首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
富坚 《天文学进展》2011,(4):473-476
星际气体是星系中重子物质的重要组成部分,其中的分子气体(主要是分子氢H2)以及原子气体(主要是中性氢HI)对于星系中发生的各个物理过程至关重要。本文在前人的星系形成和演化的半解析模型基础上,加入了描述星系盘中分子气体和原子气体成分的物理模型,来研究分子气体和原子气体对于星系形成和演化所起的作用。我们主要使用了马普天体物理所Munich Group的L-Galaxies半解析星系形成模型,并借鉴了星系化学演化模型的方法,把半解析模型中的每一个星系盘分成了多个同心圆圈,然后在每个圈中分别追踪气体下落、分子气体和原子气体转化、恒星形成、金属增丰、超新星爆发加热冷气体等发生在星系盘上的物理过程,并且每个同心圈都是独立演化的。在我们的模型中,一个基本假设是每个时间步内气体都是以指数形式下落到星系盘上,并且直接叠加在已有的气体径向面密度轮廓之上,其中指数盘的标长rd正比于星系所在暗物质晕的维里半径rvir与旋转参量λ的乘积。我们的模型使用了两种描述分子气体形成的模型:一种是基于Krumholz等人解析模型的结果,其中分子气体的比例与局域气体面密度以及局域气体金属丰度相关;另一种是分子气体比例与星际压强相关的模型,根据Obreschkow等人的近似,分子气体的比例与气体面密度以及恒星质量面密度相关。由于恒星形成过程发生在星际巨分子云之中,并且根据Leroy等人的观测结果,恒星形成率面密度近似正比于分子气体的面密度,因此我们在模型中使用了与分子气体面密度相关的恒星形成规律。  相似文献   

2.
We present a generalization of the multiphase chemical evolution model (CEM) applied to a wide set of theoretical galaxies with different masses and evolutionary rates. This generalized set of models has been computed using the so-called universal rotation curve from Persic, Salucci & Steel to calculate the radial mass distribution of 44 theoretical protogalaxies. This distribution is a fundamental input which, besides its own effect on the galaxy evolution, defines the characteristic collapse time-scale or gas infall rate on to the disc. We have adopted 10 sets of values, between 0 and 1, for the molecular cloud and star formation efficiencies, as corresponding to their probability nature, for each one of the radial distributions of total mass. Thus, we have constructed a biparametric grid of models, depending on those efficiency sets and on the rotation velocity, whose results are valid in principle for any spiral or irregular galaxy. The model results provide the time-evolution of different regions of the disc and the halo along galactocentric distance, measured by the gas (atomic and molecular) and stellar masses, the star formation rate (SFR) and chemical abundances of 14 elements, for a total of 440 models. This grid may be used to estimate the evolution of a given galaxy for which only present time information, such as radial distributions of elemental abundances, gas densities and/or star formation, which are the usual observational constraints of chemical evolution models (CEMs), is available.  相似文献   

3.
In order to understand the forming mechanism of the radial abun- dance gradient of the Galactic disk and the evolution of cold gas, we have con- structed a chemical evolution model of the Galactic disk, in which the star for- mation law concerned with molecular hydrogens is adopted, and the evolution of mass surface density is calculated for the molecular and atomic hydrogens separately, then the model predictions and the observed radial distributions of some physical quantities are compared. The result indicates that the model prediction is sensitive to the adopted infall timescale, the model which adopts the star formation law concerned with the molecular hydrogens can agree well with the major observed properties of the Galactic disk, especially can obtain naturally the radial oxygen abundance gradient of the Galactic disk, and the radial surface density profile of cold gas. The assumption of instantaneous or non-instantaneous recycling approximation has a small effect on the evolution of cold gas, especially in the case of rather low gas density.  相似文献   

4.
History of Star Formation and Chemical Enrichment in the Milky Way Disk   总被引:2,自引:0,他引:2  
Based on a physical treatment of the star formation law similar to that given by Efstathiou, we have improved our two-component chemical evolution model for the Milky Way disk. Two gas infall rates are compared, one exponential, one Gaussian. It is shown that the star formation law adopted in this paper depends more strongly on the gas surface density than that in Chang et al. It has large effects on the history of star formation and gas evolution of the whole disk. In the solar neighborhood, the history of chemical evolution and star formation is not sensitive to whether the infall rate is Gaussian or exponential. For the same infall time scale, both forms predict the same behavior for the current properties of the Galactic disk. The model predictions do depend on whether or not the infall time scale varies with the radius, but current available observations cannot decide which case is the more realistic. Our results also show that it would be inadequate to describe the gradient evolution along the Gala  相似文献   

5.
Galaxy discs are characterized by star formation histories that vary systematically along the Hubble sequence. We study global star formation, incorporating supernova feedback, gas accretion and enriched outflows in discs modelled by a multiphase interstellar medium in a fixed gravitational potential. The star formation histories, gas distributions and chemical evolution can be explained in a simple sequence of models which are primarily regulated by the cold gas accretion history.  相似文献   

6.
We have computed a set of multiphase chemical evolution models in which the radial mass distributions of each theoretical galaxy is calculated using the universal rotation curve from Persic, Salucci and Steel (1996). We obtain the chemical evolution for galaxies of different masses and morphological types by changing the efficiencies to form molecular clouds and stars according with these types. We obtain the radial distributions of diffuse and molecular gas densities, the star formation rate and abundances for 15 elements for each galaxy. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

7.
8.
Assuming that a disk galaxy is composed of an ambient pervasive gas, small clouds, molecular clouds and stars, its evolution is studied through examining the interchange processes among them. Main results obtained are: (1) The star formation rate is directed by the formation process of molecular clouds. (2) Depending upon the parameters there may be three or four types of evolution of disk galaxies: the no star formation case, the active in the past and inactive at present star formation case, the burst-like star formation case and the very active in star formation case.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan between 30 September–6 October, 1984.  相似文献   

9.
In smoothed particle hydrodynamics (SPH) codes with a large number of particles, star formation as well as gas and metal restitution from dying stars can be treated statistically. This approach allows one to include detailed chemical evolution and gas re-ejection with minor computational effort. Here we report on a new statistical algorithm for star formation and chemical evolution, especially conceived for SPH simulations with large numbers of particles, and for parallel SPH codes.
For the sake of illustration, we also present two astrophysical simulations obtained with this algorithm, implemented into the Tree-SPH code by Lia & Carraro .
In the first simulation, we follow the formation of an individual disc-like galaxy, predict the final structure and metallicity evolution, and test resolution effects. In the second simulation we simulate the formation and evolution of a cluster of galaxies, to demonstrate the capabilities of the algorithm in investigating the chemo-dynamical evolution of galaxies and of the intergalactic medium in a cosmological context.  相似文献   

10.
11.
We calculate chemical evolution models for four dwarf spheroidal (dSph) satellites of the Milky Way (Carina, Ursa Minor, Leo I and Leo II) for which reliable non-parametric star formation histories have been derived. In this way, the independently-obtained star formation histories are used to constrain the evolution of the systems we are treating. This allows us to obtain robust inferences on the history of such crucial parameters of galactic evolution as gas infall, gas outflows and global metallicities for these systems. We can then trace the metallicity and abundance ratios of the stars formed, the gas present at any time within the systems and the details of gas ejection, of relevance to enrichment of the galaxies environment. We find that galaxies showing one single burst of star formation (Ursa Minor and Leo II) require a dark halo slightly larger that the current estimates for their tidal radii, or the presence of a metal-rich selective wind that might carry away much of the energy output of their supernovae before this might have interacted and heated the gas content, for the gas to be retained until the observed stellar populations have formed. Systems showing extended star formation histories (Carina and Leo I), however, are consistent with the idea that their tidally-limited dark haloes provide the necessary gravitational potential wells to retain their gas. The complex time structure of the star formation in these systems remains difficult to understand. Observations of detailed abundance ratios for Ursa Minor strongly suggest that the star formation history of this galaxy might in fact resemble the complex picture presented by Carina or Leo I, but localized at a very early epoch.  相似文献   

12.
We construct a simple, robust model of the chemical evolution of galaxies from high to low redshift, and apply it to published observations of damped Lyman α quasar absorption line systems (DLAs). The elementary model assumes quiescent star formation and isolated galaxies (no interactions, mergers or gas flows). We consider the influence of dust and chemical gradients in the galaxies, and hence explore the selection effects in quasar surveys. We fit individual DLA systems to predict some observable properties of the absorbing galaxies, and also indicate the expected redshift behaviour of chemical element ratios involving nucleosynthetic time delays.
Despite its simplicity, our 'monolithic collapse' model gives a good account of the distribution and evolution of the metallicity and column density of DLAs, and of the evolution of the global star formation rate and gas density below redshifts z ∼3. However, from the comparison of DLA observations with our model, it is clear that star formation rates at higher redshifts ( z >3) are enhanced. Galaxy interactions and mergers, and gas flows very probably play a major role.  相似文献   

13.
In this paper, we investigate the star formation and chemical evolution of damped Lyman α systems (DLAs) based on the disc galaxy formation model developed by Mo, Mao & White. We propose that the DLAs are the central galaxies of less-massive dark haloes present at redshifts z ∼3, and they should inhabit haloes of moderately low circular velocity. The empirical Schmidt law of star formation rates, and closed box model of chemical evolution that an approximation known as instantaneous recycling is assumed, are adopted. In our models, when the predicted distribution of metallicity for DLAs is calculated, two cases are considered. One is that, using the closed-box model, empirical Schmidt law and star formation time, the distribution of metallicity can be directly calculated. The other is that, when the simple gravitational instability of a thin isothermal gas disc as first discussed by Toomre is considered, the star formation occurs only in the region where the surface density of gas satisfies the critical value, not everywhere of a gas disc. In this case, we first obtain the region where the star formation can occur by assuming that the disc has a flat rotation curve and rotational velocity is equal to the circular velocity of the surrounding dark matter halo, and then calculate the metallicity distribution as in case one. We assume that star formation in each DLA lasts for a period of 1 Gyr from redshifts z =3. There is only one output parameter in our models, i.e. the stellar yield, which relates to the time of star formation history and is obtained by normalizing the predicted distribution of metallicity to the mean value of 1/13 Z as presented by Pettini et al.. The predicted metallicity distribution is consistent with the current (rather limited) observational data. A random distribution of galactic discs is taken into account.  相似文献   

14.
An overview is given on the wealth of data recently provided by large mm-wave radiotelescopes on AGB stars, planetary nebulae (PNe), and transition objects. The observations reveal that there is an observable chemical evolution in the neutral gas as a star evolves beyond the AGB, through the proto-PN and PN phases. Significant changes in the abundances of some key molecules (such as CS, CN, HCO+, HCN, and HC3N) take place during the fast evolution of the envelopes. Chemistry can thus be used as a rough clock to date the evolutionary stage of post-AGB envelopes and proto-PN objects. However, once the PN is formed, the observed abundances in the molecular clumps of the envelope remain relatively constant. The chemical evolution of the molecular envelopes likely occurs through the development of photon-dominated regions produced by the ultraviolet field of the central star. The main chemical processes which likely control the evolution are also reviewed. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

15.
We present data probing the spatial and kinematical distribution of both the atomic (H  i ) and molecular (CO) gas in NGC 5218, the late-type barred spiral galaxy in the spiral–elliptical interacting pair, Arp 104. We consider these data in conjunction with far-infrared and radio-continuum data, and N -body simulations, to study the galaxies interactions, and the star formation properties of NGC 5218. We use these data to assess the importance of the bar and tidal interaction on the evolution of NGC 5218, and the extent to which the tidal interaction may have been important in triggering the bar. The molecular gas distribution of NGC 5218 appears to have been strongly affected by the bar; the distribution is centrally condensed with a very large surface density in the central region. The N -body simulations indicate a time-scale since perigalacticon of  ∼3 × 108 yr  , which is consistent with the interaction having triggered or enhanced the bar potential in NGC 5218, leading to inflow and the large central molecular gas density observed. Whilst NGC 5218 appears to be undergoing active star formation, its star formation efficiency is comparable to a 'normal' SBb galaxy. We propose that this system may be on the brink of a more active phase of star formation.  相似文献   

16.
近年来红外望远镜的发展使得研究人员可以利用红外光谱数据探测到H_2的旋转谱线。这些谱线来源于"温"的分子气体。首先介绍关于H_2辐射的研究现状以及目前的研究热点,然后着重讨论在中红外波段观测到的H_2辐射与恒星形成以及与总分子气体质量之间的关系。对使用不同方法和不同数据的工作进行数据和方法的交叉检验后发现:在恒星形成星系中,H_2在中红外波段的辐射与恒星形成相关,而在活动星系核中是由激波激发,与恒星形成无关;另外,星系中的总分子气体质量可由H_2在中红外波段的辐射通过建模推出。从不同类型的星系推出的总分子气体质量与H_2辐射的相关性不明显,但总分子气体表面密度与H_2辐射有一定的相关性。从几个方面对这一结果进行解释。最后,对全文进行了总结并对未来的研究做出展望。  相似文献   

17.
Star formation is a fundamental process that dominates the life-cycle of various matters in galaxies: Stars are formed in molecular clouds, and the formed stars often affect the surrounding materials strongly via their UV photons, stellar winds, and supernova explosions. It is therefore revealing the distribution and properties of molecular gas in a galaxy is crucial to investigate the star formation history and galaxy evolution. Recent progress in developing millimeter and sub-millimeter wave receiver systems has enabled us to rapidly increase our knowledge on molecular clouds. In this proceedings, the recent results from the surveys of the molecular clouds in the Milky Way and the Magellanic Clouds as well as the Galactic center as the most active regions in the Milky Way are presented. The high sensitivity with unrivaled high resolution of ALMA will play a key role in detecting denser gas that is tightly connected to star formation.  相似文献   

18.
We present our recently developed 3-dimensional chemodynamical code for galaxy evolution. This code follows the evolution of different galactic components like stars, dark matter and different components of the interstellar medium (ISM), i.e. a diffuse gaseous phase and the molecular clouds. Stars and dark matter are treated as collisionless N-body systems. The ISM is numerically described by a smoothed particle hydrodynamics (SPH) approach for the diffuse gas and a sticky particle scheme for the molecular clouds. Additionally, the galactic components are coupled by several phase transitions like star formation, stellar death or condensation and evaporation processes within the ISM. As an example we show the dynamical and chemical evolution of a star forming dwarf galaxy with a total baryonic mass of 2 ċ 109 M. After a moderate collapse phase the stars and the molecular clouds follow an exponential radial distribution, whereas the diffuse gas shows a central depression as a result of stellar feedback. The metallicities of the galactic components behave quite differently with respect to their temporal evolution as well as their radial distribution. Especially, the ISM is at no stage well mixed. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

19.
束成钢 《天文学进展》2001,19(2):249-249
从星系形成和演化的角度出发,对星系结构和动力学进行的粗略的评述,内容包括:(1)初步描述了星系中各主要成分的物理特征(空间分布,运行学和化学)及其形成和演化,(2)Damped Lyman-alpha systems(DLAs)是本地星系的化石,对其进行观测研究是HST的主要任务之一,对DLAs宽的谱线轮廓的物理机制和其恒星形成,化学演化进行了讨论,(3)目前已证明Lyman Break方法是发现高红移高恒星形成星系的有效手段,讨论了Lyman Break Galaxies的动力学过程和恒星形象,(4)旋涡星系和椭圆星系的Scaling Law是星系形成和演化所必须解释的问题,对近期该方面的研究结果作了介绍,(5)整体超星的反馈作用在星系形成和演化中起了重要作用,评述了该物理过程对星系演化的影响;(6)随着观测资料的不断积累,各种物体对河外背景辐射的贡献已成了一个重要的研究方向,讨论了宇宙整体的星形成历史和化学演化,(7)银河系是进行星系形成和演化研究的归算零点,介绍了银河系的结构,动力学及演化。  相似文献   

20.
A model of supernova feedback in galaxy formation   总被引:3,自引:0,他引:3  
A model of supernova feedback during disc galaxy formation is developed. The model incorporates infall of cooling gas from a halo, and outflow of hot gas from a multiphase interstellar medium (ISM). The star formation rate is determined by balancing the energy dissipated in collisions between cold gas clouds with that supplied by supernovae in a disc marginally unstable to axisymmetric instabilities. Hot gas is created by thermal evaporation of cold gas clouds in supernova remnants, and criteria are derived to estimate the characteristic temperature and density of the hot component and hence the net mass outflow rate. A number of refinements of the model are investigated, including a simple model of a galactic fountain, the response of the cold component to the pressure of the hot gas, pressure-induced star formation and chemical evolution. The main conclusion of this paper is that low rates of star formation can expel a large fraction of the gas from a dwarf galaxy. For example, a galaxy with circular speed 50 km s1 can expel 6080 per cent of its gas over a time-scale of 1 Gyr, with a star formation rate that never exceeds 0.1 M yr1. Effective feedback can therefore take place in a quiescent mode and does not require strong bursts of star formation. Even a large galaxy, such as the Milky Way, might have lost as much as 20 per cent of its mass in a supernova-driven wind. The models developed here suggest that dwarf galaxies at high redshifts will have low average star formation rates and may contain extended gaseous discs of largely unprocessed gas. Such extended gaseous discs might explain the numbers, metallicities and metallicity dispersions of damped Lyman systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号