首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
The data from the Southern Ocean observations of World Ocean Circulation Experiment(WOCE) are used for analysis and illustration of the features and spatial distributions of Circumpolar Deep Water(CDW) in the southern Indian Ocean.It is learnt from the comparison among the vertical distributions of temperature/salinity/oxygen along the 30°E,90°E and 145°E sections respectively that some different features of CDW and the fronts can be found at those longitudes,and those differences can be attributed to the zonal transoceanic flow and the merizonal movement in the Circumpolar Deep Water.In fact,the zonal transoceanic flow is the main dynamic factor for the water exchange between the Pacific Ocean and the Indian Ocean or between the Atlantic Ocean and the Indian Ocean,and for the effects on the spatial distributions of the physical properties in CDW.  相似文献   

2.
李宜振  赵进平 《极地研究》2006,17(2):100-110
The Antarctic circumpolar wave(ACW)has become a focus of the air-sea coupled Southern Ocean study since 1996,when it was discovered as an air-sea coupled interannual signal propagating eastward in the region of the Antarctic C i rcumpolar Current(ACC).In order to analyze the mechanism of discontinuity alon g the latitudinal propagation,a new idea that ACW is a system with a traveling wave in the Southern Pacific and Atlantic Ocean and with a concurrent standing w ave in the southern Indian Ocean is proposed in this paper.Based on the ideal w ave principle,the average wave parameters of ACW is achieved using a non-linea r approximation method,by which we find that the standing part and the travelin g part possess similar radius frequency,proving their belonging to an integral s ystem.We also give the latitudinal distribution of wave speed with which we cou ld tell the reason for steady propagation during the same period.The spatial di stribution of the propagation reveals complex process with variant spatial and t emporal scales—The ENSO scale oscillation greatly impacts on the traveling process,while the result at the south of Australia indicates little connection betw een the Indian Ocean and the Pacific,which may be blocked by the vibration at t he west of the Pacific.The advective effect of ACC on the propagation process s hould be examined clearly through dynamical method.  相似文献   

3.
近600年来北极与中国气候变化的对比   总被引:2,自引:2,他引:0  
A compilation of paleoclimate records from lake sediments, trees, ice cores, and historical documents provide a view of China and Arctic environmental changes in the last 600 years. Many of these changes have also been identified in sedimentary and geochemical signatures in deep-sea sediment cores from the North Atlantic Ocean, Arctic and Greenland and ice cores from the Qinghai-Tibet Plateau, confirming the linkage of environmental changes of different time scales between the Arctic and China. It is shown that the changes of precipitation, temperature and sea ice cover in Arctic were correlated with climate changes in China. This paper also developed a comparative research on the climate changes between Arctic and China both during the Little Ice Age (LIA) and the instrumental observation period. Cycles and trend of temperature variations during LIA and temperature and precipitation during the instrumental observation period are performed. We found some similarities and differences of environmental changes between Arctic and China.  相似文献   

4.
The considerable part of the Northern Asia is occupied with the steppe and forest-steppe landscapes stretched by a wide strip from Caspian Sea to mountains of Big Khingan.Archeologists claim, that from here on the Bering Bridge after a glacial age ancestors of American Indian tribes have left to the North America. In the Baikal Lake basin we find settlements of ancient Huns, subdued the Eastern and Western Europe in the beginning of last millennium.  相似文献   

5.
This study investigates the Arctic Ocean warming episodes in the 20th century using both a high-resolution coupled global climate model and historical observations .The model,with no flux adjustment,reproduces well the Atlantic Water core temperature(AWCT) in the Arctic Ocean and shows that four largest decadal-scale warming episodes occurred in the 1930s,70s,80s,and 90s,in agreement with the hydrographic observational data.The difference is that there was no pre-warming prior to the 1930s episode,while there were two pre-warming episodes in the 1970s and 80s prior to the 1990s,leading the 1990s into the largest and prolonged warming in the 20th century.Over the last century,the simulated heat transport via Fram Strait and the Barents Sea was estimated to be,on average,31.32 TW and 14.82 TW,respectively,while the Bering Strait also provides 15.94 TW heat into the western Arctic Ocean.Heat transport into the Arctic Ocean by the Atlantic Water via Fram Strait and the Barents Sea correlates significantly with AWCT(C=0.75 ) at 0- lag.The modeled North Atlantic Oscillation(NAO) index has a significant correlation with the heat transport(C=0.37).The observed AWCT has a significant correlation with both the modeled AWCT(C=0.49) and the heat transport(C=0.41). However,the modeled NAO index does not significantly correlate with either the observed AWCT(C=0.03) or modeled AWCT(C=0.16) at a zero-lag,indicating that the Arctic climate system is far more complex than expected.  相似文献   

6.
Aridity index reflects the exchanges of energy and water between the land surface and the atmosphere, and its variation can be used to forecast drought and flood patterns, which makes it of great significance for agricultural production. The ratio of potential evapotranspiration and precipitation is applied to analyse the spatial and temporal distributions of the aridity index in the Belt and Road region under the 1.5℃ and 2.0℃ global warming scenarios on the basis of outputs from four downscaled global climate models. The results show that:(1) Under the 1.5℃ warming scenario, the area-averaged aridity index will be similar to that in 1986–2005(around 1.58), but the changes vary spatially. The aridity index will increase by more than 5% in Central-Eastern Europe, north of West Asia, the monsoon region of East Asia and northwest of Southeast Asia, while it is projected to decrease obviously in the southeast of West Asia. Regarding the seasonal scale, spring and winter will be more arid in South Asia, and the monsoon region of East Asia will be slightly drier in summer compared with the reference period. While, West Asia will be wetter in all seasons, except winter.(2) Relative to 1986–2005, both areal averaged annual potential evapotranspiration and precipitation are projected to increase, and the spatial variation of aridity index will become more obvious as well at the 2.0℃ warming level. Although the aridity index over the entire region will be maintained at approximately 1.57 as that in 1.5℃, the index in Central-Eastern Europe, north of West Asia and Central Asia will grow rapidly at a rate of more than 20%, while that in West Siberia, northwest of China, the southern part of South Asia and West Asia will show a declining trend. At the seasonal scale, the increase of the aridity index in Central-Eastern Europe, Central Asia, West Asia, South Asia and the northern part of Siberia in winter will be obvious, and the monsoon region in East Asia will be drier in both summer and autumn.(3) Under the scenario of an additional 0.5℃ increase in global temperature from 1.5℃ to 2.0℃, the aridity index will increase significantly in Central Asia and north of West Asia but decrease in Southeast Asia and Central Siberia. Seasonally, the aridity index in the Belt and Road region will slightly increase in all other seasons except spring. Central Asia will become drier annually at a rate of more than 20%. The aridity index in South Asia will increase in spring and winter, and that in East Asia will increase in autumn and winter.(4) To changes of the aridity index, the attribution of precipitation and potential evapotranspiration will vary regionally. Precipitation will be the major influencing factor over southern West Asia, southern South Asia, Central-Eastern Siberia, the non-monsoon region of East Asia and the border between West Asia and Central Asia, while potential evapotranspiration will exert greater effects over Central-Eastern Europe, West Siberia, Central Asia and the monsoon region of East Asia.  相似文献   

7.
From 1992 to 2015, ecological environment has been threatened by the changes of cropland around the world. In order to evaluate the impact of cropland changes on ecosystem, we calculated the response of terrestrial ecosystem service values (TESVs) variation to cropland conversion based on land-use data from European Space Agency (ESA). The results showed that cropland changes were responsible for an absolute loss of $166.82 billion, equivalent to 1.17% of global TESVs in 1992. Among the different regions, the impact of cropland changes on TESVs was significant in South America and Africa but not obvious in Oceania, Asia and Europe. Cropland expansion from tropical forest was the main reason for decreases in TESVs globally, especially in South America, Africa and Asia. The effect of wetland converted to cropland was notable in North America and Europe while grassland converted to cropland played an important role in Oceania, Africa and Asia. In Europe, the force of urban expansion cannot be ignored as well. The conversion of cropland to tropical or temperate forest partly compensated for the loss of TESVs globally, especially in Asia.  相似文献   

8.
On top of Shigujian Peak (1477 m a.s.l.) of the Dayangshan Mountain in Jinyun County, Zhejiang Province, large amounts of granite pits with diameters ranging from several dozens of centimeters to around one meter and depth from 10 cm to 45 cm are found on rock surface. These pits mainly appear on the NE and SE sides, and their drainage mouths are in the same direction. The identification results through micropolariscope and X-ray fluorescence spectrometer reveal that bedrock of pits is from middle to fine-grained moyite being apt to be weathered and modified. In Dayangshan region the annual mean temperature is 9.2℃ and annual precipitation is over 1700 mm. On the one hand, there always experiences a period of periglacial action with temperature oscillating near 0℃ for 4 months, i.e., from December to March next year. As a consequence, the freezing-thawing cycles may be remarkable to disintegrate the bedrock. On the other hand, the windward slope of Shigujian Peak meets typhoon of over force 10 on the Beaufort scale in summer, therefore, the blowing makes suspending sands or pebbles grind in swirling form. Based on field investigation and periglacial geomorphic theory, the pits on top of Shigujian Peak are attributed to freezing- thawing of periglacial action. Meanwhile, storm and strong wind accelerate the process. Observation shows that both the actions are still undergoing and variant directions of wind are the main cause for making different shapes of the pits. Because the top of Shigujian is 1500 m lower than the present snow line, some scholars considered that “glacial pothole” formed in the Quaternary is hard to work, even though in the Last Glacial Maximum (LGM).  相似文献   

9.
Knowledge of moisture sources is of great significance for understanding climatic change and landscape evolution in desert environments. In this paper, we aim to clarify moisture origins for the Alashan(Alxa) Sand Seas(ALSS) in western Inner Mongolia and their transport pathways during the Last Glacial Maximum(LGM) and the mid-Holocene using modern analogues and paleoclimatic simulations. Precipitation data for the period 1959–2015 from meteorological stations in the study area and wind and specific humidity data from the European Center for Medium-Range Weather Forecasts(ECMWF) daily reanalysis were adopted to determine the moisture sources of summer precipitation in the ALSS. In addition paleoclimate simulations under PMIP3/CMIP5 protocols were used to detect the atmospheric circulation and precipitation at 21 ka BP and 6 ka BP over the ALSS. We also reviewed paleoclimate records from the ALSS to acquire a semi-quantitative reconstruction of the moisture history during the late Pleistocene and Holocene. Our results suggest that the summer monsoon transported water vapor from the Indian Ocean and the South China Sea to the ALSS during July and August, causing increased precipitation. The dominant moisture source was from the southwest monsoon, while the East Asian summer monsoon also partly contributed to precipitation in the ALSS. The increased humidity during the period 8.2–4.2 ka BP in the ALSS, as derived from both climate simulation outputs and sedimentary records, was caused by monsoons according to the outputs of simulations. At 21 ka BP, the moisture sources of the ALSS were greatly associated with the prevailing westerlies.  相似文献   

10.
Climate changes at the multi-decadal scale are often associated with multi-decadal phase shifts of the dominant sea surface temperature (SST) pattern, such as the Pacific Decadal Oscillation (PDO). The PDO may be associated with the North Pacific branch of the Thermohaline Circulation (THC). Great earthquakes (M 〉8), particularly along the route of the THC, might modulate the vertical mixing and bring deep, cold water to surface, contributing to multi-decadal changes in surface currents and the PDO. This may eventually lead to multi-decadal climate changes. We tested this hypothesis for the Pacific Ocean where great earthquakes have been frequently recorded. We found associations between the PDO and recurrent earthquakes along the route of the deep currents of the THC in the modern period since 1900, and relationships between hydroclimate change in Monsoonal Asia and historical earthquakes since 1300. However, it should be noted that this hypothesis is very preliminary and has many gaps that needs further evidences from more observational records and modeling studies.  相似文献   

11.
Based on temperature reconstruction and proxy data from 14 sites in the Northern Hemisphere, this paper focused on comparing the cycles of temperature variations between the Arctic and other areas, including Atlantic, Europe, China, Asia, Pacific, Indian Ocean, and America during the transition from the last Interstade to the Last Glacial Maximum, from the Last Glacial Maximum to megathermal period in Holocene and the transition of the Little Ice Age (LIA) by the methods of Singular Spectrum Analysis (SSA) and Maximum Entropy Spec-trum (MES). The results showed that environmental changes in the Arctic are most similar to that in the North American and better similar to Asia, Atlantic and Pacific, the least similar to Indian Ocean and Europe. The 1500-year oscillation of temperature existed both in Arctic and Europe.  相似文献   

12.
李育  刘媛 《地理学报》2016,71(11):1898-1910
为了探讨中国长时间尺度湖泊时空演变规律和潜在的驱动机制,本文在柯本气候分区和中国季风—非季风区的划分基础上,对中国34个有明确数据的典型湖泊运行CCSM 3.0气候模拟系统和水量能量平衡模型模拟其水位变化,同时利用NCEP/NCAR再分析资料对中国按水汽输送划分的季风区进行验证。结果表明,末次盛冰期以来中国湖泊演化主要受千年尺度大气环流的驱动影响,在各个柯本气候区内没有明显的规律性。末次盛冰期以来,在季风区中国湖泊演化主要有早中全新世湖泊水位相对较高以及末次盛冰期和早全新世湖泊水位均较高2种演变规律;在东亚干旱区主要有中晚全新世期间湖泊水位相对较高以及末次盛冰期和中全新世湖泊水位均较高2种演变规律。本文为中国过去气候变化及湖泊演化机制研究提供新的证据,同时为人类全面认识末次盛冰期以来湖泊水位变化提供了新的视角。  相似文献   

13.
1999年夏季中国首次北极考察区水团特征   总被引:11,自引:3,他引:11       下载免费PDF全文
依据 1 999年 7月至 9月中国首次北极考察队在白令海、楚科奇海和南加拿大海盆的现场调查资料 ,本文分析了三个海区的水团特征 :( 1 )白令海水团主要由季节变化显著的白令海上层水团和中层水团以及深层水团组成 ;( 2 )楚科奇海水文特征受融结冰过程影响较大 ,1 999年7月和 8月差异较大 ,其水团主要为浅海变性水团 ,包括两个次级水团 ,楚科奇海夏季水和来自北太平洋以及北冰洋变性的外海入侵水 ;( 3)南加拿大海盆的水团主要由受融结冰过程影响的表层水团、源于太平洋水的次表层水、源自北大西洋的中层水团和深层水团组成  相似文献   

14.
北极地区盆地群油气地质特征及其资源潜力   总被引:2,自引:0,他引:2       下载免费PDF全文
北极地区具有超过4 000亿桶油当量的待发现技术可采储量, 是未来全球油气勘探与开发的重要增长点。本文按照地理和地质构造因素将北极地区分为北冰洋海盆区和环北极含油气区(含潜在含油气盆地),按照板块演化及盆地发育历史将后者划分为北太平洋极地盆地群、俄罗斯极地盆地群和欧洲极地盆地群。根据大量文献和IHS数据, 结合生油层、储层、盖层及圈闭特征方面的研究, 系统对比、分析北极地区石油、天然气分布特征:北太平洋极地盆地群重要烃源岩形成于侏罗纪和白垩纪, 盆地群中重要储层大部分都分布于新生界布鲁克斯层, 油气系统以构造圈闭为主。俄罗斯极地盆地群中多数盆地具有古生代基底, 受斯堪的纳维亚早古生代造山期变形、西伯利亚板块古生代西部造山变形影响, 60%以上的烃源岩产自中生界, 储层以中生界前陆、克拉通盆地沉积物为主,盖层分布较广, 以中生界居多。欧洲极地盆地群受控于北大西洋洋脊的扩张和迁移, 各盆地烃源岩分布于中生界, 大部分储层分布于上白垩统—古新系, 自生自储、古生新储为该区域盆地的主要成藏模式。其中, 俄罗斯极地盆地油气储量最多, 占北极地区总储量45%以上且勘探潜力最大。  相似文献   

15.
中国夏季高温日数时空变化及其环流背景   总被引:8,自引:1,他引:7  
本研究利用1955~2005年全国193个气象站点夏季(5~9月)逐日最高气温资料,分析了我国东部地区夏季高温日数变化的空间分布特征和时间变化规律。经验正交函数分析结果显示高温日数的变化有明显的区域特征,第一模态表现为区域整体一致的异常,中心区位于长江中下游地区,第二模态表现为江淮流域与华南反向变化的特点,第三模态表现为东南部地区与西南、华北的反向变化。这些模态与高层大气环流的变化有关。分析表明ENSO(厄尔尼诺-南方涛动)、赤道印度洋和西太平洋暖池海温,可以通过影响西太平洋和东亚地区大气环流而影响我国夏季高温日数频次,其中ENSO和西太平洋暖池区海温对高温日数变化第一模态的相关比较明显;而热带印度洋海温对第二模态有显著影响。与前期海温的关系分析可知,第一模态与前期夏季的西太平洋暖池和前期冬季赤道东太平洋海温相关关系最好,第二模态则受热带印度洋前期冬季海温影响最大,这对高温预测具有指示意义。  相似文献   

16.
本文利用主成分分析法提取了川西高原北部5个样点反映气温变化的树轮宽度年表的主成分年表,其中第一主成分年表(PC1)的方差贡献率为59.52%,能够较好地代表川西高原北部地区树轮宽度变化的共同特征。在器测时段内(1961-2010年),PC1年表、6-7月区域平均气温观测序列与东亚气温场的相关分布较为一致,均与中国的西北-青藏高原一带以及西伯利亚东部呈现显著的正相关(r > 0.443,p < 0.001),表明PC1年表能够反映较大空间范围的气温变化特征。器测时期,PC1年表和观测序列与全球海温场的相关分析表明,两者均与西太平洋、印度洋及北大西洋海域显著正相关,反映了在海气相互作用过程中多个海区海表温度变化可能对研究区气温变化有一定影响;而利用PC1年表在更长时间尺度(1854-2010年)及分阶段分析则发现不同阶段对区域气温起主导作用的海区有比较明显的差异,甚至在比较大的空间范围内在不同阶段出现相反的分布型,且由相关系数反映出的海气相互作用强度也具有显著的差异,气温波动较大时,海气相互作用也比较强烈。异常年分析则反映出西北太平洋和北大西洋海温异常对研究区气温异常具有持续稳定的影响。  相似文献   

17.
印度海上战略通道的新动向、动因及影响   总被引:1,自引:0,他引:1  
作为印度洋沿岸的国家,随着2015年《确保海洋安全:海洋安全战略》的出台,印度进一步拓展了海上战略通道,主要体现在三个方面:重视南太平洋海上战略通道、拓展大西洋地区海上战略通道、重视北极地区这一新航道的价值。究其原因,印度追求大国地位、参与全球海洋治理的需要以及保障能源进口多元化是其拓展海上战略通道的主要动因。印度对于海上战略通道的拓展一方面将加剧大国对于海上战略通道的争夺态势,另一方面,将有助于国际社会共同建设维护海上战略通道安全的机制。  相似文献   

18.
This paper documents the main features of climate and climate variability across the Monte Desert for the Last Glacial Maximum, the Glacial–Interglacial transition, and the Holocene on the basis of proxy records and for the 20th century using instrumental observations. The climate in the Monte is determined by interactions between regional physiography and atmospheric circulation in the 25–45°S sectors of South America. Although arid and semi-arid conditions prevail across the Monte, its large latitudinal extent and complex topography introduce many particularities at local scales. Paleoclimatic records and model simulations of past climates suggest significant variations in the atmospheric circulation, temperature and rainfall patterns since the Last Glacial Maximum. High-resolution proxy records east of the Andes support the existence of complex climatic patterns with similar temperature changes across the whole region but opposite precipitation variations between subtropical and mid-latitude sectors in the Monte during the past millennium.The present-day climate is depicted in terms of the space and time variability of the near-surface temperature, rainfall and tropospheric wind patterns. Uneven temperature trends over the Monte were recorded for two separate (1920–44 and 1977–2001) global warming periods in the 20th century. Additional warming evidence in the region is provided by extreme temperature records. The non-homogeneous regional pattern of precipitation shows a positive long-term increase between 30 and 40°S during the interval 1985–2001. Ensemble of climate experiments accomplished with general circulation models provide the most likely changes in temperature and rainfall to occur by the end of this century in relation to present climate. Temperature increases, larger in summer than in winter, will be concurrent with more abundant precipitations in summer, but almost no changes or even small reductions in winter across the Monte.  相似文献   

19.
王中  刘向军  丛禄 《盐湖研究》2017,25(2):67-75
基于野外沉积物调查、已报道的风成沉积物年代和重建的湖泊水位波动曲线,初步绘制了末次冰期冰盛期和全新世早期青海湖东岸的沙漠范围。初步认为,末次冰期冰盛期时青海湖大幅度萎缩,湖底沉积物暴露并遭受风蚀,在偏西风的搬运下,近岸粗颗粒砂堆积在日月山西侧和倒淌河河谷,形成流动沙丘,细颗粒沉积物被向东搬运沉积至河湟谷地和黄土高原。倒淌河源头的沙丘最晚是在末次冰期盛冰期(23~16ka BP)沙漠扩张时形成并残留至今的;青海湖东部日月山西侧山麓地带和倒淌河河谷中、晚全新世黄土、古土壤下部普遍沉积的风成砂是末次冰期冰盛期和全新世早期(11~9 ka BP)青海湖东岸地区大范围沙化的证据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号