首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We conduct the seismic signal analysis on vintage and recently collected multichannel seismic reflection profiles from the Ionian Basin to characterize the deep basin Messinian evaporites. These evaporites were deposited in deep and marginal Mediterranean sedimentary basins as a consequence of the “salinity crisis” between 5.97 and 5.33 Ma, a basin-wide oceanographic and ecological crisis whose origin remains poorly understood. The seismic markers of the Messinian evaporites in the deep Mediterranean basins can be divided in two end-members, one of which is the typical “trilogy” of gypsum and clastics (Lower Unit – LU), halite (Mobile Unit – MU) and upper anhydrite and marl layers (Upper Unit – UU) traced in the Western Mediterranean Basins. The other end-member is a single MU unit subdivided in seven sub-units by clastic interlayers located in the Levant Basin. The causes of these different seismic expressions of the Messinian salinity crisis (MSC) appear to be related to a morphological separation between the two basins by the structural regional sill of the Sicily Channel. With the aid of velocity analyses and seismic imaging via prestack migration in time and depth domains, we define for the first time the seismic signature of the Messinian evaporites in the deep Ionian Basin, which differs from the known end-members. In addition, we identify different evaporitic depositional settings suggesting a laterally discontinuous deposition. With the information gathered we quantify the volume of evaporitic deposits in the deep Ionian Basin as 500,000 km3 ± 10%. This figure allows us to speculate that the total volume of salts in the Mediterranean basin is larger than commonly assumed. Different depositional units in the Ionian Basin suggest that during the MSC it was separated from the Western Mediterranean by physical thresholds, from the Po Plain/Northern Adriatic Basin, and the Levant Basin, likely reflecting different hydrological and climatic conditions. Finally, the evidence of erosional surfaces and V-shaped valleys at the top of the MSC unit, together with sharp evaporites pinch out on evaporite-free pre-Messinian structural highs, suggest an extreme Messinian Stage 3 base level draw down in the Ionian Basin. Such evidence should be carefully evaluated in the light of Messinian and post-Messinian vertical crustal movements in the area. The results of this study demonstrates the importance of extracting from seismic data the Messinian paleotopography, the paleomorphology and the detailed stratal architecture in the in order to advance in the understanding of the deep basins Messinian depositional environments.  相似文献   

2.
This integrated study (field observations, micropalaeontology, magnetostratigraphy, geochemistry, borehole data and seismic profiles) of the Messinian–Zanclean deposits on Zakynthos Island (Ionian Sea) focuses on the sedimentary succession recording the pre‐evaporitic phase of the Messinian salinity crisis (MSC) through the re‐establishment of the marine conditions in a transitional area between the eastern and the western Mediterranean. Two intervals are distinguished through the palaeoenvironmental reconstruction of the pre‐evaporitic Messinian in Kalamaki: (a) 6.45–6.122 Ma and (b) 6.122–5.97 Ma. Both the planktonic foraminifer and the fish assemblages indicate a cooling phase punctuated by hypersalinity episodes at around 6.05 Ma. Two evaporite units are recognized and associated with the tectonic evolution of the Kalamaki–Argassi area. The Primary Lower Gypsum (PLG) unit was deposited during the first MSC stage (5.971–5.60 Ma) in late‐Messinian marginal basins within the pre‐Apulian foreland basin and in the wedge‐top (<300 m) developed over the Ionian zone. During the second MSC stage (5.60–5.55 Ma), the PLG evaporites were deeply eroded in the forebulge–backbulge and the wedge‐top areas, and supplied the foreland basin's depocentre with gypsum turbidites assigned to the Resedimented Lower Gypsum (RLG) unit. In this study, we propose a simple model for the Neogene–Pliocene continental foreland‐directed migration of the Hellenide thrusting, which explains the palaeogeography of the Zakynthos basin. The diapiric movements of the Ionian Triassic evaporites regulated the configuration and the overall subsidence of the foreland basin and, therefore, the MSC expression in this area.  相似文献   

3.
Salt tectonics is typically caused by the flow of mobile evaporites in response to post-depositional gravity gliding and/or differential loading by overburden sediments. This situation is considerably more complex near the margins of salt basins, where carbonate and clastic rocks may be deposited at the same time as and be interbedded with more mobile, evaporitic strata. In these cases, syn-depositional salt flow may occur due to density differences in the deposited lithologies, although our understanding of this and related processes is relatively poor. We here use 3D seismic reflection and borehole data from the Devil's Hole Horst, West Central Shelf, offshore UK to understand the genesis, geometry, and kinematic evolution of intra-Zechstein Supergroup (Lopingian) minibasins and their effect on post-depositional salt deformation. We show that immobile, pinnacle-to-barrier-like, carbonate build-ups and anhydrite are largely restricted to intra-basin highs, whereas mobile halite, which flowed to form large diapirs, dominates in the deep basin. At the transition between the intra-basin highs and the deep basin, a belt of intra-Zechstein minibasins occurs, forming due to the subsidence of relatively dense anhydrite into underlying halite. Depending on primary halite thickness, these intra-Zechstein minibasins created topographic lows, dictating where Triassic minibasins subsequently nucleated and down-built. Our study refines the original depositional model for the Zechstein Supergroup in the Central North Sea, with the results also helping us better understand the style and distribution of syn-depositional salt flow within other layered evaporitic sequences and the role intra-salt heterogeneity and related deformation may have in the associated petroleum plays.  相似文献   

4.
A revised stratigraphic framework for the Messinian succession of Cyprus is proposed demonstrating that the three‐stage model for the Messinian salinity crisis recently established for the Western Mediterranean also applies to the Eastern Mediterranean, at least for its marginal basins. This analysis is based on a multidisciplinary study of the Messinian evaporites and associated deposits exposed in the Polemi, Pissouri, Maroni/Psematismenos and Mesaoria basins. Here, we document for the first time that the base of the unit usually referred to the ‘Lower Evaporites’ in Cyprus does not actually correspond to the onset of the Messinian salinity crisis. The basal surface of this unit rather corresponds to a regional‐scale unconformity, locally associated with an angular discordance, and is related to the erosion and resedimentation of primary evaporites deposited during the first stage of the Messinian salinity crisis. This evidence suggests that the ‘Lower Evaporites’ of the southern basins of Cyprus actually belong to the second stage of the Messinian salinity crisis; they can be thus ascribed to the Resedimented Lower Gypsum unit that was deposited between 5.6 and 5.5 Ma and is possibly coeval to the halite deposited in the northern Mesaoria basin. Primary, in situ evaporites of the first stage of the Messinian salinity crisis were not preserved in Cyprus basins. Conversely, shallow‐water primary evaporites deposited during the third stage of the Messinian salinity crisis are well preserved; these deposits can be regarded as the equivalent of the Upper Gypsum of Sicily. Our study documents that the Messinian stratigraphy shows many similarities between the Western and Eastern Mediterranean marginal basins, implying a common and likely coeval development of the Messinian salinity crisis. This could be reflected also in intermediate and deep‐water basins; we infer that the Lower Evaporites seismic unit in the deep Eastern Mediterranean basins could well be mainly composed of clastic evaporites and that its base could correspond to the Messinian erosional surface.  相似文献   

5.
An extensive, reprocessed two‐dimensional (2D) seismic data set was utilized together with available well data to study the Tiddlybanken Basin in the southeastern Norwegian Barents Sea, which is revealed to be an excellent example of base salt rift structures, evaporite accumulations and evolution of salt structures. Late Devonian–early Carboniferous NE‐SW regional extensional stress affected the study area and gave rise to three half‐grabens that are separated by a NW‐SE to NNW‐SSE trending horst and an affiliated interference transfer zone. The arcuate nature of the horst is believed to be the effect of pre‐existing Timanian basement grain, whereas the interference zone formed due to the combined effect of a Timanian (basement) lineament and the geometrical arrangement of the opposing master faults. The interference transfer zone acted as a physical barrier, controlling the facies distribution and sedimentary thickness of three‐layered evaporitic sequences (LES). During the late Triassic, the northwestern part of a salt wall was developed due to passive diapirism and its evolution was influenced by halite lithology between the three‐LES. The central and southeastern parts of the salt wall did not progress beyond the pedestal stage due to lack of halite in the deepest evaporitic sequence. During the Triassic–Jurassic transition, far‐field stresses from the Novaya Zemlya fold‐and‐thrust belt reactivated the pre‐salt Carboniferous rift structures. The reactivation led to the development of the Signalhorn Dome, rejuvenated the northwestern part of the salt wall and affected the sedimentation rates in the southeastern broad basin. The salt wall together with the Signalhorn Dome and the Carboniferous pre‐salt structures were again reactivated during post‐Early Cretaceous, in response to regional compressional stresses. During this main tectonic inversion phase, the northwestern and southeastern parts of the salt wall were rejuvenated; however, salt reactivation was minimized towards the interference transfer zone beneath the centre of the salt wall.  相似文献   

6.
7.
“Salt” giants are typically halite‐dominated, although they invariably contain other evaporite (e.g. anhydrite, bittern salts) and non‐evaporite (e.g. carbonate, clastic) rocks. Rheological differences between these rocks mean they impact or respond to rift‐related, upper crustal deformation in different ways. Our understanding of basin‐scale lithology variations in ancient salt giants, what controls this and how this impacts later rift‐related deformation, is poor, principally due to a lack of subsurface datasets of sufficiently regional extent. Here we use 2D seismic reflection and borehole data from offshore Norway to map compositional variations within the Zechstein Supergroup (ZSG) (Lopingian), relating this to the structural styles developed during Middle Jurassic‐to‐Early Cretaceous rifting. Based on the proportion of halite, we identify and map four intrasalt depositional zones (sensu Clark et al., Journal of the Geological Society, 1998, 155, 663) offshore Norway. We show that, at the basin margins, the ZSG is carbonate‐dominated, whereas towards the basin centre, it becomes increasingly halite‐dominated, a trend observed in the UK sector of the North Sea Basin and in other ancient salt giants. However, we also document abrupt, large magnitude compositional and thickness variations adjacent to large, intra‐basin normal faults; for example, thin, carbonate‐dominated successions occur on fault‐bounded footwall highs, whereas thick, halite‐dominated successions occur only a few kilometres away in adjacent depocentres. It is presently unclear if this variability reflects variations in syn‐depositional relief related to flooding of an underfilled presalt (Early Permian) rift or syn‐depositional (Lopingian) rift‐related faulting. Irrespective of the underlying controls, variations in salt composition and thickness influenced the Middle Jurassic‐to‐Early Cretaceous rift structural style, with diapirism characterising hangingwall basins where autochthonous salt was thick and halite‐rich and salt‐detached normal faulting occurring on the basin margins and on intra‐basin structural highs where the salt was too thin and/or halite‐poor to undergo diapirism. This variability is currently not captured by existing tectono‐stratigraphic models largely based on observations from salt‐free rifts and, we argue, mapping of suprasalt structural styles may provide insights into salt composition and thickness in areas where boreholes are lacking or seismic imaging is poor.  相似文献   

8.
A recently published scenario viewing the Messinian salinity crisis as two evaporitic steps rather than one has led to a search for new indices of the crisis in the Eastern Paratethys. Fluvial processes characterized the southwestern Dacic Basin (Southern Romania, i.e. the Carpathian foredeep) whereas brackish sediments were continuously deposited in its northern part. This is consistent with previously evidenced responses of the Black Sea to the Messinian salinity crisis. High sea‐level exchanges between the Mediterranean Sea and Eastern Paratethys are considered to have occurred just before and just after desiccation of the Mediterranean. This accounts for two successive Mediterranean nannoplankton‐dinocyst influxes into the Eastern Paratethys that, respectively, belong to zones NN 11 and NN 12. Meanwhile, two separate events that gave rise to Lago Mare facies (with Paratethyan Congeria, ostracods and/or dinoflagellate cysts) arose in the Mediterranean Basin in response to these high sea‐level exchanges and located 5.52 and 5.33 Ma (isotopic stages TG 11 and TG 5, respectively), i.e. just before and just after the almost complete desiccation of the Mediterranean). These Lago Mare facies formed independently of lakes with ostracods of the Cyprideis group that developed in the central basins during the final stages of desiccation. The gateway faciliting these water exchanges is not completely identified. A proto‐Bosphorus strait seems unlikely. A plausible alternative route extends from the northern part of the Thessaloniki region up to the Dacic Basin and through Macedonia and the Sofia Basin. The expression ‘Lago Mare’ is chronostratigraphically ambiguous and should be discontinued for this purpose, although it might remain useful as a palaeoenvironmental term.  相似文献   

9.
Sea‐level changes provide an important control on the interplay between accommodation space and sediment supply, in particular, for shallow‐water basins where the available space is limited. Sediment exchange between connected basins separated by a subaqueous sill (bathymetric threshold) is still not well understood. When sea‐level falls below the bathymetric level of this separating sill, the shallow‐water basin evolution is controlled by its erosion and rapid fill. Once this marginal basin is filled, the sedimentary depocenter shifts to the open marine basin (outward shift). With new accommodation space created during the subsequent sea‐level rise, sediment depocenter shifts backwards to the marginal basin (inward shift). This new conceptual model is tested here in the context of Late Miocene to Quaternary evolution of the open connection between Dacian and Black Sea basins. By the means of seismic sequence stratigraphic analysis of the Miocene‐Pliocene evolution of this Eastern Paratethys domain, this case study demonstrates these shifts in sedimentary depocenter between basins. An outward shift occurs with a delay that corresponds to the time required to fill the remaining accommodation space in the Dacian Basin below the sill that separates it from the Black Sea. This study provides novel insight on the amplitude and sedimentary geometry of the Messinian Salinity Crisis (MSC) event in the Black Sea. A large (1.3–1.7 km) sea‐level drop is demonstrated by quantifying coeval sedimentation patterns that change to mass‐flows and turbiditic deposits in the deep‐sea part of this main sink. The post‐MSC sediment routing continued into the present‐day pattern of Black Sea rivers discharge.  相似文献   

10.
青海可可西里东部盐湖水化学及沉积特征初步研究   总被引:6,自引:4,他引:2       下载免费PDF全文
2008 a夏对可可西里地区东部4个新发现的盐湖,进行了卤水水化学组分、矿物组成及其石盐元素含量分析。结果表明,该区水体卤水矿化度高,湖表卤水富硼锂等组分。通过对化学组分及水化学特征系数的研究,卤水的水化学类型主要为硫酸镁亚型和硫酸钠亚型。卤水pH值随着矿化度的增加而降低。Na+、Cl-含量与总矿化度呈正相关,SO42-"与矿化度呈负相关。Li与Mg物源、迁移规律近似。本区盐类沉积物以石盐为主,石盐中Si、Al、Fe、Sr含量低,其间相关性好,物质来源可能为周围岩石风化。布查盐湖盐类沉积存在少量硬石膏、半水石膏和铁白云石,表明布查盐湖的盐类物质来源很可能与地下热水作用有关。  相似文献   

11.
Seismic mapping and gravity modelling of the Ottar Basin - a little studied Upper Palaeozoic graben in the south-western Barents Sea - demonstrates the presence of a major rift basin with large accumulations of unmobilized salt. Buried beneath thick, flat-lying Mesozoic strata, the NE-trending fault-bounded basin is at least 170 km long, varies in width between 50 and 80 km and coincides with a negative gravity anomaly of more than — 10 mgal. Seismic observations show that the south-western part is a half-graben tilted to the north-west whereas the north-eastern part appears to be more symmetric in shape. A large mass deficiency in the north-eastern part of the basin, indicated by a gravity anomaly of more than — 30 mgal, makes it necessary to postulate large amounts of salt within the basin. The preferred gravity model shows a total basin depth of 9.5 km, basin relief of 4.2 km and a salt volume of 6800 km3 corresponding to a 2.4-km-thick salt layer. Similar basin depths, but only 500–600 km3 of salt, are indicated beneath the Samson Dome in the south-western part of the basin. Unlike salt bodies in other Barents Sea basins, the thick salt deposit in the north-eastern part of the Ottar Basin is relatively unaffected by halokinesis. Interfingering of different basin facies, lack of tectonic reactivation of the basin and a relatively late differential loading by protruding cover strata probably explain these differences in development. The large size and voluminous salt deposits establish the Ottar Basin as one of the major Barents Sea evaporite basins and an important structural component of the Upper Palaeozoic rift system.  相似文献   

12.
The onshore–offshore correlation of sedimentary successions is a common problem in basin analysis, but it becomes critical for the full understanding of the Messinian salinity crisis (MSC), a complex array of palaeoenvironmental events which affected the Mediterranean basin at the end of the Miocene. The outcrop records show that the Messinian stratigraphic architectures may be highly complex as the deposits of the different MSC evolutionary stages can be lithologically similar and separated by erosional surfaces and/or morphostructural highs. The correct definition of the nature and stratigraphic position of Messinian deposits in offshore areas through seismic data may be almost impossible, especially where core data are sparse. To bridge the gap between onshore and offshore records, we have built synthetic seismic sections from well‐constrained outcrop successions. Our results provide useful insights and warnings for the interpretation of offshore data, pointing out that MSC units having different age, nature and depositional settings, may show similar seismic facies and geometries. Conversely, the same deposit may result in different seismic facies, either with parallel and high‐amplitude reflections or even transparent or chaotic due to interference patterns of seismic reflections related to dominant frequency. It follows that a correct interpretation of the nature and age of deep‐seated Messinian deposits can only be obtained through the integration of seismic and core data, and considering the onshore record. The application of our approach to the Balearic Promontory results in an alternative interpretation with respect to previous models. We show that this offshore area has good analogues in the onshore of the Betic Cordillera and includes both shallow and intermediate depth sub‐basins that underwent a strong post‐Messinian subsidence.  相似文献   

13.
This paper focuses on Messinian Salinity Crisis (MSC) evaporites in the Cyprus Arc (eastern Mediterranean) using high‐resolution reflection seismic and multi‐beam data. The results shed new light on the Miocene to Present tectonic evolution of this area and contribute to our general knowledge of the MSC in a deep basin setting. The evaporites and overlying formations show a complex deformation pattern due to a combination of thick‐skinned plate‐tectonic convergence and thin‐skinned disharmonic deformation related to the mobile evaporite‐bearing unit. Several MSC markers are identified and precisely mapped: the base of the MSC unit is a ‘decollement’ level, whereas the top is clearly identified as a toplap surface. Intra‐MSC markers and two MSC subunits are identified and mapped over the entire study area. The geometry of MSC markers shows that the lower MSC subunit was deposited in a relatively quiet tectonic setting. The nature of the anisopachous upper unit indicates a syn‐depositional phase of large‐scale plate‐tectonic activity. A thin‐skinned phase of compressional deformation during the Late Miocene affected the entire MSC unit, overlain by undeformed Pliocene–Quaternary layers. A second thin‐skinned phase, well expressed in the bathymetry, occurred from the Pliocene to Recent, resulting in extensional gravity‐gliding within the evaporites and the Pliocene–Quaternary sequence. We show that the MSC had a dramatic impact on the regional structure. For instance, the erosive nature of the top of the MSC unit is linked to the desiccation episode rather than to the cessation of tectonic activity. This particularly strong and short‐lived erosion may have been enhanced by the regional effects of the MSC, owing to differential uplift/subsidence caused by the drawdown. The evaporites are essential markers for constraining the tectonic framework, provided that active deformation can be distinguished from passive gliding associated with extensional/contractional deformation.  相似文献   

14.
四川盆地雷口坡组大量钻井资料揭示中三叠统雷口坡组主要成盐期分别为雷三2期和雷四2期。岩性组合特征、沉积环境研究表明,在川中的平昌—南充—遂宁一带发育雷三2期浓缩盐膏质蒸发泻湖微相,在川中-川西地区的南部—盐亭—成都—邛崃地区发育雷四2期盐膏湖盆微相。两期盐岩差异主要表现是,雷三2期时,盆地处于频繁的海进、海退过程中,沉积环境变化较快,成盐环境相对开放,盐盆往往多次蒸发浓缩、补给、淡化,海水表现出接近或者达到盐岩沉积浓度,其间往往夹杂石膏和云质团块沉积。雷四2期时,四川盆地处于持续的海退蒸发期,蒸发量远远大于补给量,海水以蒸发浓缩为主,海水表现为超过石盐沉积浓度,沉积石盐中夹杂卤石,局部地区钾含量极高。  相似文献   

15.
In this study, detailed mapping of the ‘Messinian markers’ and examination of their geometrical relationships in the SW Valencia trough (Western Mediterranean) have revealed the style and depositional processes associated with emersion of continental margins during the Messinian Salinity Crisis (MSC). Based on multichannel seismic profiles and well data, this article evidences the existence of two Messinian depositional units in intermediate basins (Complex Unit and Upper Unit) and four main Messinian erosional surfaces (Margin Erosion Surface, Bottom Surface, Top (Erosion) Surface and Intermediate Surface). Results show that (1) initial rapid sea‐level drawdown and exposure of the shelf and upper slope of the Valencia margin induced large‐scale destabilization of the continental slope and deposition of large detrital bodies at the base‐of‐slope in the form of major mass‐transport deposits (MTD); (2) as sea level continued to drop, the development of the Margin Erosion Surface attained full development on the margins and eroded the clastic units (MTDs) deposited during initial drawdown. At the same time, a submarine drainage network formed in the deepwater Valencia trough; (3) persistent lowstand and restrictive conditions in the area resulted in deposition of the evaporites that form the Upper Unit in the SW Valencia trough.  相似文献   

16.
Summary. New gravity observations from a systematic survey of the Eastern Mediterranean Sea and from a reconnaissance land survey in Central and Western Turkey have been compiled with existing data. Lack of sufficient geological and geophysical information precludes an analysis of the local anomalies or crustal structure; however, implications of the topography and gravity field at long wavelengths have been examined. Negative free-air anomalies characterize almost the entire Eastern Mediterranean basin and positive anomalies predominate in Turkey and the Aegean Sea. The change in sign coincides with the northern boundary of the African plate, and the wavelength and amplitude of the gravity variation are of the order of 1000 km and 100 mgal respectively. The lithosphere is probably unable to support such anomalies because the implied shear stresses are too large. The source of the anomalies is concluded to be in the asthenosphere where the low finite strength of material suggests that some sort of flow must exist to maintain the stresses. A good correlation is observed between the gravity and topography at wavelengths greater than 300 km; and the relationship is the same as that observed in the North Atlantic and the Central Pacific, as well as that computed for simple models of mantle convection. The gravity and topography of the Eastern Mediterranean can be explained in terms of flow in the upper mantle. This is the first region of subsidence for which this interpretation has been made.  相似文献   

17.
四川盆地寒武系盐卤沉积特征及找钾前景   总被引:3,自引:0,他引:3       下载免费PDF全文
林耀庭 《盐湖研究》2009,17(2):13-20
四川盆地寒武系盐卤资源开发历史悠久,而固矿石盐层乃是20世纪80年代后期从油气探井中才发现的,它为我国卤化物矿物增添了一个新的成盐地质年代,与此同时也极大的改变了华南寒武系古地理面貌,为我国盐砂勘查及找钾预测提供了新的资料。然而至今四川盆地寒武纪盐类工作程度仍然有限,就现有少量资料对四川盆地寒武系成盐古地理背景、盐系沉积剖面特征、石盐矿物特征及盐卤水化学特征等方面作一概略简介和论述。  相似文献   

18.
Field studies and petrographic examinations of core samples and of the bedrock of the floor of the Qattara Depression, Egypt, indicate that salt weathering predominates in its western part in marked contrast to its eastern part. The eastern part of the depression is covered with more than 120-cm-thick, moist sands with sporadic occurrence of halite and gypsum due to the low salinity of the groundwater table. At the western part of the depression, the strongly saline, sodium chloride nature of the groundwater table favors crystallization of halite (and sometimes gypsum) at or near the surface of the outcropping bedrock of the Moghra clastics and/or Dabaa shale. Crystallization of halite and/or gypsum generates increased pressure that leads to mechanical disintegration of the bedrock into fine-grained debris. Features related to disintegration include blistering of the rock surface, splitting, spalling and/or granular disintegration.Alternation of dry and wet cycles favor halite crystallization, mechanical disintegration of the outcropping bedrock and dissolution of the halite cement, which exposes fine-grained debris to wind deflation. Removal of the debris from the floor of the depression leads to the accumulation of lunettes and other dunes in the downwind direction.Therefore, salt weathering provides fine-grained debris that are easily removed by deflation, which accounts for the topographically lower level of the western part of the depression (134 m below sea level (b.s.l.)). In contrast, the presence of moist sediments at the eastern part of the depression inhibits deflation and encourages sedimentation by adhesion of wind-blown sand to the damp surface of the sabkha at an elevation of 45 m below sea level.The disintegration of the bedrock of the Qattara Depression by salt weathering has been in effect since the onset of aridity in northern Egypt in Quaternary time. Whereas the initial excavation of the depression started in Late Miocene or Pliocene time by fluvial erosion, karstic process, mass-wasting and wind deflation.  相似文献   

19.
The dispersive properties of surface waves are used to infer earth structure in the Eastern Mediterranean region. Using group velocity maps for Rayleigh and Love waves from 7 to 100 s, we invert for the best 1-D crust and upper-mantle structure at a regular series of points. Assembling the results produces a 3-D lithospheric model, along with corresponding maps of sediment and crustal thickness. A comparison of our results to other studies finds the uncertainties of the Moho estimates to be about 5 km. We find thick sediments beneath most of the Eastern Mediterranean basin, in the Hellenic subduction zone and the Cyprus arc. The Ionian Sea is more characteristic of oceanic crust than the rest of the Eastern Mediterranean region as demonstrated, in particular, by the crustal thickness. We also find significant crustal thinning in the Aegean Sea portion of the backarc, particularly towards the south. Notably slower S -wave velocities are found in the upper mantle, especially in the northern Red Sea and Dead Sea Rift, central Turkey, and along the subduction zone. The low velocities in the upper mantle that span from North Africa to Crete, in the Libyan Sea, might be an indication of serpentinized mantle from the subducting African lithosphere. We also find evidence of a strong reverse correlation between sediment and crustal thickness which, while previously demonstrated for extensional regions, also seems applicable for this convergence zone.  相似文献   

20.
艾比湖水盐变化原因及影响研究   总被引:2,自引:0,他引:2       下载免费PDF全文
陈志军 《盐湖研究》2007,15(2):1-5,11
从湖泊水文要素出发,基于湖泊和流域的关系,对半个世纪来艾比湖面积、矿化度等水文要素变化趋势进行了分析,并对变化原因进行了探讨,结果表明,相对封闭及较小尺度的流域面积等自身特性,决定了其水资源系统自我调节能力的脆弱性;而近年来流域上的人类活动,增大了降水径流滞留时间和蒸发作用,加大了对水资源的利用量,最终导致汇入湖泊的水量不断减少,矿化度在湖水量不断减少的情况下浓缩升高,最后就艾比湖水盐趋势变化及影响进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号