首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical integrations of 99 orbits centered on that of comet P/Scotti (P/2000 Y3), and of the nominal orbit, were made 4000 days backwards in time, and 73000 days into the future. The integrations show that this comet has been transferred into its present orbit as recently as 1998. The future orbital evolution indicates a stable period for almost 150 years, when another close encounter with Jupiter may lead to further drastic changes of the present orbit.  相似文献   

2.
CCD images of comet P/Swift-Tuttle, obtained in April 1994 with the 2.2m telescope at ESO La Silla/Chile, showed a comaless stellar nucleus. From absolute photometry we estimated the equivalent radius of the cometary nucleus to be about 11 km (assuming an albedo of 0.04 as for P/Halley) for two rotation phase angles which differ by about 75 deg. From that we conclude that the nucleus is either of rather spherical shape or that the viewing geometry was almost pole-on during our observations.An analysis of the plasma tail and inner coma of the comet by means of photographic plates and CCD images through IHW and BVR filters, obtained with the 80cm Schmidt camera and the 1.2m telescope at Calar Alto/Spain in November 1992, revealed several tail rays, head streamers and substructures in brightness excess areas in the coma. While some of the tail rays extended to several million km nuclear distance, most of them can be traced to starting points which lie in a region just 20000–35000 km projected distance tailward from the nucleus.  相似文献   

3.
The photometric properties of the nucleus of Comet 9P/Tempel 1 are studied from the disk-resolved color images obtained by Deep Impact (DI). Comet Tempel 1 has typical photometric properties for comets and dark asteroids. The disk-integrated spectrum of the nucleus of Tempel 1 between 309 and 950 nm is linear without any features at the spectral resolution of the filtered images. At V-band, the red slope of the nucleus is 12.5±1% per 100 nm at 63° phase angle, translating to B-V=0.84±0.01, V-R=0.50±0.01, and R-I=0.49±0.02. No phase reddening is confirmed. The phase function of the nucleus of Tempel 1 is constructed from DI images and earlier ground-based observations found from the literature. The phase coefficient is determined to be β=0.046±0.007 mag/deg between 4° and 117° phase angle. Hapke's theoretical scattering model was used to model the photometric properties of this comet. Assuming a single Henyey-Greenstein function for the single-particle phase function, the asymmetry factor of Tempel 1 was fitted to be g=−0.49±0.02, and the corresponding single-scattering albedo (SSA) was modeled to be 0.039±0.005 at 550 nm wavelength. The SSA spectrum shows a similar linear slope to that of the disk-integrated spectrum. The roughness parameter is found to be 16°±8°, and independent of wavelength. The Minnaert k parameter is modeled to be 0.680±0.014. The photometric variations on Tempel 1 are relatively small compared to other comets and asteroids, with a ∼20% full width at half maximum of albedo variation histogram, and ∼3% for color. Roughness variations are evident in one small area, with a roughness parameter about twice the average and appearing to correlate with the complex morphological texture seen in high-resolution images.  相似文献   

4.
The results of the 9P/Tempel 1 CARA (Cometary Archive for Amateur Astronomers) observing campaign is presented. The main goal was to perform an extended survey of the comet as a support to the Deep Impact (DI) Mission. CCD R, I and narrowband aperture photometries were used to monitor the Afρ quantity. The observed behavior showed a peak of 310 cm 83 days before perihelion, but we argue that it can be distorted by the phase effect, too. The phase effect is roughly estimated around 0.0275 mag/degree, but we had no chance for direct determination because of the very similar geometry of the observed apparitions. The log-slope of Afρ was around −0.5 between about 180-100 days before the impact but evolved near the steady-state like 0 value by the impact time. The DI module impact caused about a 60% increase in the value of Afρ and a cloud feature in the coma profile which was observed just after the event. The expansion of the ejecta cloud was consistent with a fountain model with initial projected velocity of 0.2 km/s and β=0.73. Referring to a 25,000 km radius area centered on the nucleus, the total cross section of the ejected dust was 0.06 days after the impact, and 1.93 days after the impact (A is the dust albedo). Five days after the event no signs of the impact were detected, nor deviations from the expected activity referring both to the average pre-impact behavior and to the previous apparitions.  相似文献   

5.
1994年7月16日─22日,苏梅克-列维9号周期慧星的21颗碎片连续撞击木星事件是一次极为罕见的天文现象.文中概括介绍了我国天文学家对慧木相撞事件的光学和射电观测网点、课题设置以及所取得的主要观测结果.  相似文献   

6.
Comet 9P/Tempel 1 was the target of a multi-wavelength worldwide investigation in 2005. The NASA Deep Impact mission reached the comet on 4.24 July 2005, delivering a 370-kg impactor which hit the comet at 10.3 km s−1. Following this impact, a cloud of gas and dust was excavated from the comet nucleus. The comet was observed in 2005 prior to and after the impact, at 18-cm wavelength with the Nançay radio telescope, in the millimeter range with the IRAM and CSO radio telescopes, and at 557 GHz with the Odin satellite. OH observations at Nançay provided a 4-month monitoring of the outgassing of the comet from March to June, followed by the observation of H2O with Odin from June to August 2005. The peak of outgassing was found to be around between May and July. Observations conducted with the IRAM 30-m radio telescope in May and July 2005 resulted in detections of HCN, CH3OH and H2S with classical abundances relative to water (0.12, 2.7 and 0.5%, respectively). In addition, a variation of the HCN production rate with a period of 1.73±0.10 days was observed in May 2005, consistent with the 1.7-day rotation period of the nucleus. The phase of these variations, as well as those of CN seen in July by Jehin et al. [Jehin, E., Manfroid, J., Hutsemékers, D., Cochran, A.L., Arpigny, C., Jackson, W.M., Rauer, H., Schulz, R., Zucconi, J.-M., 2006. Astrophys. J. 641, L145-L148], is consistent with a rotation period of the nucleus of 1.715 days and a strong variation of the outgassing activity by a factor 3 from minimum to maximum. This also implies that the impact took place on the rising phase of the “natural” outgassing which reached its maximum ≈4 h after the impact. Post-impact observations at IRAM and CSO did not reveal a significant change of the outgassing rates and relative abundances, with the exception of CH3OH which may have been more abundant by up to one order of magnitude in the ejecta. Most other variations are linked to the intrinsic variability of the comet. The Odin satellite monitored nearly continuously the H2O line at 557 GHz during the 38 h following the impact on the 4th of July, in addition to weekly monitoring. Once the periodic variations related to the nucleus rotation are removed, a small increase of outgassing related to the impact is present, which corresponds to the release of ≈5000±2000 tons of water. Two other bursts of activity, also observed at other wavelengths, were seen on 23 June and 7 July; they correspond to even larger releases of gas.  相似文献   

7.
We calculate the direction of the rotational angular momentum vector,M, of comet 19P/Borrelly based on rotational lightcurve data from 2000, groundbased imaging of the coma during the Deep Space 1encounter, and the basic near-nucleus coma morphology as revealed by the Deep Space 1 spacecraft. For the most likely direction, we derivea family of solutions (with center at RA = 221°, Dec = -7°) if the direction of M is towards the sunward hemisphere during the Deep Space 1 encounter, whereas if the rotation is of opposite sense, the diametrically opposite family of solutions (with center at RA = 41°, Dec = 7°) would result. We argue that the coma morphology in September 2001 is consistent with the nucleus being a principal axis rotator or one observationally indistinguishable from it. Therefore, for all practical purposes, the direction of the rotational angular momentum vector coincides with the spin axis. We also discuss why the determination of the spin axis direction based on observations from the last apparition is in disagreement with the current result.  相似文献   

8.
Comet 9P/Tempel 1, the target of the Deep Impact mission, has been intensively observed for a long time period before the encounter. Pre-impact ground based monitoring of the comet was an important prerequisite for the success of the first space experiment in which a comet is treated by an artificial impact. It provided the background data needed to disentangle the features caused by the impact from variations caused by the natural activity of the comet. In this paper we present results from the ESO-monitoring of the comet, conducted in the thermal infrared and optical spectral ranges during several months before the Deep Impact encounter with the comet.  相似文献   

9.
The analysis of the polarized light scattered by cometary dust particles provides information on the physical properties of the solid component of cometary comae for C/1995 O1 Hale-Bopp and 1P/Halley. A model of light scattering by a size distribution of aggregates of up to 256 submicron-sized grains (spherical or spheroidal) mixed with single spheroidal particles has been developed, with its parameters adjusted to fit the phase angle and wavelength dependence of the polarization observations. The particles are built of two materials: a non-absorbing silicates-type material and a more absorbing organic-type material. The model reproduces accurately the inversion angle and the positive branch of the polarization phase curves from the visible to the near-infrared spectral domains. A negative branch of the polarization phase curves appears in our model, although the negative branch is not deep enough to reproduce accurately the observations. Significant differences are shown between the two comets, with dominance of small grains in the coma of Comet C/1995 O1 Hale-Bopp, well fitted by a distribution of the volume-equivalent diameter, a, following a−3.0 with a lower cutoff around 0.20 μm and an upper cutoff of at least 40 μm. For 1P/Halley, the size distribution follows a−2.8 with a lower cutoff around 0.26 μm and an upper cutoff of about 38 μm. The relative amount of organic-type particles is larger for 1P/Halley while the amount of aggregates, significant for both comets, is larger for C/1995 O1 Hale-Bopp.  相似文献   

10.
In this paper, we have studied both the dynamical and the rotational evolution of an 81P/Wild 2-like comet under the effects of the outgassing-induced force and torque. The main aim is to study if it is possible to reproduce the non-gravitational orbital changes observed in this comet, and to establish the likely evolution of both orbital and rotational parameters. To perform this study, a simple thermophysical model has been used to estimate the torque acting on the nucleus. Once the torque is calculated, Euler equations are solved numerically considering a nucleus mass directly estimated from the changes in the orbital elements (as determined from astrometry). According to these simulations, when the water production rate and changes in orbital parameters for 1997, as well as observational rotational parameters for 2004 are imposed as constraints, the change in the orbital period of 81P/Wild 2, , will decrease so that to , which is similar to the actual tendency observed from 1988 up to 1997. This nearly constant decreasing can be explained as due to a slight drift of the spin axis orientation towards larger ecliptic longitudes. After studying the possible spin axis orientations proposed for 1997, simulations suggest that the spin obliquity and argument (I,Φ)=(56°,167°) is the most likely. As for rotational evolution, changes per orbit smaller than 10% of the actual spin velocity are probable, while the most likely value corresponds to a change between 2 and 7% of the spin velocity. Equally, net changes in the spin axis orientation of 4°-8° per orbit are highly expected.  相似文献   

11.
Ignacio Ferrín 《Icarus》2008,197(1):169-182
We present the secular light curve of Comet 2P/Encke in two phase spaces, the log plot, and the time plot. The main conclusions of this work are: (a) The comet shows activity at perihelion and aphelion, caused by two different active areas: Source 1, close to the south pole, active at perihelion, and Source 2, at the north pole, centered at aphelion. (b) More than 18 physical parameters are measured from the secular light curves, many of them new, and are listed in the individual plots of the comet. Specifically we find for Source 1 the location of the turn on and turn off points of activity, RON=−1.63±0.03 AU, ROFF=+1.49±0.20 AU, TON=−87±5 d, TOFF=+94±15 d, the time lag, LAG(q)=6±1 d, the total active time, TACTIVITY=181±16 d, and the amplitude of the secular light curve, ASEC(1,1)=4.8±0.1 mag. (c) From this information the photometric age and the time-age defined in Ferrín [2005a. Icarus 178, 493-516; 2006. Icarus 185, 523-543], can be calculated, and we find P-AGE = 97 ± 8 comet years and T-AGE = 103 ± 9 comet years (cy). Thus Comet 2P/Encke is an old comet entering the methuselah stage (100 cy < age). (d) The activity at aphelion (Source 2), extends for TACTIVITY=815±30 d and the amplitude of the secular light curve is ASEC(1,Q)=3.0±0.2 mag. (e) From a new phase diagram an absolute magnitude and phase coefficient for the nucleus are determined, and we find RNUC(1,1,0)=15.05±0.14, and β=0.066±0.003. From this data we find a nucleus effective diameter DEFFE=5.12(+2.5;−1.7) km. These values are not much different from previous determinations but exhibit smaller errors. (f) The activity of Source 1 is due to H2O sublimation because it shows curvature. The activity of Source 2 might also be due to H2O due to the circumstantial situation that the poles point to the Sun at perihelion and aphelion. (g) We found a photometric anomaly at aphelion, with minimum brightness between +393 and +413 days after perihelion that may be an indication of topography. (h) We have re-reduced the 1858 secular light curve of Kamel [1991. Icarus 93, 226-245]. There are secular changes in 7 physical parameters, and we achieve for the first time, an absolute age calibration. We find that the comet entered the inner Solar System and began sublimating in 1645±40 AD. (i) It is concluded that the secular light curve can place constraints on the pole orientation of the nucleus of some comets, and we measure the ecliptic longitude of the south pole of 2P/Encke equal to 213.2±4.5°, in excellent agreement with other determinations of this parameter, but with smaller error. (j) Using the observed absolute magnitude of 1858 and 2003 and a suitable theoretical model, the extinction date of the comet is determined. We obtain ED=2056±3 AD, implying that the comet's lifetime is 125±12 revolutions about the Sun after entering the inner Solar System.  相似文献   

12.
The comet 67P/Churyumov-Gerasimenko is the current target of the mission Rosetta, initially planned to investigate comet 46P/Wirtanen. These two comets have similar orbits, except the distance to the Sun at perihelion, but different orbital histories and different masses. Thus, structures of the nuclei can be significantly different. The evolution of comet Wirtanen was simulated by several authors, while comet Churyumov-Gerasimenko became an object of high interest only recently and is not well investigated. In the present work we simulate the evolution of the nucleus, down to tens of meters below the surface, using an extended version of the model previously applied for comet Wirtanen [Kossacki et al., 1999. Comet 46P/Wirtanen: evolution of the subsurface layer. Icarus 142, 202-218.]. The model includes strengthening of the nucleus due to sintering of the ice grains. Simulations are performed for different latitudes, accounting for the evolution of the orbit and for changes of the nucleus orientation, as well as diurnal and seasonal changes of insolation. The calculated loss of water vapor from the comet is integrated over the nucleus surface and is compared with the observational data. We have found, that the sublimation through the dust mantle can be large enough to reproduce the profile of the total water production as a function of time from perihelion. The required dependence of thickness of the dust layer on latitude qualitatively matches present distribution of the absorbed solar flux. The non-gravitational acceleration in the comet motion together with the simulated sublimation flux are used in order to estimate the mass and the bulk density of the nucleus.  相似文献   

13.
Absorption and polarization line profiles as well as the curves of growth in the integrated light of a planet over the whole range of phase angles have been computed assuming a semi-infinite atmosphere scattering according to Rayleigh’s phase-matrix which takes polarization into account. The relative change in line depth and equivalent widths qualitatively agree with the observations of the CO2 bands in Venus reported by Young, Schorn and Young (1980). It is pointed out that the bands might be formed in a part of the atmosphere which is different from that where continuum polarization originates.  相似文献   

14.
Three comets are now known to be at or near the 1/1 resonance with Jupiter P/Slaughter-Burnham, P/Boethin and the newly discovered P/Ge-Wang. Their orbital evolutions are compared, using the elliptic three-dimensional restricted three-body model Sun-Jupiter-comet. Although details of the individual orbits differ, the three comets have very similar general dynamical behaviours, and stay during a long time at or near the 1/1 resonance, at least for several thousand years.  相似文献   

15.
The study of the variation of equivalent width in a Rayleighscattering planetary atmosphere along the intensity equator and along the mirror meridian on whichμ =μ 0 shows that the equivalent widths decrease monotonically towards the poles, the limb and the terminator with the following characteristics: (i) the weakest lines exhibit the maximum change; (ii) theI e r component shows more change than theI e r component; (iii) the decrease towards the limb or the terminator is not as sharp as that towards the poles; (iv)I e r component shows more decrease towards the limb whileI e r component shows more decrease towards the terminator; and (v) the relationW (μ, φ;μ 0,φ 0)= W (μ 0,φ 0;μ, φ) holds for the total intensity. These results are qualitatively in agreement with the observations of absorption bands in the spectra of Venus, Jupiter and Saturn.  相似文献   

16.
17.
We present a synthetic analysis of all available infrared (2-20 μm) and radio (1.3-6.1 cm) observations of comet C/1983 H1 IRAS-Araki-Alcock performed during its close approach to Earth in May 1983. We implement a model based on a spherical nucleus with a macroscopic mosaic of small and numerous active and inactive regions, and take into account the strong phase effect in the calculations of the thermal flux (often neglected in past interpretations). The orientation of the spin axis is assumed to be that determined by Sekanina [1988. Astron. J. 95, 1876-1894]. Additional constraints coming from visible photometry, measurements of the water production rate and the temporal variations of the cometary activity are introduced. We derive an equivalent nucleus radius of 3.4±0.5 km, consistent with a geometric albedo of 0.04 ±0.01 and a phase coefficient in the visible, and an active fraction of 2.9 ±1.9%. Although the nucleus is probably elongated as found in the past (Sekanina, 1988), we show that the relevant measurements were likely contaminated by the contribution of a variable coma.  相似文献   

18.
On July 21, 1994, 13 h - 15 h UT, decametric bursts had been recorded at frequencies from 24.0 MHz to 28.5 MHz in Xin Xiang station (longitude =-113.8°, latitude =35.3°), Henan province, China. Three maps of the three hour data are presented. Some of the bursts appears to be relative to the impact of the fragment S(No. 5) of the comet SL-9.The Project is supported by the National Natural Science Foundation of China.  相似文献   

19.
We report on our search campaign for the fragments of the Jupiter family cometand target of NASA's CONTOUR mission, Comet 3P/Schwassmann–Wachmann 3, one orbit revolution after the splitting of its nucleus in 1995 (Boehnhardt et al., 1995). Fragment C was found back with coma in November 1999 at 4 AU inbound and it continued to be active during the perihelion arc until at least December 2001 when we observed it last at 3.3 AU outbound. Fragment B was observed with coma between July and September 2001 when moving outbound from 2.35 to 2.75 AU. The search for other fragments including A, D (Boehnhardt et al., 1995) and E (Kodata et al., 2000a, b; Nakamura et al., 2000) in a search area of 15 × 4 arcmin starting at fragment C along direction of the extended radius vector was not successful in July and September 2001. The limiting magnitude of this search of ∼ 25 mag in R puts an upper limit on the radius of potential fragments of about 200 m (assuming albedo 0.04). The orbit deceleration parameter and the observed coma brightness of component C suggest that this object is the primary fragment that may contain a major part of the original nucleus.  相似文献   

20.
We present the results of our visible and near-IR observations of Comet 9P/Tempel 1 during the Deep Impact encounter. The comet was observed before, during, and after impact from Kitt Peak National Observatory (J, H, K) and Observatorio Astronómico Nacional-San Pedro Mártir, Mexico (B, V, R, I). High time-resolution images in R, J, H, and K the night of impact with a 3.5 radius aperture revealed a rapid brightening which had multiple slopes and lasted for approximately 25 min before leveling off. The brightness decreased on subsequent nights and returned to near pre-impact levels by July 8 UT. The R-J, R-H, R-K, J-H, J-K, and H-K colors became bluer the night of impact. The R-J, R-H, and R-K colors remained blue on the night after impact while the J-H, J-K, and H-K colors returned to baseline levels. The observed color changes suggest the bluening was due to an increase in small grains relative to the ambient coma, an increase in ice relative to refractory dust in the coma, or a combination of the two. The ejecta were initially directed towards the southwest but had been driven southeast by solar radiation pressure by the second night after impact. The mean projected ejecta velocity was estimated at 0.20-0.23 km s−1 over the first 24 h after impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号