首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper reports on the results from an extensive study of all nadir-looking spectra acquired by Cassini/CIRS during the 44 flybys performed in the course of the nominal mission (2004-2008). With respect to the previous study (Coustenis, A., and 24 colleagues [2007]. Icarus 189, 35-62, on flybys TB-T10) we present here a significantly richer dataset with, in particular, more data at high northern and southern latitudes so that the abundances inferred here at these regions are more reliable. Our enhanced high-resolution dataset allows us to infer more precisely the chemical composition of Titan all over the disk. We also include improved spectroscopic data for some molecules and updated temperature profiles. The latitudinal distributions of all of the gaseous species are inferred. We furthermore test vertical distributions essentially for acetylene (C2H2) from CIRS limb-inferred data and from current General Circulation Models for Titan and compare our results on all the gaseous abundances with predictions from 1-D photochemical-radiative models to check the reliability of the chemical reactions and pathways.  相似文献   

2.
Observations of the Composite InfraRed Spectrometer (CIRS) during the entire nominal Cassini mission (2004-2008) provide us with an accurate global view of composition and temperature in the middle atmosphere of Titan (between 100 and 500 km). We investigated limb spectra acquired at resolution at nine different latitudes between 56°S and 80°N, with a better sampling in the northern hemisphere where molecular abundances and temperature present strong latitudinal variations. From this limb data acquired between February 2005 and May 2008, we retrieved the vertical mixing ratio profiles of C2H2, C2H4, C2H6, C3H8, CH3C2H, C4H2, C6H6, HCN, HC3N and CO2. We present here for the first time, the latitudinal variations of the C2H6, C3H8, CO2, C2H4 and C6H6 vertical mixing ratios profiles. Some molecules, such as C2H6 or C3H8 present little variations above their condensation level. The other molecules (except CO2) show a significant enhancement of their mixing ratios poleward of 50°N. C2H4 is the only molecule whose mixing ratio decreases with height at latitudes below 46°N. Regions depleted in C2H2, HCN and C4H2 are observed around 400 km (0.01 mbar) and 55°N. We also inferred a region enriched in CO2 located between 30 and 40°N in the 2-0.7 mbar pressure range. At 80°N, almost all molecules studied here present a local minimum of their mixing ratio profiles near 300 km (∼0.07 mbar), which is in contradiction with Global Circulation Models that predict constant-with-height vertical profiles due to subsidence at the north pole.  相似文献   

3.
Solar and X-ray radiation and energetic plasma from Saturn's magnetosphere interact with the upper atmosphere producing an ionosphere at Titan. The highly coupled ionosphere and upper atmosphere system mediates the interaction between Titan and the external environment. A model of Titan's nightside ionosphere will be described and the results compared with data from the Ion and Neutral Mass Spectrometer (INMS) and the Langmuir probe (LP) part of the Radio and Plasma Wave (RPWS) experiment for the T5 and T21 nightside encounters of the Cassini Orbiter with Titan. Electron impact ionization associated with the precipitation of magnetospheric electrons into the upper atmosphere is assumed to be the source of the nightside ionosphere, at least for altitudes above 1000 km. Magnetospheric electron fluxes measured by the Cassini electron spectrometer (CAPS ELS) are used as an input for the model. The model is used to interpret the observed composition and structure of the T5 and T21 ionospheres. The densities of many ion species (e.g., CH+5 and C2H+5) measured during T5 exhibit temporal and/or spatial variations apparently associated with variations in the fluxes of energetic electrons that precipitate into the atmosphere from Saturn's magnetosphere.  相似文献   

4.
Observations by several instruments onboard the Cassini spacecraft revealed the existence of heavy hydrocarbon and nitrile species with masses of several thousand atomic mass units in the ionosphere of Titan. These very large molecules are in fact aerosols. The goal of this paper is to compute the concentrations of the charged aerosols in the upper atmosphere (950-1200 km) of Titan. The charging of these aerosols has been studied using the charge balance equations, where positive ions, negative ions, electrons, neutral and charged aerosols are included. Number concentrations of charged aerosols are compared with those observed by the Cassini instruments. The present work estimates the aerosol mass density as 1-10 kg/m3, which is within the predicted range. The results show that the aerosols must be smaller than 10 nm in order to have reasonable agreement with observations by the Cassini Plasma Spectrometer.  相似文献   

5.
We have analyzed data recorded by the Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft during the Titan flybys T0-T10 (July 2004-January 2006). The spectra characterize various regions on Titan from 70° S to 70° N with a variety of emission angles. We study the molecular signatures observed in the mid-infrared CIRS detector arrays (FP3 and FP4, covering roughly the 600-1500 cm−1 spectral range with apodized resolutions of 2.54 or 0.53 cm−1). The composite spectrum shows several molecular signatures: hydrocarbons, nitriles and CO2. A firm detection of benzene (C6H6) is provided by CIRS at levels of about 3.5×10−9 around 70° N. We have used temperature profiles retrieved from the inversion of the emission observed in the methane ν4 band at 1304 cm−1 and a line-by-line radiative transfer code to infer the abundances of the trace constituents and some of their isotopes in Titan's stratosphere. No longitudinal variations were found for these gases. Little or no change is observed generally in their abundances from the south to the equator. On the other hand, meridional variations retrieved for these trace constituents from the equator to the North ranged from almost zero (no or very little meridional variations) for C2H2, C2H6, C3H8, C2H4 and CO2 to a significant enhancement at high northern (early winter) latitudes for HCN, HC3N, C4H2, C3H4 and C6H6. For the more important increases in the northern latitudes, the transition occurs roughly between 30 and 50 degrees north latitude, depending on the molecule. Note however that the very high-northern latitude results from tours TB-T10 bear large uncertainties due to few available data and problems with latitude smearing effects. The observed variations are consistent with some, but not all, of the predictions from dynamical-photochemical models. Constraints are set on the vertical distribution of C2H2, found to be compatible with 2-D equatorial predictions by global circulation models. The D/H ratio in the methane on Titan has been determined from the CH3D band at 1156 cm−1 and found to be . Implications of this deuterium enrichment, with respect to the protosolar abundance on the origin of Titan, are discussed. We compare our results with values retrieved by Voyager IRIS observations taken in 1980, as well as with more recent (1997) disk-averaged Infrared Space Observatory (ISO) results and with the latest Cassini-Huygens inferences from other instruments in an attempt to better comprehend the physical phenomena on Titan.  相似文献   

6.
In this paper we present an in-depth study of the distributions of various neutral species in Titan's upper atmosphere, between 950 and 1500 km for abundant species (N2, CH4, H2) and between 950 and 1200 km for other minor species. Our analysis is based on a large sample of Cassini/INMS (Ion Neutral Mass Spectrometer) measurements in the CSN (Closed Source Neutral) mode, obtained during 15 close flybys of Titan. To untangle the overlapping cracking patterns, we adopt Singular Value Decomposition (SVD) to determine simultaneously the densities of different species. Except for N2, CH4, H2 and 40Ar (as well as their isotopes), all species present density enhancements measured during the outbound legs. This can be interpreted as a result of wall effects, which could be either adsorption/desorption of these molecules or heterogeneous surface chemistry of the associated radicals on the chamber walls. In this paper, we provide both direct inbound measurements assuming ram pressure enhancement only and abundances corrected for wall adsorption/desorption based on a simple model to reproduce the observed time behavior. Among all minor species of photochemical interest, we have firm detections of C2H2, C2H4, C2H6, CH3C2H, C4H2, C6H6, CH3CN, HC3N, C2N2 and NH3 in Titan's upper atmosphere. Upper limits are given for other minor species.The globally averaged distributions of N2, CH4 and H2 are each modeled with the diffusion approximation. The N2 profile suggests an average thermospheric temperature of 151 K. The CH4 and H2 profiles constrain their fluxes to be and , referred to Titan's surface. Both fluxes are significantly higher than the Jeans escape values. The INMS data also suggest horizontal/diurnal variations of temperature and neutral gas distribution in Titan's thermosphere. The equatorial region, the ramside, as well as the nightside hemisphere of Titan appear to be warmer and present some evidence for the depletion of light species such as CH4. Meridional variations of some heavy species are also observed, with a trend of depletion toward the north pole. Though some of the above variations might be interpreted by either the solar-driven models or auroral-driven models, a physical scenario that reconciles all the observed horizontal/diurnal variations in a consistent way is still missing. With a careful evaluation of the effect of restricted sampling, some of the features shown in the INMS data are more likely to be observational biases.  相似文献   

7.
The flybys of Jupiter by the Voyager spacecraft in 1979, and over two decades later by Cassini in 2000, have provided us with unique datasets from two different epochs, allowing the investigation of seasonal change in the atmosphere. In this paper we model zonal averages of thermal infrared spectra from the two instruments, Voyager 1 IRIS and Cassini CIRS, to retrieve the vertical and meridional profiles of temperature, and the abundances of the two minor hydrocarbons, acetylene (C2H2) and ethane (C2H6). The spatial variation of these gases is controlled by both chemistry and dynamics, and therefore their observed distribution gives us an insight into both processes. We find that the two gases paint quite different pictures of seasonal change. Whilst the 2-D cross-section of C2H6 abundance is slightly increased and more symmetric in 2000 (northern summer solstice) compared to 1979 (northern fall equinox), the major trend of equator to pole increase remains. For C2H2 on the other hand, the Voyager epoch exhibits almost no latitudinal variation, whilst the Cassini era shows a marked decrease polewards in both hemispheres. At the present time, these experimental findings are in advance of interpretation, as there are no published models of 2-D Jovian seasonal chemical variation available for comparison.  相似文献   

8.
We analyze the variability of the ambient magnetospheric field along Titan's orbit at 20.3 Saturn radii. However, while our preceding study (Simon et al., 2010) focused on Cassini magnetometer observations from the 62 Titan flybys (TA-T62) between October 2004 and October 2009, the present work discusses magnetic field data that were collected near Titan's orbit when the moon was far away. In analogy to the observations during TA-T62, the magnetospheric fields detected during these 79 “virtual” Titan flybys are strongly affected by the presence of Saturn's bowl-shaped and highly dynamic magnetodisk current sheet. We therefore provide a systematic classification of the magnetic field observations as magnetodisk current sheet or lobe-type scenarios. Among the 141 (62 real+79 virtual) crossings of Titan's orbit between July 2004 and December 2009, only 17 encounters (9 real+8 virtual) took place within quiet, magnetodisk lobe-type fields. During another 50 encounters (21 real+29 virtual), rapid transitions between current sheet and lobe fields were observed around the moon's orbital plane. Most of the encounters (54=22 real+32 virtual) occurred when Titan's orbit was embedded in highly distorted current sheet fields, thereby invalidating the frequently applied idealized picture of Titan interacting with a homogeneous and stationary magnetospheric background field. The locations of real and virtual Titan flybys are correlated to each other. Each of the 62 real Titan flybys possesses at least one virtual counterpart that occurred shortly before or after the real encounter and at nearly the same orbital position. A systematic comparison between Cassini magnetometer observations from the real Titan flybys and their virtual companions suggests that there is no clear evidence of Titan exerting a significant level of control on the vertical oscillatory motion of the magnetodisk near its orbit.  相似文献   

9.
We utilized aerosol extinction coefficient inferred from Cassini/CIRS spectra in the far and mid infrared region to derive the extinction cross-section near an altitude of 190 km at 15°S (from far-IR) and 20°S (from mid-IR). By comparing the extinction cross section that are derived from observations with theoretical calculations for a fractal aggregate of 3000 monomers, each having a radius of 0.05 μm, and a fractal dimension of 2, we are able to constrain the refractive index of Titan’s aerosol between 70 and 1500 cm?1 (143 and 6.7 μm). As the real and imaginary parts of the refractive index are related by the Kramers–Kronig equation, we apply an iterative process to determine the optical constants in the thermal infrared. The resulting spectral dependence of the imaginary index displays several spectral signatures, some of which are also seen for some Titan’s aerosol analogues (tholins) produced in laboratory experiments. We find that Titan’s aerosols are less absorbent than tholins in the thermal infrared. The most prominent emission bands observed in the mid-infrared are due to CH bending vibrations in methyl and methylene groups. It appears that Titan’s aerosols predominantly display vibrations implying carbon and hydrogen atoms and perhaps marginally nitrogen. In the mid infrared, all the aerosol spectral signatures are observed at three additional latitudes (56°S, 5°N and 30°N) and in the 193–274 km altitude range, which implies that Titan’s aerosols exhibit the same chemical composition in all investigated latitude and altitude regions.  相似文献   

10.
Limb spectra recorded by the Composite InfraRed Spectrometer (CIRS) on Cassini provide information on abundance vertical profiles of C2H2, C2H4, C2H6, CH3C2H, C3H8, C4H2, C6H6 and HCN, along with the temperature profiles in Titan's atmosphere. We analyzed two sets of spectra, one at 15° S (Tb flyby) and the other one at 80° N (T3 flyby). The spectral range 600-1400 cm−1, recorded at a resolution of 0.5 cm−1, was used to determine molecular abundances and temperatures in the stratosphere in the altitude range 100-460 km for Tb and 170-495 km for T3. Both temperature profiles show a well defined stratopause, at around 310 km (0.07 mbar) and 183 K at 13° S, and 380 km (0.01 mbar) with 207 K at 80° N. Near the north pole, stratospheric temperatures are colder and mesospheric temperatures are warmer than near the equator. C2H2, C2H6, C3H8 and HCN display vertical mixing ratio profiles that increase with height at 15° S and 80° N, consistent with their formation in the upper atmosphere, diffusion downwards and condensation in the lower stratosphere, as expected from photochemical models. The CH3C2H and C4H2 mixing ratios also increase with height at 15° S. But near the north pole, their profiles present an unexpected minimum around 300 km, observed for the first time thanks to the high vertical resolution of the CIRS limb data. C2H4 is the only molecule having a vertical abundance profile that decreases with height at 15° S. At 80° N, it also displays a minimum of its mixing ratio around the 0.1-mbar level. For C6H6, an upper limit of 1.1 ppb (in the 0.3-10 mbar range) is derived at 15° S, whereas a constant mixing ratio profile of is inferred near the north pole. At 15° S, the vertical profile of HCN exhibits a steeper gradient than other molecules, which suggests that a sink for this molecule exists in the stratosphere, possibly due to haze formation. All molecules display a more or less pronounced enrichment towards the north pole, probably due, in part, to subsidence of air at the north (winter) pole that brings air enriched in photochemical compounds from the upper atmosphere to lower levels.  相似文献   

11.
Discovery by Cassini's plasma instrument of heavy positive and negative ions within Titan's upper atmosphere and ionosphere has advanced our understanding of ion neutral chemistry within Titan's upper atmosphere, primarily composed of molecular nitrogen, with ~2.5% methane. The external energy flux transforms Titan's upper atmosphere and ionosphere into a medium rich in complex hydrocarbons, nitriles and haze particles extending from the surface to 1200 km altitudes. The energy sources are solar UV, solar X-rays, Saturn's magnetospheric ions and electrons, solar wind and shocked magnetosheath ions and electrons, galactic cosmic rays (GCR) and the ablation of incident meteoritic dust from Enceladus’ E-ring and interplanetary medium. Here it is proposed that the heavy atmospheric ions detected in situ by Cassini for heights >950 km, are the likely seed particles for aerosols detected by the Huygens probe for altitudes <100 km. These seed particles may be in the form of polycyclic aromatic hydrocarbons (PAH) containing both carbon and hydrogen atoms CnHx. There could also be hollow shells of carbon atoms, such as C60, called fullerenes which contain no hydrogen. The fullerenes may compose a significant fraction of the seed particles with PAHs contributing the rest. As shown by Cassini, the upper atmosphere is bombarded by magnetospheric plasma composed of protons, H2+ and water group ions. The latter provide keV oxygen, hydroxyl and water ions to Titan's upper atmosphere and can become trapped within the fullerene molecules and ions. Pickup keV N2+, N+ and CH4+ can also be implanted inside of fullerenes. Attachment of oxygen ions to PAH molecules is uncertain, but following thermalization O+ can interact with abundant CH4 contributing to the CO and CO2 observed in Titan's atmosphere. If an exogenic keV O+ ion is implanted into the haze particles, it could become free oxygen within those aerosols that eventually fall onto Titan's surface. The process of freeing oxygen within aerosols could be driven by cosmic ray interactions with aerosols at all heights. This process could drive pre-biotic chemistry within the descending aerosols. Cosmic ray interactions with grains at the surface, including water frost depositing on grains from cryovolcanism, would further add to abundance of trapped free oxygen. Pre-biotic chemistry could arise within surface microcosms of the composite organic-ice grains, in part driven by free oxygen in the presence of organics and any heat sources, thereby raising the astrobiological potential for microscopic equivalents of Darwin's “warm ponds” on Titan.  相似文献   

12.
We present a forward modeling approach for determining, in part, the ring particle spatial distribution in the vicinity of sharp ring or ringlet edges. Synthetic edge occultation profiles are computed based on a two-parameter particle spatial distribution model. One parameter, h, characterizes the vertical extent of the ring and the other, δ, characterizes the radial scale over which the ring optical depth transitions from the background ring value to zero. We compare our synthetic occultation profiles to high resolution stellar occultation light curves observed by the Cassini Ultraviolet Imaging Spectrograph (UVIS) High Speed Photometer (HSP) for occultations by the Titan ringlet and Huygens ringlet edges.More than 100 stellar occultations of the Huygens ringlet and Titan ringlet edges were studied, comprising 343 independent occultation cuts of the edges of these two ringlets. In 237 of these profiles the measured light-curve was fit well with our two-parameter edge model. Of the remaining edge occultations, 69 contained structure that could only be fit with extremely large values of the ring-plane vertical thickness (h > 1 km) or by adopting a different model for the radial profile of the ring optical depth. An additional 37 could not be fit by our two-parameter model.Certain occultations at low ring-plane incidence angles as well as occultations nearly tangent to the ring edge allow the direct measurement of the radial scale over which the particle packing varies at the edge of the ringlet. In 24 occultations with these particular viewing geometries, we find a wide variation in the radial scale of the edge. We are able to constrain the vertical extent of the rings at the edge to less than ∼300 m in the 70% of the occultations with appropriate viewing geometry, however tighter constraints could not be placed on h due to the weaker sensitivity of the occultation profile to vertical thickness compared to its sensitivity to δ.Many occultations of a single edge could not be fit to a single value of δ, indicating large temporal or azimuthal variability, although the azimuthal variation in δ with respect to the longitudes of various moons in the system did not show any discernible pattern.  相似文献   

13.
Ionization of the atmosphere of Titan by galactic cosmic rays is a very significant process throughout the altitude range of 100 to 400 km. An approximate form of the Boltzmann equation for cosmic ray transport has been used to obtain local ionization rates. Models of both ion and neutral chemistry have been employed to compute electron and ion density profiles for three different values of the H2/CH4 abundance ratio. The peak electron density is of the order 103 cm?3. The most abundant positive ions are C2H9+ and C3H9+, while the predicted densities of the negative ions H? and CH3? are very small (<10?4 that of the positive ions). It is suggested that inclusion of the ion chemistry is important in the computation of the H and CH3 density profiles in the lower ionosphere.  相似文献   

14.
The Electron Spectrometer (ELS), one of the sensors making up the Cassini Plasma Spectrometer (CAPS) revealed the existence of numerous negative ions in Titan's upper atmosphere. The observations at closest approach (∼1000 km) show evidence for negatively charged ions up to ∼10,000 amu/q, as well as two distinct peaks at 22±4 and 44±8 amu/q, and maybe a third one at 82±14 amu/q. We present the first ionospheric model of Titan including negative ion chemistry. We find that dissociative electron attachment to neutral molecules (mostly HCN) initiates the formation of negative ions. The negative charge is then transferred to more acidic molecules such as HC3N, HC5N or C4H2. Loss occurs through associative detachment with radicals (H and CH3). We attribute the three low mass peaks observed by ELS to CN, C3N/C4H and C5N. These species are the first intermediates in the formation of the even larger negative ions observed by ELS, which are most likely the precursors to the aerosols observed at lower altitudes.  相似文献   

15.
A global-mean model of coupled neutral and ion chemistry on Titan has been developed. Unlike the previous coupled models, the model involves ambipolar diffusion and escape of ions, hydrodynamic escape of light species, and calculates the H2 and CO densities near the surface that were assigned in some previous models. We tried to reduce the numbers of species and reactions in the model and remove all species and reactions that weakly affect the observed species. Hydrocarbon chemistry is extended to C12H10 for neutrals and C10H+11 for ions but does not include PAHs. The model involves 415 reactions of 83 neutrals and 33 ions, effects of magnetospheric electrons, protons, and cosmic rays. UV absorption by Titan's haze was calculated using the Huygens observations and a code for the aggregate particles. Hydrocarbon, nitrile, and ion chemistries are strongly coupled on Titan, and attempt to calculate them separately (e.g., in models of ionospheric composition) may result in significant error. The model densities of various species are typically in good agreement with the observations except vertical profiles in the stratosphere that are steeper than the CIRS limb data. (A model with eddy diffusion that facilitates fitting to the CIRS limb data is considered as well.) The CO densities are supported by the O+ flux from Saturn's magnetosphere. The ionosphere includes a peak at 80 km formed by the cosmic rays, steplike layers at 500-700 and 700-900 km and a peak at 1060 km (SZA = 60°). Nighttime densities of major ions agree with the INMS data. Ion chemistry dominates in the production of bicyclic aromatic hydrocarbons above 600 km. The model estimates of heavy positive and negative ions are in reasonable agreement with the Cassini results. The major haze production is in the reactions C6H + C4H2, C3N + C4H2, and condensation of hydrocarbons below 100 km. Overall, precipitation rate of the photochemical products is equal to 4-7 kg cm−2 Byr−1 (50-90 m Byr−1 while the global-mean depth of the organic sediments is ∼3 m). Escape rates of methane and hydrogen are 2.9 and 1.4 kg cm−2 Byr−1, respectively. The model does not support the low C/N ratio observed by the Huygens ACP in Titan's haze.  相似文献   

16.
W.J. Borucki  R.C. Whitten  E. Barth 《Icarus》2006,181(2):527-544
The electrical conductivity and electrical charge on the aerosols in atmosphere of Titan are computed for altitudes between 0 and 400 km. Ionization of methane and nitrogen due to galactic cosmic rays (GCR) is important at night where these ions are converted to ion clusters such as CH+5CH4, C7H+7, C4H+7, and H4C7N+. The ubiquitous aerosols observed also play an important role in determining the charge distribution in the atmosphere. Because polycyclic aromatic hydrocarbons (PAHs) are expected in Titan's atmosphere and have been observed in the laboratory and found to be electrophilic, we consider the formation of negative ions. During the night, the very smallest molecular complexes accept free electrons to form negative ions. This results in a large reduction of the electron abundance both in the region between 150 and 350 km over that predicted when such aerosols are not considered. During the day time, ionization by photoemission from aerosols irradiated by solar ultraviolet (UV) radiation overwhelms the GCR-produced ionization. The presence of hydrocarbon and nitrile minor constituents substantially reduces the UV flux in the wavelength band from the cutoff of CH4 at 155 to 200 nm. These aerosols have such a low ionization potential that the bulk of the solar radiation at longer wavelengths is energetic enough to produce a photoionization rate sufficient to create an ionosphere even without galactic cosmic ray (GCR) bombardment. At altitudes below 60 km, the electron and positive ion abundances are influenced by the three-body recombination of ions and electrons. The addition of this reaction significantly reduces the predicted electron abundance over that previously predicted. Our calculations for the dayside show that the peaks of the charge distributions move to larger values as the altitude increases. This variation is the result of the increased UV flux present at the highest altitudes. Clearly, the situation is quite different than that for the night where the peak of the distribution for a particular size is nearly constant with altitude when negative ions are not present. The presence of very small aerosol particles (embryos) may cause the peak of the distribution to decrease from about 8 negative charges to as little as one negative charge or even zero charge. This dependence on altitude will require models of the aerosol formation to change their algorithms to better represent the effect of charged aerosols as a function of altitude. In particular, the charge state will be much higher than previously predicted and it will not be constant with altitude during the day time. Charging of aerosol particles, whether on the dayside or nightside, has a major influence on both the electron abundance and electrical conductivity. The predicted conductivities are within the measurement range of the HASI PWA instrument over most but not all, of the altitude range sampled.  相似文献   

17.
《Planetary and Space Science》1999,47(10-11):1331-1340
The discovery that Titan, the largest satellite of Saturn, has an atmosphere and that methane is a significant constituent of it, was the starting point for a systematic study of Titan’s atmospheric organic chemistry. Since then, the results from numerous ground-based observations and two flybys of Titan, by Voyager I and II, have led to experimental laboratory simulation studies and photochemical and physical modeling. All these works have provided a more detailed picture of Titan. We report here a continuation of such a study performing an experimental laboratory simulation of Titan’s atmospheric chemistry, and considering the two physical phases involved: gases and aerosols. Concerning the gaseous phase, we report the first detection of C4N2 and we propose possible atmospheric abundances for 70 organic compounds on Titan’s upper atmosphere. Concerning the solid phase, we have characterized aerosol analogues synthesized in conditions close to those of Titan’s environment, using elemental analysis, pyrolysis, solubility studies and infrared spectroscopy.  相似文献   

18.
Recent models of Titan's interior predict that the satellite contains an ocean of water and ammonia under an icy layer. Direct evidence for the presence of an ocean can be provided on the Cassini mission only by radio science determination of Titan Love number k2. Simulations that use the five flybys T11, T22 T33, T45, and T68 (the latter two belonging to the extended mission) lead to the result that in the elastic case, where the Love number is real, k2 will be determined with a one-sigma accuracy of 0.1. In the viscoelastic case, where k2 is complex, the real and imaginary parts of k2 will be determined with one sigma accuracies of 0.138 and 0.115, respectively. Ocean and oceanless models that include a viscoelastic rheology are built. In the viscoelastic case, there is a 93% probability to correctly predict the presence or absence of an ocean; this probability improves to 97% in the elastic case.  相似文献   

19.
We have reanalyzed the Voyager 1 UVS solar occultations by Titan to expand upon previous analyses and to resolve inconsistencies that have been noted in the scientific literature. To do so, we have developed a detailed model of the UVS detector and improved both the data reduction methods and retrieval techniques. In comparison to the values previously determined by Smith et al. (1982, J. Geophys. Res. 87, 1351-1359) we find N2 densities that are 25-60% higher, CH4 densities that are smaller by a factor of 3-7, and C2H2 densities that are roughly two orders of magnitude smaller. Our values for the thermospheric temperature are 153-158 K, which are approximately 20-40 K colder than previous estimates. We also report the first-ever determination from Voyager UVS data of density profile information for C2H4, HCN, and HC3N. Finally, we present a simple engineering model that is consistent with our new results in the upper atmosphere and merges smoothly with the model of Yelle et al. (1997, in: HUYGENS Science, Payload and Mission, in: ESA SP, vol. 1177, pp. 243-256) in the lower atmosphere. Our results provide improved constraints for photochemical models and offer scientists a better understanding of Titan's upper atmosphere as we head into the Cassini era in the exploration of the saturnian system.  相似文献   

20.
《Icarus》1987,72(3):604-622
The electrical conductivity and electrical charge on the aerosols in atmosphere of Titan are computed for altitudes from 0 to 400 km. Ionization due to both galactic cosmic rays and electron precipitation from the Saturnian magnetosphere is considered. This ionization results in free electrons and the primary ions N2+ and N+ which are then rapidly converted into secondary ions such as H2CN+ and NH4+ which in turn form ion clusters such as H2CN+(HCN)n and NH4+(NH3)m. In contrast to the atmospheres of Venus and Earth, we find no species in the Titan atmosphere that lead to the formation of appreciable concentrations of negative ions. Consequently, the predicted conductivity is quite different in that a substantial concentration of electrons exists all the way to the surface of Titan. The ubiquitous aerosols observed in the Titan atmosphere also play an important role in determining the charge distribution in the atmosphere. At altitudes above 100 km and for aerosol concentrations above approximately 10/cc, the recombination of electrons and positive ions is controlled by the recombination on the surface of the aerosols rather than by the gas-kinetic recombination rate. For small aerosol concentrations, the ratio of the number of charges per particle to the radius of the particle is approximately 30, for radii in microns. This value is similar to that obtained by previous investigators for terrestrial noctilucent clouds. Because the aerosol particles are highly charged, coagulation is inhibited, particle sizes are smaller, and their settling rates are reduced. As a consequence, the optical depth of the atmosphere is much higher than it would be if the particles were uncharged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号