首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The western North China Craton (W-NCC) comprises the Alxa Terrane in the west and the Ordos Block in the east; they are separated by the Helanshan Tectonic Belt (HTB). There is an extensive debate regarding the significant Ordovician tectonic setting of the W-NCC. Most paleogeographic reconstructions emphasized the formation and rapid subsidence of an aulacogen along the HTB during the Middle–Late Ordovician, whereas paleomagnetic and geochronologic results suggested that the Alxa Terrane and the Ordos Block were independent blocks separated by the HTB. In this study, stratigraphic and geochronologic methods were used to constrain the Ordovician tectonic processes of the W-NCC. Stratigraphic correlations show that the Early Ordovician strata comprise ~500-m-thick tidal flat and lagoon carbonate successions with a progressive eastward onlap, featuring a west-deepening shallow-water carbonate shelf. In contrast, the Late Ordovician strata are composed of ~3,000-m-thick abyssal turbidites in the west and ~400-m-thick shallow-water carbonates in the east, defining an eastward-tapering basin architecture. Early Ordovician detrital zircons with ages of ~2,800–1,700 Ma were derived from the Ordos Block; the Late Ordovician turbidites were sourced from the western Alxa Terrane, based on zircon ages clustered at ~1,000–900 Ma. The petrographic modal composition and zircon age distribution imply a provenance shift from a stable craton to a recycled orogen in the Middle Ordovician. These shifts define a tectonic conversion from a passive continental margin to a foreland basin at ~467 Ma, resulting in the eastward progradation of the turbidite wedge around the HTB, the eastward backstepping of the carbonate platform in the east and the eastward expansion of orogenic thrusting in the western Alxa Terrane. This tectono-sedimentary shift coincided with the advancing subduction of the southern Paleo-Asian Ocean beneath the Alxa Terrane, generating the western Alxa continental arc and the paired retro-arc foredeep in the east under a compressional tectonic regime.  相似文献   

2.
The Middle to Upper Ordovician foreland succession of the Ottawa Embayment in central Canada is divided into nine transgressive‐regressive sequences that defines net deepening of a platform succession over ~15 m.y. from peritidal to outer ramp settings, then a return to peritidal conditions over ~3 m.y. related to basin filling by orogen‐derived siliciclastics. With a backdrop of net eustatic rise through the Middle to Late Ordovician, there are several different expressions of structural influence on sequence development in the embayment. During the Middle Ordovician (Darriwilian), foreland‐basin initiation was marked by regional onlap with abundant synsedimentary deformation across a faulted trailing‐margin platform interior; subsequent craton‐interior uplift resulted in voluminous influx of siliciclastics contemporary with local structurally influenced local channelization; then, a formation of a platform‐interior shale basin defines continued intrabasin tectonism. During the Late Ordovician (Sandbian, early Katian), structural influence was superimposed on sea‐level rise as indicated by renewed local development of a platform‐interior shale basin; differential subsidence and thickness variation of platform carbonate successions; abrupt deepening across shallow‐water shoal facies; and, micrograben development coincident with foreland‐platform drowning. These stratigraphic patterns are far‐field expressions of distal orogen development amplified in the platform interior through basement reactivation along an inherited buried Precambrian fault system. Comparison of Upper Ordovician (Sandbian‐lower Katian) sequence stratigraphy in the Ottawa Embayment with eustatic frameworks defined for the Appalachian Basin reveals greater regional variation associated with Sandbian sequences compared to regional commonality in base level through the early Katian.  相似文献   

3.
ABSTRACT Magnetostratigraphic chronologies, together with sedimentological, petrological, seismic and borehole data derived from the Oligo/Miocene Lower Freshwater Molasse Group of the North Alpine foreland basin enable a detailed reconstruction of alluvial architecture in relation to Alpine orogenic events. Six depositional systems are recorded in the Lower Freshwater Molasse Group. The bajada depositional system comprises 200–400-m-thick successions of ribbon channel conglomerates and overbank fines including mud- and debris-flows which were derived from the Alpine border chain. The alluvial megafan depositional system is made up of massive pebble-to-cobble conglomerates up to 3 km thick which reveal a fan-shaped geometry. This depositional environment grades downcurrent into the conglomerate channel belt depositional system, which comprises an ≈2-km-thick alternation of channel conglomerates and overbank fines. The sandstone channel belt depositional system is bordered by the 100–400-m-thick overbank fines assigned to the floodplain depositional system. At the feather edge of the basin, 50–400-m-thick lacustrine sediments in both clastic and carbonate facies represent the lacustrine depositional system. The spatial and temporal arrangement of these depositional systems was controlled by the geometrical evolution of the Molasse Basin. During periods of enhanced sediment supply and during phases of stable sliding of the entire wedge, >2000-m-thick coarsening-and thickening-upward megasequences comprising the conglomerate channel belt, alluvial megafan and bajada depositional systems were deposited in a narrow wedge-shaped basin. In the distal reaches of the basin, however, no sedimentary trend developed, and the basin fill comprises a <500-m-thick series of sandstone meander belt, floodplain and lacustrine depositional systems. During phases of accretion at the toe of the wedge, the basin widened, and prograding systems of multistorey channel sandstones extended from the thrust front to the distal reaches of the basin. The rearrangement of the depositional systems as a function of changing orogenic conditions created discordances, which are expressed seismically by onlap and erosion of beds delimiting sedimentary sequences. Whereas stable sliding of the wedge succeeded by accretion at the toe of the wedge is recorded in the proximal Lower Freshwater Molasse by a coarsening-and thickening-upward megasequence followed by erosion, the opposite trend developed in the distal reaches of the Molasse. Here, fine-grained sandstones and mudstones were deposited during periods of stable sliding, whereas phases of accretion caused a coarsening- and thickening-up megasequence to form.  相似文献   

4.
Reactivation of intraplate structures and weak zones within the foreland lithosphere disrupt the modelled geometry and pattern of migration of the flexural wave in foreland basins. In the southern Appalachians (USA), the Middle Ordovician unconformity, irregular Middle Ordovician distal foreland deposition and backstepping of Middle–lower Upper Ordovician carbonate strata have been related to migration of the flexural wave. However, integration of stratigraphy, tectonic subsidence history and composition of palinspastically restored distal foreland strata, using a map of subsurface basement structures as reference, allows us to distinguish an early event of inversion from two events of flexural migration. Sections restoring at very short distances outside the boundaries of a former basement graben have the youngest passive‐margin strata preserved beneath Middle Ordovician (~466 Ma) peritidal to deep lagoonal carbonates with gravel‐size chert clasts. In contrast, sections restoring inside the graben record >470 m of truncation of pre‐Middle Ordovician passive‐margin strata, late onset of deposition (~456 Ma), and subaerial features in carbonate and siliciclastic strata. The lacuna geometry and early patterns of distal foreland uplift and carbonate deposition indicate that inversion of a basement graben in response to Middle Ordovician convergence, rather than a migrating or semi‐fixed forebulge, was the primary control on the early evolution of the distal foreland. Drowning of the carbonate platform in more proximal settings, northeastward onset of deposition on upthrown blocks, and thick accumulation of carbonates in downthrown blocks record northwestward and northeastward flexural wave migration at the Middle–Late Ordovician boundary. In early Late Ordovician, the overall shoaling of carbonate and siliciclastic depocentres and the rise of tectonic subsidence curves indicate hinterlandward migration of flexural uplift. Both events of flexural migration were accompanied by influx of volcanic ash and synorogenic sediments.  相似文献   

5.
The Sichuan Basin and the Songpan‐Ganze terrane, separated by the Longmen Shan fold‐and‐thrust belt (the eastern margin of the Tibetan Plateau), are two main Triassic depositional centres, south of the Qinling‐Dabie orogen. During the Middle–Late Triassic closure of the Paleo‐Tethys Ocean, the Sichuan Basin region, located at the western margin of the Yangtze Block, transitioned from a passive continental margin into a foreland basin. In the meantime, the Songpan‐Granze terrane evolved from a marine turbidite basin into a fold‐and‐thrust belt. To understand if and how the regional sediment routing system adjusted to these tectonic changes, we monitored sediment provenance primarily by using detrital zircon U‐Pb analyses of representative stratigraphic samples from the south‐western edge of the Sichuan Basin. Integration of the results with paleocurrent, sandstone petrology and published detrital zircon data from other parts of the basin identified a marked change in provenance. Early–Middle Triassic samples were dominated by Neoproterozoic (~700–900 Ma) zircons sourced mainly from the northern Kangdian basement, whereas Late Triassic sandstones that contain a more diverse range of zircon ages sourced from the Qinling, Longmen Shan and Songpan‐Ganze terrane. This change reflects a major drainage adjustment in response to the Late Triassic closure of the Paleo‐Tethys Ocean and significant shortening in the Longmen Shan thrust belt and the eastern Songpan‐Ganze terrane. Furthermore, by Late Triassic time, the uplifted northern Kangdian basement had subsided. Considering the eastward paleocurrent and depocenter geometry of the Upper Triassic deposits, subsidence of the northern Kangdian basement probably resulted from eastward shortening and loading of the Songpan‐Ganze terrane over the western margin of the Yangtze Block in response to the Late Triassic collision among Yangtze Block, Yidun arc and Qiangtang terrane along the Ganze‐Litang and Jinshajiang sutures.  相似文献   

6.
The stratigraphy of the Eocene-Miocene peripheral foreland basin in Switzerland consists of basal deposits of Nummulitic Limestones and Globigerina Marls representing a phase of deepening, followed by two shallowing-up megacycles culminating in fully continental sedimentation. The onset of sedimentation was diachronous and took place on an unconformity surface with increasing stratigraphic gap to the north and west. In the Ultrahelvetic units, which were derived from the south and have a provenance between the Helvetic shelf and the Penninic ocean, the stratigraphic gap is minimal. This restricts the initiation of erosion of the southern European margin due to emersion to post-Maastrichtian and pre-late Palaeocene. This coincides with the final closing of the Valais trough and may therefore be interpreted as the point at which continental flexure s. s. started. In the autochthon, the subcrop map of the unconformity surface shows that the regional pattern of subcropping units is oblique to both neo-Alpine tectonic structures and Helvetic (Mesozoic) passive margin structures. There are local zones of disruption to the broad regional pattern suggesting that the basal unconformity was corrugated. Both the paliaspastic restoration of the autochthon relative to the thrust front during the Palaeocene, and the regional pattern of erosion indicate that the basal unconformity may be due to erosion of a flexural forebulge. Following deposition of the shallow water Nummulitic Limestones and the deeper water Globigerina Marls, clastic sediments were shed from the orogenic wedge in the south. These turbidites, the Taveyannaz Sandstones, filled both ponded basins at the contemporaneous thrust front and the frontal trench or foredeep. Evidently, early thrusts drove at a shallow level into the embryonic basin as ‘front-runners’, whereas most shortening and uplift continued to take place within the main part of the orogenic wedge further to the south. Eventually, the frontal palaeohighs, together with the turbidite basins, were buried by the northward emplacement of surface mud-slides, and sediment depocentres were translated northwards onto the foreland. The most likely cause of the underfilled ‘Flysch’ stage is the rapid advance of a submarine thrust wedge over the flexed European plate which resulted in (i) low sediment fluxes and (ii) high subsidence rates associated with the rapid migration of the load and depocentre. Later, as the rate of advance slowed and the wedge became subaerially exposed, the basin rapidly filled with coarse-grained detritus representing the ‘Molasse’ stage.  相似文献   

7.
ABSTRACT During the Eocene in the Corbières–Minervois foreland basin, southern France, there was a transition from marine carbonate to fluvial–lacustrine sedimentation. This evolution took place in six depositional sequences, the first controlled by a eustatic rise or flexural downwarping, then following under compressive tectonic conditions. The second to the fourth sequences show marine to marshy, mainly carbonate sediments with a transgressive–regressive evolution, while the last two comprise terrigenous and carbonate continental sediments. The tectonic evolution is marked by blind fault-propagation folds which deformed the basin during the Ilerdian–Cuisian. A paroxysmal compressive tectonic phase occurred at the Bartonian when the ancient blind thrusts started to emerge. A model for the evolution of the basin is presented, involving the northward propagation of structural culminations, which focused shallow water or emergent conditions, and structural lows in which deeper water sedimentation took place. The diachronous migration of these structural zones can be constrained from the high biostratigraphic resolution of the foreland basin fill.  相似文献   

8.
Late early–early middle Miocene (Burdigalian–Langhian) time on the island of Corsica (western Mediterranean) was characterized by a combination of (i) postcollisional structural inversion of the main boundary thrust system between the Alpine orogenic wedge and the foreland, (ii) eustatic sealevel rise and (iii) subsidence related to the development of the Ligurian‐Provençal basin. These processes created the accommodation for a distinctive continental to shallow‐marine sedimentary succession along narrow and elongated basins. Much of these deposits have been eroded and presently only a few scattered outcrop areas remain, most notably at Saint‐Florent and Francardo. The Burdigalian–Langhian sedimentary succession at Saint‐Florent is composed of three distinguishing detrital components: (i) siliciclastic detritus derived from erosion of the nearby Alpine orogenic wedge, (ii) carbonate intrabasinal detritus (bioclasts of shallow‐marine and pelagic organisms), and (iii) siliciclastic detritus derived from Hercynian‐age foreland terraines. The basal deposits (Fium Albino Formation) are fluvial and composed of Alpine‐derived detritus, with subordinate foreland‐derived volcanic detritus. All three detrital components are present in the middle portion of the succession (Torra and Monte Sant'Angelo Formations), which is characterized by thin transitional deposits evolving vertically into fully marine deposits, although the carbonate intrabasinal component is predominant. The Monte Sant'Angelo Formation is characteristically dominated by the deposits of large gravel and sandwaves, possibly the result of current amplification in narrow seaways that developed between the foreland and the tectonically collapsing Alpine orogenic wedge. The laterally equivalent Saint‐Florent conglomerate is composed of clasts derived from the late Permian Cinto volcanic district within the foreland. The uppermost unit (Farinole Formation) is dominated by bioclasts of pelagic organisms. The Saint‐Florent succession was deposited during the last phase of the counterclockwise rotation of the Corsica–Sardinia–Calabria continental block and the resulting development of the Provençal oceanic basin. The succession sits at the paleogeographic boundary between the Alpine orogenic wedge (to the east), its foreland (to the west), and the Ligurian‐Provençal basin (to the northwest). Abrupt compositional changes in the succession resulted from the complex, varying interplay of post‐collisional extensional tectonism, eustacy and competing drainage systems.  相似文献   

9.
Sedimentological and geochronological studies along a north–south traverse across the Bangong‐Nujiang suture zone (BNSZ) in Gaize, Tibet provide evidence for a Late Triassic–Jurassic accretionary wedge accreted to the south margin of Qiangtang. This wedge, preserved as the Mugagangri Group (MG), records evidence for the northward subduction of the Bangong‐Nujiang Ocean (BNO) beneath Qiangtang. The MG strata comprise two coarser intervals (lower olistostromes and upper conglomerates) intercalated within sandy turbidites, which are consistent with timing and forearc stratigraphy during subduction initiation predicted by geodynamic modelling. Following the model, the northward subduction of the BNO beneath Qiangtang and subsequent arc‐magmatism are inferred to have begun, respectively, at ca. 220 Ma and ca. 210 Ma, with respect to depositional ages constrained by youngest detrital‐zircon ages. The initiation of arc‐magmatism is also supported by provenance transition reflected by sandstone detrital modes and age patterns of detrital zircons. Previously, evidence for an incipient arc was lacking, but the timing of Late Triassic BNO subduction and related arc‐magmatism is coincident with an important Late Triassic magmatic event in central Qiangtang that probably represents the ‘missing’ arc. Other Qiangtang events, such as exhumation of the Qiangtang metamorphic belt as a source area, and development of the Late Triassic Nadigangri deposits and bimodal volcanism, are more easily explained in the tectonic context of early northward subduction of the BNO beneath Qiangtang, beginning at about 220 Ma.  相似文献   

10.
The transition to a post‐orogenic state in mountain ranges has been identified by a change from active subsidence to isostatic rebound of the foreland basin. However, the nature of the interplay between isostatic rebound and sediment supply, and their impact on the topographic evolution of a range and foreland basin during this transition, has not been fully investigated. Here, we use a box model to explore the syn‐ to post‐orogenic evolution of foreland basin/thrust wedge systems. Using a set of parameter values that approximate the northern Pyrenees and the neighbouring Aquitaine foreland basin, we evaluate the controls on sediment drape over the frontal parts of the retro‐wedge following cessation of crustal thickening. Conglomerates preserved at approximately 600‐m elevation, which is ~ 300 m above the present mountain front in the northern Pyrenees are ca. 12 Ma, approximately 10 Myrs younger than the last evidence of crustal thickening in the wedge. Using the model, this post‐orogenic sediment drape is explained by the combination of a sustained, high sediment influx from the range into the basin relative to the efflux out of the basin, combined with cessation of the generation of accommodation space through basin subsidence. Post‐orogenic sediment drape is considered a generic process that is likely to be responsible for elevated low‐gradient surfaces and preserved remnants of continental sedimentation draping the outer margins of the northern Pyrenean thrust wedge.  相似文献   

11.
Important aspects of the Andean foreland basin in Argentina remain poorly constrained, such as the effect of deformation on deposition, in which foreland basin depozones Cenozoic sedimentary units were deposited, how sediment sources and drainages evolved in response to tectonics, and the thickness of sediment accumulation. Zircon U‐Pb geochronological data from Eocene–Pliocene sedimentary strata in the Eastern Cordillera of northwestern Argentina (Pucará–Angastaco and La Viña areas) provide an Eocene (ca. 38 Ma) maximum depositional age for the Quebrada de los Colorados Formation. Sedimentological and provenance data reveal a basin history that is best explained within the context of an evolving foreland basin system affected by inherited palaeotopography. The Quebrada de los Colorados Formation represents deposition in the distal to proximal foredeep depozone. Development of an angular unconformity at ca. 14 Ma and the coarse‐grained, proximal character of the overlying Angastaco Formation (lower to upper Miocene) suggest deposition in a wedge‐top depozone. Axial drainage during deposition of the Palo Pintado Formation (upper Miocene) suggests a fluvial‐lacustrine intramontane setting. By ca. 4 Ma, during deposition of the San Felipe Formation, the Angastaco area had become structurally isolated by the uplift of the Sierra de los Colorados Range to the east. Overall, the Eastern Cordillera sedimentary record is consistent with a continuous foreland basin system that migrated through the region from late Eocene through middle Miocene time. By middle Miocene time, the region lay within the topographically complex wedge‐top depozone, influenced by thick‐skinned deformation and re‐activation of Cretaceous rift structures. The association of the Eocene Quebrada del los Colorados Formation with a foredeep depozone implies that more distal foreland deposits should be represented by pre‐Eocene strata (Santa Barbara Subgroup) within the region.  相似文献   

12.
This article presents combined stratigraphic, sedimentological, subsidence and provenance data for the Cretaceous–Palaeogene succession from the Zhepure Mountain of southern Tibet. This region records the northernmost sedimentation of the Tethyan passive margin of India, and this time interval represents the transition into continental collision with Asia. The uppermost Cretaceous Zhepure Shanpo and Jidula formations record the transition from pelagic into upper slope to delta‐plain environments. The Palaeocene–lower Eocene Zongpu Formation records a carbonate ramp that is overlain by the deep‐water Enba Formation (lower Eocene). The upper part of the Enba Formation records shallowing into a storm‐influenced, outer shelf environment. Detrital zircon U–Pb and Hf isotopic data indicate that the terrigenous strata of the Enba Formation were sourced from the Lhasa terrane. Unconformably overlying the Enba Formation is the Zhaguo Formation comprising fluvial deposits with evidence of recycling from the underlying successions. Backstripped subsidence analysis indicates shallowing during latest Cretaceous‐earliest Palaeocene time (Zhepure Shanpo and Jidula formations) driven by basement uplift, followed by stability (Zongpu Formation) until early Eocene time (Enba Formation) when accelerated subsidence occurred. The provenance, subsidence and stratigraphy suggest that the Enba and Zhaguo formations record foredeep and wedge‐top sedimentation respectively within the early Himalayan foreland basin. The underlying Zongpu Formation is interpreted to record the accumulation of a carbonate ramp at the margin of a submarine forebulge. The precursor tectonic uplift during latest Cretaceous time could either record surface uplift over a mantle plume related to the Réunion hotspot, or an early signal of lithospheric flexure related to oceanic subduction, continental collision or ophiolite obduction. The results indicate that the collision of India with Asia occurred before late Danian (ca. 62 Ma) time.  相似文献   

13.
A total of 239 orientated drill-core samples from 23 sites were collected for palaeomagnetic study from Silurian and Devonian red beds, marlaceous sandstone, and limestone rocks in the eastern part of the Hexi Corridor, southwest Ningxia, North China. The characteristic high-temperature component resides in both haematite and magnetite. It clusters around a northwesterly and shallow to moderate downward direction and its antipode after tilt correction. The primary origin of this characteristic remanent magnetization (ChRM) is ascertained by positive fold and reversal tests at the 95 per cent confidence level. The corresponding palaeopoles, at 339.0°E, 60.1°N with A 95 = 11.2° (Silurian) and 336.0°E, 56.0°N with A 95 = 9.2° (Devonian), imply that the North China Block (NCB) had a low palaeolatitude of around 15°N in the Northern Hemisphere during the Silurian–Devonian period. Comparison with the Early–Middle Ordovician palaeopole of the NCB suggests that the NCB moved rapidly northwards by 30.8° ± 10.9° to cross the palaeo-equator during the Early–Middle Ordovician to Silurian. In combination with the palaeobiogeographical data from Ningxia, our palaeomagnetic results suggest that the NCB was located close to Australia during the Late Devonian.  相似文献   

14.
Abstract The evolution of a passive margin to a foreland basin is generally assumed to entail early load-induced up warping of the stable continental platform followed by foreland subsidence. This relatively straightforward elastic response of the continental platform, however, may be complicated if the colliding passive margin is irregular in outline. In a tectonic scenario in which an irregular margin is migrating toward a trench (A-subduction), those areas of the margin which project seaward, the continental promontories, would be the first to 'feel' the approaching thrust terrane by flexing upward and eroding to form shelf unconformities. Those parts of the continental margin that are convex to the craton, the continental re-entrants, however, would remain subsiding depocentres unaffected by load-induced uplift at the promontories. Careful analysis of the geographic distribution of shelf unconformities in orogenic belts, then, may help to reveal the pre-deformation morphology of the passive continental margin. An example of this may be found in the early phases of Ordovician foreland basin development in the central Appalachian orogen. Here, the shelf unconformities are most pronounced (greatest erosional relief) at the inferred Virginia and New York continental promontories. An adjacent inferred continental re-entrant, the Pennsylvania re-entrant, is characterized by an uninterrupted Ordovician sequence suggesting that the area of the proto-North American platform, represented by this segment of the orogen, remained a depocentre during uplift in adjacent areas of the continental margin.  相似文献   

15.
Foreland basin systems   总被引:32,自引:1,他引:32  
A foreland basin system is defined as: (a) an elongate region of potential sediment accommodation that forms on continental crust between a contractional orogenic belt and the adjacent craton, mainly in response to geodynamic processes related to subduction and the resulting peripheral or retroarc fold-thrust belt; (b) it consists of four discrete depozones, referred to as the wedge-top, foredeep, forebulge and back-bulge depozones – which of these depozones a sediment particle occupies depends on its location at the time of deposition, rather than its ultimate geometric relationship with the thrust belt; (c) the longitudinal dimension of the foreland basin system is roughly equal to the length of the fold-thrust belt, and does not include sediment that spills into remnant ocean basins or continental rifts (impactogens). The wedge-top depozone is the mass of sediment that accumulates on top of the frontal part of the orogenic wedge, including ‘piggyback’ and ‘thrust top’ basins. Wedge-top sediment tapers toward the hinterland and is characterized by extreme coarseness, numerous tectonic unconformities and progressive deformation. The foredeep depozone consists of the sediment deposited between the structural front of the thrust belt and the proximal flank of the forebulge. This sediment typically thickens rapidly toward the front of the thrust belt, where it joins the distal end of the wedge-top depozone. The forebulge depozone is the broad region of potential flexural uplift between the foredeep and the back-bulge depozones. The back-bulge depozone is the mass of sediment that accumulates in the shallow but broad zone of potential flexural subsidence cratonward of the forebulge. This more inclusive definition of a foreland basin system is more realistic than the popular conception of a foreland basin, which generally ignores large masses of sediment derived from the thrust belt that accumulate on top of the orogenic wedge and cratonward of the forebulge. The generally accepted definition of a foreland basin attributes sediment accommodation solely to flexural subsidence driven by the topographic load of the thrust belt and sediment loads in the foreland basin. Equally or more important in some foreland basin systems are the effects of subduction loads (in peripheral systems) and far-field subsidence in response to viscous coupling between subducted slabs and mantle–wedge material beneath the outboard part of the overlying continent (in retroarc systems). Wedge-top depozones accumulate under the competing influences of uplift due to forward propagation of the orogenic wedge and regional flexural subsidence under the load of the orogenic wedge and/or subsurface loads. Whereas most of the sediment accommodation in the foredeep depozone is a result of flexural subsidence due to topographic, sediment and subduction loads, many back-bulge depozones contain an order of magnitude thicker sediment fill than is predicted from flexure of reasonably rigid continental lithosphere. Sediment accommodation in back-bulge depozones may result mainly from aggradation up to an equilibrium drainage profile (in subaerial systems) or base level (in flooded systems). Forebulge depozones are commonly sites of unconformity development, condensation and stratal thinning, local fault-controlled depocentres, and, in marine systems, carbonate platform growth. Inclusion of the wedge-top depozone in the definition of a foreland basin system requires that stratigraphic models be geometrically parameterized as doubly tapered prisms in transverse cross-sections, rather than the typical ‘doorstop’ wedge shape that is used in most models. For the same reason, sequence stratigraphic models of foreland basin systems need to admit the possible development of type I unconformities on the proximal side of the system. The oft-ignored forebulge and back-bulge depozones contain abundant information about tectonic processes that occur on the scales of orogenic belt and subduction system.  相似文献   

16.
The Tian Shan range formed in the late Cenozoic in response to the northward propagation of deformation related to the India–Eurasia continental collision. Precise timing of the Tian Shan uplift is required to understand possible mechanisms of continental lithosphere deformation and interactions between climate, tectonism and erosion. Here, we provide magnetostratigraphic age control on the northern Chinese Tian Shan foreland successions. A thorough rock magnetic analysis identifies haematite‐ and magnetite‐bearing alluvial fan deposits in the upper portion of the sampled strata as more reliable palaeomagnetic recorders than magnetite‐bearing fluvial and lacustrine deposits that are often maghaemitized in the lower part of the record. As a result, a robust correlation to the geomagnetic polarity time scale is obtained from 6 to 2 Ma while a tentative correlation is proposed from 6 to 16 Ma. Sediment accumulation rates increase from 155 to 260 m Myr?1 at 3.9±0.3 Ma. This change coincides with a gradual lithologic transition from fluvial (sandstone‐dominated) to alluvial fan (conglomerate‐dominated) deposits that likely records an approaching erosional source related to tectonically increased subsidence rather than differential compaction. Clear evidence for growth strata starting at an estimated age of ~2 Ma provides a minimum age for folding. These results are compared with previous magneotstratigraphic studies from the same and other sections of the northern Tian Shan foreland basin fill, thus enabling a critical assessment of the reliability of magnetostratigraphic dating and the significance of sediment accumulation rate variations with respect to facies variations and growth strata. Our results in the Taxi He section provide a sequence of events that is consistent with enhanced tectonic forcing starting at ~4 Ma, although a climatic contribution must be considered given the close relationship of these ages with the Pliocene climate deterioration.  相似文献   

17.
This paper presents new magnetostratigraphic results from a 1100‐m‐thick composite section across the marine to continental sediments of the central part of the SE margin of the Ebro basin (NE Spain). Integration with existing marine and continental biochronological data allows a robust correlation with the geomagnetic polarity time scale. The resulting absolute chronology ranges from 36.3 to 31.1 Ma (Priabonian to Rupelian), and yields an interpolated age of ~36.0 Ma (within chron C16n.2n) for the youngest marine sediments of the eastern Ebro basin. This age is in concordance with a reinterpretation of earlier magnetostratigraphic data from the western South Pyrenean foreland basin, and indicates that continentalization of the basin occurred as a rapid and isochronous event. The basin continentalization, determined by the seaway closure that resulted from the uplift of the western Pyrenees, was probably coincident with a mid‐amplitude eustatic sea level low with a maximum at 36.2 Ma. The base level drop that followed the basin closure and desiccation does not appear associated to a significant sedimentary hiatus along the margins, suggesting a late Eocene shallow marine basin that rapidly refilled and raised its base level after the seaway closing. Rapid basin filling following continentalization predates the phase of rapid exhumation of the Central Pyrenean Axial Zone from 35.0 to 32.0 Ma, determined from the thermochronology data. It is possible then that sediment aggradation at the front of the fold‐and‐thrust belt could have contributed to a decrease in the taper angle, triggering growth of the inner orogenic wedge through break‐back thrusting and underplating. Contrasting sedimentation trends between the western and eastern sectors of the South Pyrenean foreland indicate that basin closing preferentially affected those areas subjected to sediment bypass towards the ocean domain. As a result, sediment ponding after basin closure is responsible for a two‐fold increase of sedimentation rates in the western sector, while changes of sedimentation rates are undetected in the more restricted scenario of the eastern Ebro basin.  相似文献   

18.
Changes in sediment flux to continental margins are commonly interpreted in terms of tectonic growth of topography or climatic change. Here, we show that variations in sediment yield from orogenic systems, previously considered as resulting from climate change, drainage reorganisation or mantle processes can be explained by intrinsic mechanisms of mountain belt/foreland basin systems naturally evolving during post-orogenic decay. Numerical modelling indicates an increase of sediment flux leaving the orogenic system synchronous with the cessation of deposition in the foreland basin and the transition from late syn- to post-orogenesis. Experiments highlight the importance of lithospheric flexure that causes the post-orogenic isostatic rebound of the foreland basin. Erosion of the rebounding foreland basin combined with continued sediment flux from the thrust wedge drives an acceleration in sediment outflux towards continental margins. Sediment budget records in natural settings such as the Northern Pyrenees or Western European Alps also indicate accelerated post-orogenic sediment delivery to the Bay of Biscay and Rhône Delta respectively. These intrinsic processes that determine sediment yield to continental margins must be accounted for prior to consideration of additional external tectonic or climatic controls.  相似文献   

19.
The spatial and temporal organization of depositional environments in drainage networks of foreland basins reflect the tectonic and erosional dynamics associated with the development of mountain belts. We provide field evidences for the initiation and evolution of a complex drainage system in the French South Alpine Foreland Basin related to Western Alps exhumation. Sedimentological and structural analyses of the Eocene–Early Miocene succession were investigated in the (1) Argens/Peyresq, (2) Barrême/Blieux/Taulanne and (3) Montmaur/St‐Disdier sectors. Combined with the existing structural data set, we propose a new model that integrates the regional tectonic activity, the palaeovalley orientation and their dynamics through time. The Eocene–Miocene deposits clearly show the existence of N–S‐oriented palaeovalleys. The systematic presence of early NE–SW‐ to N–S‐oriented strike‐slip and extensional faults in the palaeovalleys suggests that these tectonic structures were responsible for the formation of the initial N–S‐oriented basin‐floor topographies. The vertical offset of the strike‐slip faults induced sufficient accommodation space for the Cenozoic sedimentation since the Middle Eocene. It implies the creation of N–S‐oriented palaeovalleys during the northward Pyrenean‐Provençal phase, pre‐dating westward Alpine compression. Later, the Oligocene Alpine tectonic phase induced drainage expansion toward the orogenic wedge and the erosion of the exhumed internal massifs by transverse streams. The establishment of new connections between the old topographic lows formed a longitudinal drainage pattern that remains the locus of deposition in a regional sedimentary routing system. In this model, former strike‐slip faults correspond to weakness zones overprinted by the westward Alpine shortening that allowed the formation of the modern piggyback basin structure of the foreland and the long‐time preservation of the palaeovalley geometry.  相似文献   

20.
The Xunhua, Guide and Tongren intermontane basin system in the NE Tibetan Plateau, situated near the Xining basin to the N and the Linxia basin to the E, is bounded by thrust fault‐controlled ranges. These include to the N, the Riyue Shan, Laji Shan and Jishi Shan ranges, and to the S the northern West Qinling Shan (NWQ). An integrated study of the structural geology, sedimentology and provenance of the Cenozoic Xunhua and Guide basins provides a detailed record of the growth of the NE Tibetan Plateau since the early Eocene. The Xining Group (ca. 52–21 Ma) is interpreted as consisting of unified foreland basin deposits which were controlled by the bounding thrust belt of the NWQ. The Xunhua, Guide and Xining subbasins were interconnected prior to later uplift and damming by the Laji Shan and Jishi Shan ranges. Their sediment source, the NWQ, is constrained by strong unidirectional paleocurrent trends towards the N, a northward fining lithology, distinct and recognizable clast types and detrital zircon ages. Collectively, formation of this mountain–basin system indicates that the Tibetan Plateau expanded into the NWQ at a time roughly coinciding with Eocene to earliest Miocene continental collision between India and Eurasia. The Guide Group (ca. 21–1.8 Ma) is inferred to have been deposited in the separate Xunhua, Guide and Tongren broken foreland basins. Each basin was filled by locally sourced alluvial fans, braided streams and deltaic‐lacustrine systems. Structural, paleogeographic, paleocurrent and provenance data indicate that thrust faulting in the NWQ stepped northward to the Laji Shan from ca. 21 to 16 Ma. This northward shift was accompanied by E–W shortening related to nearly N–S‐striking thrust faulting in Jishi Shan after 11–13 Ma. A lower Pleistocene conglomerate (1.8–1.7 Ma) was deposited by a through‐flowing river system in the overfilled and connected Guide and Xunhua basins following the termination of thrust activity. All of the basin–mountain zones developed along the Tibetan Plateau's NE margin since Indian–Tibetan continental collision may have been driven by collision‐induced basal drag of old slab remnants in the manner of N‐dipping and flat‐slab subduction, and their subsequent sinking into the deep mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号