首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Changes in precipitation exert an enormous impact on human life, and it is of vital importance to study regular patterns of meteorological and hydrological events. In order to explore the changing spatial and temporal patterns of precipitation amounts, precipitation extremes and precipitation concentration in Jiangxi province in southeast China between 1960 and 2008, several precipitation indices series were analysed using the Mann–Kendall test in this study. Our results indicate remarkable differences among the stations with negative and positive precipitation trends at the annual, seasonal and monthly scales, significant increasing trends are mainly found during January, August, winter and summer, while significant decreasing trends mostly are observed during October and autumn. For precipitation extremes, most precipitation indices suggest that both the intensity and the days of extreme precipitation are increasing; the mean precipitation amount, especially, on a wet day shows a significant positive trend. When it comes to precipitation concentration, the monthly rainfall heterogeneity shows an insignificant downward trend, while the contribution of the days with greatest rainfall displays an insignificant upward trend. Furthermore, the long-range persistence is detected for changing process of precipitation amount, extreme precipitation and precipitation concentration using the Rescaled Range Analysis.  相似文献   

2.
The Dipole Mode of the Summer Rainfall over East China during 1958–2001   总被引:2,自引:0,他引:2  
By examining the second leading mode(EOF2)of the summer rainfall in China during 1958–2001 and associated circulations,the authors found that this prominent mode was a dipole pattern with rainfall decreasing to the north of the Yangtze River and increasing to the south.This reverse relationship of the rainfalls to the north and to the south of the Yangtze River was related with the meridional circulations within East Asia and the neighboring region,excited by SST in the South China Sea-northwestern Pacific....  相似文献   

3.
The spatial–temporal variability of the precipitation extremes defined by eight precipitation indices based on daily precipitation dataset was analyzed using the linear regression method and the Mann–Kendall test. The results indicate that increasing trends in the precipitation amount, rainy days, and the intensity of the extreme precipitation were identified at above 70 % of the total rain stations considered in this study, with more than 30 % of them were significant, while most stations show notable decreasing trend in the annual maximum consecutive no-rain days. Significantly increasing trends of the precipitation extremes are observed mainly in the northern Xinjiang and the north of the southern Xinjiang. Most extreme precipitation indices show a potential regime shift starting from the middle of 1980s. The magnitude of the trends is compatible with their pattern of spatial stability. The generally increasing trends in precipitation extremes are found in this study.  相似文献   

4.
As improved and accumulated satellite records become available,it is significant to provide up-to-date perspectives on the spatiotemporal signatures of tropospheric nitrogen dioxide(NO2)over China,the knowledge of which is helpful for air pollution control.In this study,the Ozone Monitoring Instrument NO2 dataset for the last 10 years(2005–14)was retrieved to examine multiple aspects of NO2 columns,including distributions,trends,and seasonal cycle.The pattern of average NO2suggests five hotspots with column density higher than 20×1015 molec cm-2:Jing-Jin-Tang;combined southern Hebei and northern Henan;Jinan;the Yangtze River Delta;and the Pearl River Delta.Furthermore,substantial and widespread NO2 growths are distributed over the North China Plain.By contrast,downward trends in NO2 amounts prevail in the megacities of Beijing,Shanghai,and Guangzhou,despite generally high loading levels.Except for the Pearl River Delta,there appears to be temporally consistent behaviors across all regions considered,where NO2 had an abrupt decline during 2008 to 2009,then a drastic increase up to 2013,before beginning to reduce again after 2013.However,the NO2 over the Pearl River Delta is not coevolving with the rest,having experienced a moderate rise from 2005 to 2007,followed by a reduction thereafter.A marked seasonality is apparent,with a maximum in winter and a minimum in summer,regardless of the region.The annual amplitude of NO2 is less pronounced over the Pearl River Delta,whereas the largest range is observed over the combined Southern Hebei and Northern Henan region,induced by enhanced NO2emission in wintertime due to intense domestic heating.  相似文献   

5.
Based on daily precipitation records at 75 meteorological stations in Hunan Province, central south China, the spatial and temporal variability of precipitation indices is analyzed during 1961–2010. For precipitation extremes, most of precipitation indices suggest that both the amount and the intensity of extreme precipitation are increasing, especially the mean precipitation amount on a wet day, showing a significant positive trend. Meanwhile, both of the monthly rainfall heterogeneity and the contribution of the days with the greatest rainfall show an upward trend. When it comes to rainfall erosivity, most of this province is characterized by high values of annual rainfall erosivity. Although the directions of trends in annual rainfall erosivity at most stations are upward, only 6 of the 75 stations have significant trends. Furthermore, the spatial and temporal variation of dryness/wetness has been assessed by the standardized precipitation index (SPI). The principal component analysis (PCA) was applied to the SPI series computed on 24-month time scales. The results demonstrated a noticeable spatial variability with three subregions characterized by different trends: a remarkable wet tendency prevails in the central and southern areas, while the northern areas are dominated by a remarkable dry tendency.  相似文献   

6.
The extreme summer precipitation over East China during 1982-2007 was simulated using the LASG/IAP regional climate model CREM(the Climate version of a Regional Eta-coordinate Model).The results show that the probability density functions(PDFs) of precipitation intensities are reasonably simulated,except that the PDFs of light and moderate rain are underestimated and that the PDFs of heavy rain are overestimated.The extreme precipitation amount(R95p) and the percent contribution of extreme precipitation to the total precipitation(R95pt) are also reasonably reproduced by the CREM.However,the R95p and R95pt over most of East China are generally overestimated,while the R95p along the coastal area of South China(SC) is underestimated.The bias of R95pt is consistent with the bias of precipitation intensity on wet days(SDII).The interannual variation for R95p anomalies(PC1) is well simulated,but that of R95pt anomalies(PC2) is poorly simulated.The skill of the model in simulating PC1(PC2) increases(decreases) from north to south.The bias of water vapor transport associated with the 95th percentile of summer daily precipitation(WVTr95) explains well the bias of the simulated extreme precipitation.  相似文献   

7.
In this study, the trends and periodicity in climate extremes are examined in Hunan Province over the period 1960–2013 on the basis of 27 extreme climate indices calculated from daily temperature and precipitation records at 89 meteorological stations. The results show that in the whole province, temperature extremes exhibit a warming trend with more than 50% stations being statistically significant for 7 out of 16 temperature indices, and the nighttime temperature increases faster than the daytime temperature at the annual scale. The changes in most extreme temperature indices show strongly coherent spatial patterns. Moreover, the change rates of almost all temperature indices in north Hunan are greater than those of other regions. However, the statistically significant changes in indices of extreme precipitation are observed at fewer stations than in extreme temperature indices, forming less spatially coherent patterns. Positive trends in indices of extreme precipitation show that the amount and intensity of extreme precipitation events are generally increasing in both annual and seasonal scales, whereas the significant downward trend in consecutive wet days indicates that the precipitation becomes more even over the study period. Analysis of changes in probability distributions of extreme indices for 1960–1986 and 1987–2013 also demonstrates a remarkable shift toward warmer condition and increasing tendency in the amount and intensity of extreme precipitation during the past decades. The variations in extreme climate indices exhibit inconstant frequencies in the wavelet power spectrum. Among the 16 temperature indices, 2 of them show significant 1-year periodic oscillation and 7 of them exhibit significant 4-year cycle during some certain periods. However, significant periodic oscillations can be found in all of the precipitation indices. Wet-day precipitation and three absolute precipitation indices show significant 1-year cycle and other seven provide significant power at the 4-year period, which are mainly found during 1970–1980 and after 1992.  相似文献   

8.
9.
A unified chemistry-aerosol-climate model is applied in this work to compare climate responses to chang- ing concentrations of long-lived greenhouse gases(GHGs,CO2,CH4,N2O),tropospheric O3,and aerosols during the years 1951–2000.Concentrations of sulfate,nitrate,primary organic carbon(POA),secondary organic carbon(SOA),black carbon(BC)aerosols,and tropospheric O3 for the years 1950 and 2000 are obtained a priori by coupled chemistry-aerosol-GCM simulations,and then monthly concentrations are in- terpolated ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号