首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serious soil erosion on the Loess Plateau has be-come the focus of world attention.As early as the1950s China has started soil and water conservation work on the Loess Plateau in order to improve the lo-cal eco-environment and mitigate the threat of the coarse sediment in the middle Yellow River to the river channel at downstream.Facts proved that the best alternative is the integrated management of hill slopes and gullies in combination with biological and engineering measures.Biological m…  相似文献   

2.
Predicting sediment yield at the catchment scale is one of the main challenges in geomorphologic research. The application of both physics‐based models and regression models has until now not provided very satisfying results for prediction of sediment yield for medium to large sized catchments (c. >50 km2). The explanation for this lies in a combination of the large data requirements of most models and a lack of knowledge to describe all processes and process interactions at the catchment scale. In particular, point sources of sediment (e.g. gullies, mass movements), connectivity and sediment transport remain difficult to describe in most models. From reservoir sedimentation data of 44 Italian catchments, it appeared that there was a (non‐significant) positive relation between catchment area and sediment yield. This is in contrast to what is generally expected from the theory of decreasing sediment delivery rates with increasing catchment area. Furthermore, this positive relation suggests that processes other than upland erosion are responsible for catchment sediment yield. Here we explore the potential of the Factorial Scoring Model (FSM) and the Pacific Southwest Interagency Committee (PSIAC) model to predict sediment yield, and indicate the most important sediment sources. In these models different factors are used to characterize a drainage basin in terms of sensitivity to erosion and connectivity. In both models an index is calculated that is related to sediment yield. The FSM explained between 36 and 61 per cent of the variation in sediment yield, and the PSIAC model between 57 and 62 per cent, depending on the factors used to characterize the catchments. The FSM model performed best based on a factor to describe gullies, lithology, landslides, catchment shape and vegetation. Topography and catchment area did not explain additional variance. In particular, the addition of the landslide factor resulted in a significantly increased model performance. The FSM and PSIAC model both performed better than a spatially distributed model describing water erosion and sediment transport, which was applied to the same catchments but explained only between 20 and 51 per cent of the variation in sediment yield. Model results confirmed the hypothesis that processes other than upland erosion are probably responsible for sediment yield in the Italian catchments. A promising future development of the models is by the use of detailed spatially distributed data to determine the scores, decrease model subjectivity and provide spatially distributed output. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

Tile drainage influences infiltration and surface runoff and is thus an important factor in the erosion process. Tile drainage reduces surface runoff, but questions abound on its influence on sediment transport through its dense network and into the stream network. The impact of subsurface tiling on upland erosion rates in the Le Sueur River watershed, USA, was assessed using the Water Erosion Prediction Project (WEPP) model. Six different scenarios of tile drainage with varying drainage coefficient and management type (no till and autumn mulch-till) were evaluated. The mean annual surface runoff depth, soil loss rate and sediment delivery ratio (SDR) for croplands, based on a 30-year simulation for the watershed with untiled autumn mulch-till (Scenario 1), were estimated to be 83.5 mm, 0.27 kg/m2 and 86.7%, respectively; on no-till management systems (Scenario 4), the respective results were 72.3 mm, 0.06 kg/m2 and 88.2%. Tile drains reduced surface runoff, soil loss and SDR estimates for Scenario 1 by, on average, 14.5, 8.1 and 7.9%, respectively; and for Scenario 4 by an estimated 31.5, 22.1 and 20.2%, respectively. The impact of tile drains on surface runoff, soil loss and SDR was greater under the no-till management system than under the autumn mulch-till management system. Comparison of WEPP outputs with those of the Soil Water Assessment Tool (SWAT) showed differences between the two methods.

Editor Z.W. Kundzewicz

Citation Maalim, F.K. and Melesse. A.M., 2013. Modelling impacts of subsurface drainage on surface runoff and sediment yield in the Le Sueur Watershed in Minnesota, USA. Hydrological Sciences Journal, 58 (3), 570–586.  相似文献   

4.
In the past few years, the amount of sediment entering the Yellow River decreased significantly in areas with high and coarse sediment yield of the Loess Plateau. Some researchers considered that it was owing to the soil and water conservation project, while others believed that it was caused by the low precipitation. The observation data showed -2 that the ultimate sod erosion modulus m 1960s could reach 150,000 t km . However some experts preferred to believe that the ultimate soil erosion modulus in 1960s was wrong due to some uncertain mistakes. This paper quantitatively analyzed the spatial-temporal evolution pattern of sediment yield in areas with high and coarse sediment yield of the Loess Plateau over the past 50 years, by simulating the precipitation-runoff and soil erosion in 12 sample years with the digital watershed model. Some preliminary conclusions have been drawn as following: since the 1960s and 1970s, the rainstorm center had moved southward and the intensity of rainfall center became weaker and spread into dispersed rainfall distribution in areas with high and coarse sediment yield; the decrease of the amount of sediment entering the Yellow River was caused by the changes of rainfall type in recent years; the rainstorm of 1967 was concentrated in the re~ion nearby "Shenmu-Fugu" in Shaanxi Province, and the annual maximum transport modulus (150,000 t km-2 ) measured in Bullpen Ditch of the left bank tributary between "Shenmu" and "Fugu" in 1967 is reasonable.  相似文献   

5.
Many upland river catchments in the UK have been historically mined for metals such as lead (Pb) and zinc (Zn), and as part of the mining process large quantities of metal contaminated sediment were released into the river system. The levels of sediment associated heavy metal contamination in river systems are largely controlled by the volumes of contaminated sediment released into the river and fluvial processes (e.g. erosion and deposition). As a consequence, the contamination patterns are often highly variable, which can make it difficult to create accurate assessments of the volumes of contaminated sediment remaining within the system. This paper uses a combination of techniques to establish the volumes of metal contaminated sediment remaining within the River Swale, UK. Firstly, using detailed field sampling and a geographical information system (GIS), it estimates the volumes of sediment remaining within one formerly mined tributary (Gunnerside Beck) which is then extrapolated to represent the contaminant volumes on other tributaries of the River Swale. Secondly, combining fresh field data with a range of existing data, volumes of contaminated sediment on the main stream of the River Swale are established. This two tier approach shows that significant volumes of contaminated sediment remain within the River Swale, with over 32 000 tonnes of Pb within the mined tributaries and 123 000 tonnes within the main channel belt of the River Swale itself. This represents approximately 28% of the Pb produced in the Swale catchment. Given these volumes and present day rates of removal, it may take over 5000 years for all of the metal rich sediment to be removed from the catchment. If the contaminated sediment is used as a tracer, present day rates of reworking of floodplain sediment can be calculated to be 0·02% per year. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Haiyun Shi  Guangqian Wang 《水文研究》2015,29(14):3236-3246
Due to climate change and its aggravation by human activities (e.g. hydraulic structures) over the past several decades, the hydrological conditions in the middle Yellow River have markedly changed, leading to a sharp decrease in runoff and sediment discharge. This paper focused on the impacts of climate change and hydraulic structures on runoff and sediment discharge, and the study area was located in the 3246 km2 Huangfuchuan (HFC) River basin. Changes in annual runoff and sediment discharge were initially analysed by using the Mann–Kendall trend test and Pettitt change point test methods. Subsequently, periods of natural and disturbed states were defined. The results showed that both the annual runoff and sediment discharge presented statistically significant decreasing trends. However, compared with the less remarkable decline in annual rainfall, it was inferred that hydraulic structures might be another important cause for the sharp decrease in runoff and sediment discharge in this region. Consequently, sediment‐trapping dams (STDs, a type of large‐sized check dam used to prevent sediment from entering the Yellow River main stem) were considered in this study. Through evaluating the impacts of the variation in rainfall patterns (i.e. amount and intensity) and the STD construction, a positive correlation between rainfall intensity and current STD construction was found. This paper revealed that future soil and water conservation measures should focus on areas with higher average annual rainfall and more rainstorm hours. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
This study analyses the changes in sediment transport regimes in the middle Yellow River basin (MYRB) using sediment rating parameters. Daily streamflow and suspended sediment concentration data were collected at 35 hydrological stations from the 1950s to 2016, which can be divided into three periods based on the type and intensity of human activities: the base stage before 1970, the restraining stage from 1971 to 1989, and the restoration stage after 2002. Data within each period were fitted by log‐linear sediment rating curves and the sediment rating parameters were utilized to analyse the spatial and temporal variations in sediment transport regimes. The results show that sediment rating parameters are indicative of sediment transport regimes. In the base stage and the restraining stage, the hydrological stations can be categorized into four groups based on their locations on the rating parameter plot. The stations with small drainage basins were characterized by the highest sediment transport regime, followed by those located in the coarse‐particle zone, the loess zone, and the mountainous/forest zone. In the restoration stage, the difference in sediment transport regimes between different geomorphic zones became less distinguishable than in previous stages. During the transition from the base stage to the restraining stage, sediment rating parameters showed no significant changes in sediment transport regimes in all four geomorphic groups. During the transition from the restraining stage to the restoration stage, significant changes were observed in the coarse‐particle zone and the mountain/forest zone, indicating that the revegetation programme and large reservoirs imposed a stronger influence on sediment transport regimes in these two zones than in the rest of the MYRB. This study provides theoretical support for evaluating sediment transport regimes with sediment rating parameters.  相似文献   

8.
This paper evaluates the applicability of the sediment transport methods developed by Engelund and Hansen, Ackers and White, Yang et al., and van Rijn, together with the Wuhan methods developed in China, to the Yellow River, which has highly concentrated and fine-grained sediment. The sediment data includes over 1000 observations from the Yellow River, 32 sets of data from a canal, and 266 sets of data from laboratory flumes. The best predictions were obtained by the Yang 1996 method, the Wuhan method, and the modified Wuhan method by Wu and Long, while reasonably good predictions were also provided by the van Rijn 2004 method. The Engelund and Hansen, the Ackers and White, and the van Rijn 1984 methods in their original forms are not applicable to the Yellow River. The predicted results for total load concentrations were as good as for bed-material concentrations, even though the total load includes a large portion of wash load.  相似文献   

9.
Interannual variations in seasonal sediment transfer in two High Arctic non‐glacial watersheds were evaluated through three summers of field observations (2003–2005). Total seasonal discharge, controlled by initial watershed snow water equivalence (SWE) was the most important factor in total seasonal suspended sediment transfer. Secondary factors included melt energy, snow distribution and sediment supply. The largest pre‐melt SWE of the three years studied (2004) generated the largest seasonal runoff and disproportionately greater suspended sediment yield than the other years. In contrast, 2003 and 2005 had similar SWE and total runoff, but reduced runoff intensity resulted in lower suspended sediment concentrations and lower total suspended sediment yield in 2005. Lower air temperatures at the beginning of the snowmelt period in 2003 prolonged the melt period and increased meltwater storage within the snowpack. Subsequently, peak discharge and instantaneous suspended sediment concentrations were more intense than in the otherwise warmer 2005 season. The results for this study will aid in model development for sediment yield estimation from cold regions and will contribute to the interpretation of paleoenvironmental records obtained from sedimentary deposits in lakes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Jiongxin Xu 《水文研究》2013,27(18):2623-2636
Fenwei Graben is a famous sediment sink. The Longmen‐Sanmexia sediment sink of middle Yellow River is located in the middle part. Using the sediment budget based on annual data from the period 1920–2006 and flood‐event data from 154 flood events from the period 1950–1985, the variations in sediment storage, release and transport have been analysed. Data from different methods and sources indicate that, during an 1800‐year period, the variation of sedimentation rate in this sink has undergone a cycle from increase to decline; the cause for this can be found in the changes in the manner and intensity of human activities. Over 87 years, sediment storage in this sink can be separated into four stages which showed different trends, depending on changing human activities, such as reservoir construction, soil and water conservation and water diversion. Stepwise multiple regression shows that the runoff and sediment yield from three major source areas have differing influences on sediment storage in the sink. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Based on data from 35 stations on the tributaries of the Yellow River, annual specific sediment yield (Ys) in eight grain size fractions has been related to basin‐averaged annual sand–dust storm days (Dss) and annual precipitation (Pm) to reveal the influence of eolian and fluvial processes on specific sediment yield in different grain size fractions. The results show that Ys in fine grain size fractions has the highest values in the areas dominated by the coupled wind–water process. From these areas to those dominated by the eolian process or to those dominated by the fluvial process, Ys tends to decrease. For relatively coarse grain size fractions, Ys has monotonic variation, i.e. with the increase in Dss or the decrease in Pm, Ys increases. This indicates that the sediment producing behavior for fine sediments is different from that for relatively coarse sediments. The results all show that Ys for relatively coarse sediments depends on the eolian process more than on the fluvial process, and the coarser the sediment fractions the stronger the dependence of the Ys on the eolian process. The YsDss and YsPm curves for fine grain size fractions show some peaks and the fitted straight lines for YsDss and YsPm relationships for relatively coarse grain size fractions show some breaks. Almost all these break points may be regarded as thresholds. These thresholds are all located in the areas dominated by the coupled wind–water process, indicating that these areas are sensitive for erosion and sediment production, to which more attention should be given for the purpose of erosion and sediment control. A number of regression equations were established, based which the effect of rainfall, sand–dust storms and surface material grain size on specific sediment yield can be assessed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
The behaviour of suspended sediment in rivers is often a function of energy conditions, i.e. sediment is stored at low flow and transported under high discharge conditions. The timing of maximum sediment transport can, however, also be related to mixing and routing of water and sediment from different sources. In this study suspended sediment transport was studied in the River Rhine between Kaub and the German–Dutch border. As concentrations decrease over a runoff season and as the relationship between water discharge and suspended sediment concentrations during most floods is characterized by clockwise hysteresis, it is concluded that sediment depletion occurs during a hydrological year and during individual floods. However, analyses of the sediment contribution from the River Mosel indicate that clockwise hysteresis may result from sediment depletion as well as from early sediment supply from a tributary. Thus, although the suspended sediment behaviour in the downstream part of the River Rhine is partly a transport phenomenon related to energy conditions, mixing and routing of water from different sources also plays an important role. Suspended sediment transport during floods was modelled using a ‘supply‐based’ model. Addition of a sediment supply term to the sediment rating curve leads to a model that produces better estimates of instantaneous suspended sediment concentrations during high discharge events. A major constriction of the model is that it cannot be used to predict suspended sediment concentrations as long as the amount of sediment in storage and the timing of sediment supply are unknown. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper a spatially distributed model of the hillslope sediment delivery processes, named the sediment delivery distributed (SEDD) model, is initially reviewed; the model takes into account the sediment delivery processes due to both the hillslope sediment transport and the effects of slope curvature. Then the rainfall and sediment yield events measured at the experimental SPA2 basin, in Sicily, are used both to calibrate the SEDD model and to verify the predictive capability of the distributed sediment delivery approach at event scale. For the SPA2 basin discretized into morphological units and stream tubes, the SEDD model is calibrated at event scale using the measurements carried out at the outlet of the experimental basin in the period December 2000–January 2001. The model calibration is used to determine a relationship useful for estimating the unique coefficient βe of the model by rainfall erosivity factor Re at event scale. To test the predictive capability of the βe = f(Re) relationship, 20 events measured in the period September 2002–December 2005 are used; the comparison between measured sediment yield values and calculated ones for all monitored events shows that the sediment delivery distributed approach has a good predictive ability at event scale. The analysis also shows that estimating βe by the relationship βe = f(Re) gives a better agreement between measured and calculated sediment yields than obtained with the median value βe,m of all 27 calculated βe values. Finally the analysis at annual scale, for the period 2000–2005, allows the estimation of the median value βa,m representative of the annual behaviour. This analysis shows that the sediment delivery distributed approach also has a good predictive ability at annual scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Estimates of sediment yield are essential in water resources analysis, modelling and engineering, in investigations of continental denudation rates, and in studies of drainage basin response to changes in climate and land use. The availability of high resolution, global environmental datasets offers an opportunity to examine the relationships between specific sediment yield (SYsp) and drainage basin attributes in a geographical information system (GIS) environment. This study examines SYsp at 14 long‐term gauging stations within the upper Indus River basin. Twenty‐nine environmental variables were derived from global datasets, the majority with a 1 × 1 km resolution. The SYsp ranges from 194 to 1302 t km?2 yr?1 for sub‐basins ranging from 567 to 212 447 km2. The high degree of scatter in SYsp is greatly reduced when the stations are divided into three groups: upper, glacierized sub‐basins; lower, monsoon sub‐basins; and the main Indus River. Percentage snow/ice cover (LCs) emerges as the single major land cover control for SYsp in the high mountainous upper Indus River basin. A regression model with percentage snow/ice cover (LCs) as the single independent variable explains 73·4% of the variance in SYsp for the whole Indus basin. A combination of percentage snow/ice cover (LCs), relief and climate variables explains 98·5% of the variance for the upper, glacierized sub‐basins. For the lower monsoon region, a regression model with only mean annual precipitation (P) explains 99·4% of the variance. Along the main Indus River, a regression model including just basin relief (R) explains 92·4% of the variance in SYsp. Based on the R2adj and P‐value statistics, the variables used are capable of explaining the majority of variance in the upper Indus River basin. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Based on rainfall erosion of soil and suspended sediment transport in storm events, a method is proposed to predict peak suspended sediment concentration and suspended sediment yield in watersheds based on rainfall characteristics prior to peak rainfall intensity. The rainfall characteristics factors that dominate peak suspended sediment concentration Cp are rainfall erosion factor Ref, first peak rainfall intensity of area-average rainfall ip1 and antecedent precipitation index Iap; the rainfall characteristics factors that dominate suspended sediment yield Yss in storm events are total rainfall P, suspended sediment yield factor Rsf and antecedent precipitation index Iap. This research focuses on watersheds in Liau-Kwei observation station along Lao-Nung River in southern Taiwan as the research object, and adopts the PSED-model to simulate the discharge hydrograph, suspended sediment concentration hydrograph and suspended sediment yield in 11 storm events for analysis. The analytical results show that there is a good correlation between the above-mentioned rainfall characteristics factors and Cp as well as Yss, thus enabling Cp and Yss to be predicted by using Expressions (13) and (14). These two expressions are utilized to predict Cp and Yss of Typhoon Morakot in 2009, and the results are compared with those from simulation by using the PSED-model. The result of comparison shows there is a good capability in predicting. For the watersheds where it is necessary to predict Cp and Yss of a storm event for the benefit of effective operation of water resource facilities, the aforesaid rainfall characteristics factors can be utilized to establish applicable models for prediction.  相似文献   

16.
《水文科学杂志》2013,58(6):899-915
Abstract

The results are described of 16 years operation of a measuring station for the automatic recording of water discharge, bed load and suspended sediment transport in the Rio Cordon catchment, a small alpine basin (5 km2) located in northeastern Italy. Hillslope erosion processes were investigated by surveying individual sediment sources repeatedly. Annual and seasonal variations of suspended sediment load during the period 1986–2001 are analysed along with their contribution to the total sediment yield. The results show that suspended load accounted for 76% of total load and that most of the suspended sediment transport occurred during two flood events: an extreme summer flash flood in September 1994 (27% of the 16-years total suspended load) and a snowmelt-induced event in May 2001 accompanied by a mud flow which fed the stream with sediments. The role of active sediment source areas is discussed in relation to the changes in flood peak—suspended load trends which became apparent after both the 1994 and the 2001 events.  相似文献   

17.
The intensity of soil loss and sediment delivery, representing hydrologic and geomorphic processes within a catchment, accelerates with rapid changes in land cover and rainfall events. An underlying component of sustainable management of water resources is an understanding of spatial and temporal variability and the adverse influences of regional parameters involved in generating sediment following widespread changes in land cover. A calibrated algorithm of soil loss coupled with a sediment delivery ratio (SDR) was applied in raster data layers to improve the capability of a combined model to estimate annual variability in sediment yields related to changes in vegetation cover identified by analyses of SPOT imagery. Four catchments in Kangaroo River State forest were assessed for annual changes in sediment yields. Two catchments were selectively logged in 2007, while the two other sites remained undisturbed. Results of SDR estimates indicated that only a small proportion of total eroded sediment from hillslopes is transported to catchment outlets. Larger SDR values were estimated in regions close to catchment outlets, and the SDR reduced sharply on hillslopes further than 200–300 m from these areas. Estimated sediment yield increased by up to 30% two years after land cover change (logging) in 2009 when more storm events were recorded, despite the moderate density of vegetation cover in 2009 having almost recovered to its initial pre‐logging (2005) condition. Rainfall had the most significant influence on streamflow and sediment delivery in all catchments, with steeply sloping areas contributing large amounts of sediment during moderate and high rainfall years in 2007 and 2009. It is concluded that the current scenario of single‐tree selection logging utilized in the study area is an acceptable and environmentally sound land management strategy for preservation of soil and water resources. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Since 1986, with a sharp decrease in water dis-charges, the Yellow River has entered a period charac-terized by low discharges and seasonally occurring dry-ups[1,2]. Since 1999, more strict management of water diversion has been imposed, and therefore the dry-ups have been well under control. However, the lower reaches of the Yellow River is still predominated by low-discharges, and has become a man-induced shrinking river. In the past 40 years, significant effect of soil and water conservat…  相似文献   

19.
As a result of serious soil erosion on the Loess Pla-teau of China, about 1.6 billion tons of silt discharge into the downstream and 0.4 billion tons deposit on the riverbed every year, causing serious threat to the life and property of the local people on both banks of the lower Yellow River[1]. Since the 1950s, the Chinese government has initiated the work on soil and water conservation and environmental management on the Loess Plateau and formulated the guiding principle of hillslope and …  相似文献   

20.

本文对黄河三角洲Z07孔沉积物进行了系统的磁性地层学和环境磁学研究.通过结合沉积速率和古地磁长期变化数据,我们为该孔建立了较为精确可信的年代框架(1999-03-2006-06 A.D.).环境磁学结果表明黄河三角洲沉积物与中国黄土的磁学特征相似,主要载磁矿物为单畴(SD)磁铁矿,超顺磁颗粒(SP)含量也较高.整体上,该孔沉积物磁学参数的变化主要受粒度和含量控制.岩芯磁性参数在2003年前后发生了系统变化.我们认为,黄河自2002年起进行调水调沙工程,黄河下游河道冲刷加剧,形成新的物质来源,河流输入的沉积物粒度变粗,输沙量增加,这一新的物质来源是造成Z07钻孔磁性参数发生显著变化的主因.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号