several samples provided a reasonable but incomplete resemblance (55–71%) to the total fish diversity identified across individual diets at each site. Interpretation of diet based on the recovery of prey hard‐parts identified one cephalopod beak (Octopus sp.) and one fish otolith (Parapriacanthus elongatus). The present study highlights the value of DNA‐based analyses and their capabilities to enhance information of trophic interactions.  相似文献   

13.
Submarine canyons are complex geomorphological features that have been suggested as potential hotspots for biodiversity. However, few canyons have been mapped and studied at high resolution (tens of m). In this study, the four main branches of Whittard Canyon, Northeast Atlantic, were mapped using multibeam and sidescan sonars to examine which environmental variables were most useful in predicting regions of higher biodiversity. The acoustic maps obtained were ground truthed by 13 remotely operated vehicle (ROV) video transects at depths ranging from 650 to 4000 m. Over 100 h of video were collected, and used to identify and georeference megabenthic invertebrate species present within specific areas of the canyon. Both general additive models (GAMs) and random forest (RF) were used to build predictive maps for megafaunal abundance, species richness and biodiversity. Vertical walls had the highest diversity of organisms, particularly when colonized by cold‐water corals such as Lophelia pertusa and Solenosmilia variabilis. GAMs and RF gave different predictive maps and external assessment of predictions indicated that the most adequate technique varied based on the response variable considered. By using ensemble mapping approaches, results from more than one model were combined to identify vertical walls most likely to harbour a high biodiversity of organisms or cold‐water corals. Such vertical structures were estimated to represent less than 0.1% of the canyon's surface. The approach developed provides a cost‐effective strategy to facilitate the location of rare biological communities of conservation importance and guide further sampling efforts to help ensure that appropriate monitoring can be implemented.  相似文献   

14.
The Håkon Mosby Mud Volcano (HMMV) is a methane seep that is densely populated by the bacteria Beggiatoa spp. as well as by tubeworms of the Family Siboglinidae. Analyses of samples from seven stations located in five different habitats (bare sediments, bacterial mats, siboglinid fields, sediments with small patches of siboglinids and areas of ‘normal’ sea floor) revealed differences in the density and species‐level diversity of nematode communities. Total densities increased from stations inside the mud volcano and on its rim towards the ‘normal’ areas outside the volcano. Nematode species diversity was similar in samples from the siboglinid fields and the bare HMMV sediments. However, the sediment with patches of siboglinids collected outside the volcano was characterised by a diverse nematode community comprising 47 species, whereas the control sediments without siboglinids yielded only 27 species. The nematode assemblage at the bacterial mat site included only two identified species, Halomonhystera disjuncta and Sabatieria ornata, with H. disjuncta being strongly dominant. Terschellingia distlamphida, S. ornata and Aponema ninae dominated nematode communities at the siboglinid fields and in bare HMMV sediments. Species dominating at stations inside the caldera were found in comparable low densities in the sediment with siboglinid patches collected outside the volcano, but were missing in the background samples, where species of Endeolophos, Acantholaimus and Desmoscolex were dominant. Species diversity generally decreased with sediment depth. A subsurface‐dwelling nematode community was observed in the siboglinid fields and the bare sediments. Background sediments showed a sharp decline with 18–20 species at 0–2 cm versus three species at 3–5 cm sediment depth. The trophic composition of the nematode fauna at the HMMV showed a prevalence of deposit feeders at almost all stations, whereas background sediments exhibited a uniform distribution of non‐selective and selective deposit feeders and epistrate feeders. The high percentage of deposit feeders inside the mud volcano could be related to the grain‐size distribution and the significantly higher bacterial biomass compared to the control sediments.  相似文献   

15.
Saltmarshes, seagrass meadows and mudflats are key habitats in estuarine ecosystems. Despite being involved in key ecological processes, the influence of different estuarine habitats on sediment bacterial communities remains understudied. Few studies have analysed and compared the bacterial communities of more than one estuarine habitat at different depths. Here, we investigated to what extent different habitats (mudflats; mono‐specific plots of seagrass [Zostera noltei] and two saltmarsh plants [Juncus maritimus and Spartina maritima]) and sampling depth (0, 5, 10 cm) influence variation in sediment bacterial composition. Our results showed significant differences in the abundance of selected higher taxa amongst habitats and depths. Surface sediment was characterized by bacteria assigned to the Acidimicrobiia, Flavobacteriia, Thiotrichales, Alteromonadales and Rhodobacterales, whereas in deeper sediment Deltaproteobacteria and Anaerolineae were dominant. Juncus sediment, in turn, presented the most distinct bacterial community, with Myxococcales abundant in this habitat. Sampling depth and habitat proved significant predictors of variation in sediment bacterial composition. The compositional dissimilarities amongst habitats and depths suggest functional divergence and complementarity, thus enhancing ecosystem functioning and health. Given the compositionally distinct communities found in different habitats and depths, our study corroborates the importance of conserving a diverse array of estuarine habitats.  相似文献   

16.
Although environmental factors such as grain size and organic carbon content may influence the distribution of microbes in marine sediments, there has been little experimental study of the topic to date. To investigate how those sediment variables affect microbial colonisation under in situ conditions, deep‐sea sediments and artificial sediments (glass beads, sands) were incubated in the Arctic deep sea at 2500 m water depth with or without chitin, one of the most important carbon polymers in marine environments. Microbial abundance, biomass, chitobiase activity and changes in community structure were monitored after 7 days and 1 year. In control sediments without chitin addition, no significant changes in microbial abundance, biomass and activity were observed after 1 year. In the presence of chitin, however, considerable increases in these parameters were recorded in all three sediment types tested. Regardless of chitin addition, natural deep‐sea sediments were always associated with higher values of microbial abundance, biomass and activity compared with artificial sediments. Sediment type was always found to be the most significant factor explaining variation in enzymatic activity and bacterial community structure as compared to the effects of chitin amount, incubation time, and changes in cell number or biomass. Overall, this is the first in situ study that has addressed the effects of multiple factors and their interactions on abundance, biomass, activity and community structure of microbial communities in the deep Arctic Ocean.  相似文献   

17.
By creating novel habitats, habitat‐modifying species can alter patterns of diversity and abundance in marine communities. Many sea urchins are important habitat modifiers in tropical and temperate systems. By eroding rocky substrata, urchins can create a mosaic of urchin‐sized cavities or pits separated by exposed, often flat surfaces. These microhabitats appear to harbor distinct assemblages of species. We investigated how a temperate rocky intertidal community uses three small‐scale (<100 cm2) microhabitats created by or adjacent to populations of the purple sea urchin (Strongylocentrotus purpuratus): pits occupied by urchins, unoccupied pits, and adjacent flat spaces. In tidepools, flat spaces harbored the highest percent cover of algae and sessile fauna, followed by empty pits and then occupied pits. The Shannon diversity and richness of these sessile taxa were significantly higher in flat spaces and empty pits than in occupied pits. The composition of these primary space holders in the microhabitats also varied. Unlike primary space holders, mobile fauna exhibited higher diversity and richness in empty pits than in flat spaces and occupied pits, although results were not significant. The protective empty pit microhabitat harbored the highest densities of most trophic functional groups. Herbivores, however, were densest in flat spaces, concordant with high algal coverage. These results suggest the habitats created by S. purpuratus in addition to its biological activities alter community structure at spatial scales finer than those typically considered for sea urchins.  相似文献   

18.
Offshore exploration during the 1960's for gold off southern New South Wales and for tin in Tasmanian waters did not result in the discovery of economic deposits. Although very rich gold-bearing beach placers were worked in the past, individual deposits were small and rested on bed rock; the chances of locating and exploiting similar deposits offshore appear to be remote. In the case of tin, sub-economic resources were outlined in submerged river channels at a number of places off northeastern Tasmania. Such channels can be outlined by seismic methods, but to locate workable tin deposits in the buried alluvium by drilling alone is likely to be impracticable and successful exploration may depend on the development of other geophysical prospecting techniques.

Large resources of rutile- and zircon-bearing heavy-mineral sands have been indicated off the east Australian coast by mining company work, but no economic deposits have been found to date. Studies of the morphology of the eastern shelf by the Bureau of Mineral Resources have revealed linear features believed to be related to shore lines developed during Quaternary low sea-level still stands. The most persistent of these off northern N.S.W. are about 105 m, 85 m, and between 35 and 45 m below present sea level. A widespread change of slope at a depth of 20–30 m marks the base of the main body of the present-day paralic-zone wedge of sediment, but seismic profiles indicate that a veneer of recent sediment commonly extends seawards into water depths of about 100 m. Much of the outer shelf is floored by relict sediments and extensive areas of bed rock crop out on the middle shelf.

Virtually all sub-surface data from company drilling for heavy-mineral sands relates to the present-day paralic-zone wedge of sediments; this wedge includes undisturbed sedimentary sequences deposited during pre-Holocene high sea-level periods. No large economic-grade deposits have been outlined by this work offshore, and there is reason to believe that the bulk of the heavy-mineral deposits formed during Holocene and previous high sea-level stands are located above present sea level. In addition, the best-developed submerged strand lines are in deep water probably inaccessible to mining. Nevertheless, the possibility that substantial deposits occur offshore in moderate water depths exists.

Outcrops of bed rock are extensive in the mid-shelf zone in the southern part of the area, but north of 29° S they are much less common. Significant areas with sediment thicknesses greater than 20 m in water depths of less than 60 m occur to the east of Newcastle, to the southeast of Smoky Cape, and to the north of Yamba. Two sediment sequences, an upper and a lower, are recognizable. Highest heavy-mineral values in surface sediments occur offshore from the Permo-Triassic basins. Subsurface enrichment may occur at the junction of the upper and lower sequences, or where the upper sequence overlies basement. The abundance of heavy minerals is a function of the total sediment throughput, and the intensity and direction of shore-line sorting, so that the highest potential for accumulation occurs in the northern part of the area.

The most likely prospective areas occur mainly near Cape Byron and near Sugarloaf Point. These areas have been defined on the basis of the thickness of sediments, the depth to the base of the upper sequence, the distribution of ancient strand lines, and the abundance of heavy minerals in the surface sediments.  相似文献   


19.
Studying the diversity‐ecosystem function relationship in the deep sea is of primary importance in the face of biodiversity loss and for our understanding of how the deep sea functions. Results from the first study of diversity‐ecosystem function relationships in the deep sea (Danovaro et al. 2008; Current Biology, 18, 1–8) are unexpected and show an exponential relationship between deep‐sea nematode diversity and ecosystem function and efficiency, although this relationship appears largely restricted to relatively low diversities [ES(51) <25]. Here, we investigate the relationship between nematode diversity and several independent measures/proxies of ecosystem function (sediment community oxygen consumption, bacterial biomass, bacterial extracellular enzyme activity) and efficiency (ratio of bacterial/nematode carbon to organic C content of the sediment) on the New Zealand continental slope. Nematode diversity at our study sites was relatively high [ES(51) = 30–42], and there was no relationship between species/functional diversity and ecosystem function/efficiency after accounting for the effects of water depth and food availability. Our results are consistent with a breakdown of the exponential diversity‐function relationship at high levels of diversity, which may be due to increased competition or greater functional redundancy. Future studies need to take into account as many environmental factors and as wide a range of diversities as possible to provide further insights into the diversity‐ecosystem function relationship in the largest ecosystem on Earth.  相似文献   

20.
根据2013年11月、2014年2月、5月、9月在南麂列岛国家海洋自然保护区海域进行生物资源调查所获得的资料,分析了南麂列岛海域蟹类种类组成、优势种、生物多样性等群落结构特征,并定量分析了群落结构与水文环境因子之间的关系。结果表明,周年4个季度月调查共鉴定出蟹类21种,隶属7科、12属,其中优势种为三疣梭子蟹(Portunus trituberculatus)、日本蟳(Charybdis bimaculata)和双斑蟳(Charybdis bimaculata)3种。不同季节的蟹类种类组成差异较大,而优势种类组成变化较少,其中,以秋季的蟹类种类数最多,冬季最少。从不同水深区域的渔获种类分布趋势来看,蟹类种类以20~30 m水深带较多,30~40 m水深带较少。夏季多样性指数低于其他季节,以水深来看,多样性指数在10~20 m水深带较高,30~40 m水深带较低,蟹类多样性指数与水深呈反比。根据冗余分析认为,水深、水温和盐度是影响调查海域蟹类种类组成和群落结构特征的主要环境因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号