共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparison of the observed distribution of absolute proper motions with a kinematical model of the Galaxy is presented. Proper motions with respect to galaxies were obtained for about 40 000 stars along the main Galactic meridian and in two fields near the North Galactic pole (programme MEGA). The Galaxy is considered as composed of the disk (main sequence and disk red giants), the thick disk and spheroid populations. For each subsystem, spatial velocity components and their dispersions were computed. The distribution of kinematical parameters were modelled for stars located in different directions of the Galaxy. 相似文献
2.
A study of the structure and kinematics of the Galaxy from Tautenburg Schmidt plates taken towards the Galactic centre (l = 17.0°, b = +0.8°) is presented. Proper motions and B, V magnitudes were determined for about 36 500 stars up to the limiting magnitude V = 16m.8 in a field of 8.95 square degrees. Proper motion accuracy of about 3 mas/year has been obtained for stars brighter than V = 15m. The rms errors of stellar magnitudes and (B–V) colours is about 0.1 mag. The majority of field stars in the survey are main sequence stars and red giants of the disk. They belong to the Local or Sagittarius-Carina arms, or they are located between these spiral arms. Comparing the modelled and observed distributions of magnitudes and colours, we specified the interstellar extinction determined in the preceding study of open clusters in this field. The luminosity function towards the Galactic centre was determined for stars with absolute magnitudes from -4m.35 to +9m. Kinematical and spatial distribution parameters up to 4 kpc from the Sun were obtained as a function of galactocentric distance. 相似文献
3.
Star counts and mean parallaxes as a function of B, V, R magnitudes down to 23 are presented. The data were computed by the use of two fundamental equations of stellar statistics. The assumed model considers the Galaxy as a symmetrical system with respect to its rotation axis and to its equatorial plane and as composed of the thin disk (main sequence and red giants), the thick disk and spheroid populations. Numbers of stars and mean parallaxes were derived in bins of galactic longitude and latitude of 30° and 10°, respectively. For the computation of the mean parallaxes depending on Galactic coordinates and magnitudes, series of products of Hermite and Legendre polynomials and of Fourier terms were used. The results of this paper may help in the planning of future survey missions and in the design of new telescopes. In addition, mean parallaxes can be used to derive corrections to absolute parallaxes and proper motions for any position in the sky. 相似文献
4.
A catalogue of photoelectric stellar magnitudes and colours in the UBVR Johnson system in 47 sky areas with galaxies near the Main Galactic Meridian is presented. The catalogue includes 1141 stars within the V magnitude interval 4m.5–15m.5. The rms errors are ±0.014, ±0.026, ±0.012, ±0.016 mag for stellar magnitudes V and colours (U – B),(B – V),(V – R), respectively. The catalogue contains accurate equatorial coordinates (α, δ)1950.0, too. 相似文献
5.
Finding charts and photoelectric magnitudes of stars in the UBVR system in 26 fields of the MEGA programme are presented. This part of the photometric survey near the Main Galactic Meridian includes the fields with right ascentions 8h < α < 16h30m and declinations −2° < δ < 58°. Together with the finding charts of 2.5° × 2.5° the equatorial coordinates of the stars are given for epoch and equinox 1950. Photometric properties of the night sky at the Mount Terskol observatory near Mount Elbrus are derived from the photoelectric observations. 相似文献
6.
M. Cignoni M. Tosi A. Bragaglia J. S. Kalirai D. S. Davis 《Monthly notices of the Royal Astronomical Society》2008,386(4):2235-2241
We have used the field stars from the open cluster survey BOCCE (Bologna Open Clusters Chemical Evolution), to study three low-latitude fields imaged with the Canada–France–Hawaii telescope (CFHT), with the aim of better understanding the Galactic structure in those directions. Because of the deep and accurate photometry in these fields, they provide a powerful discriminant among Galactic structure models. In the present paper we discuss if a canonical star count model, expressed in terms of thin and thick disc radial scales, thick disc normalization and reddening distribution, can explain the observed colour–magnitude diagrams (CMDs). Disc and thick disc are described with double exponentials, the spheroid is represented with a De Vaucouleurs density law. In order to assess the fitting quality of a particular set of parameters, the colour distribution and luminosity function of synthetic photometry is compared to that of target stars selected from the blue sequence of the observed CMDs. Through a Kolmogorov–Smirnov test, we find that the classical decomposition halo-thin/thick disc is sufficient to reproduce the observations – no additional population is strictly necessary. In terms of solutions common to all three fields, we have found a thick disc scalelength that is equal to (or slightly longer than) the thin disc scale. 相似文献
7.
V. Castellani S. Degl'Innocenti S. Petroni G. Piotto 《Monthly notices of the Royal Astronomical Society》2001,324(1):167-179
Taking advantage of recent Hubble Space Telescope ( HST ) data for field stars in the region of the Galactic globular cluster NGC 6397, we tested the predictions of several Galactic models with star counts reaching a largely unexplored range of magnitudes, down to V ∼26.5. After updating the input stellar ( V − I ) colours, we found that the two-component Bahcall–Soneira (B&S) model can be put into satisfactory agreement with observations for suitable choices of disc/spheroid luminosity functions (LFs). However, if one assumes the disc LF of Gould, Bahcall and Flynn together with the spheroid LF of Gould, Flynn and Bahcall, there is no way to reconcile the predicted and observed V -magnitude distribution. We also analysed the agreement between observed and predicted magnitude and colour distributions for two selected models with a thick disc component. Even in this case there are suitable combinations of model parameters and faint-magnitude LFs that can give a reasonable agreement with observational star counts in both magnitude and colour. However, the above-quoted combination of Gould et al. LFs again gives predictions in clear disagreement with observations. 相似文献
8.
A study of four open clusters in the direction of the Galactic anticentre (l = 186°, b = +2°) is presented. In a field of 8.32 square degrees proper motions and B magnitudes for about 79 000 stars down to 19.5 were determined on Tautenburg Schmidt plates. For more than 15 500 of them U magnitudes down to 17.3 could be obtained. Additionally, OCA Schmidt plates were used to determine V, R magnitudes in a larger field of 24.45 square degrees for 271 000 stars down to V = 18.2. For stars brighter than V = 15.5 an accuracy of about 1.5 mas/yr has been estimated for proper motions. The rms errors of stellar magnitudes and colour indices are 0.09 – 0.12 mag. Several open clusters have been already known in this direction of the sky, e.g. NGC 2168 or M 35 (C 0605+243), NGC 2158 (C 0604+241) and IC 2157 (C 0601+240). Inspecting the plates and analysing the colour-magnitude diagrams and published data, we could identify an additional anonymous cluster C 0605+242 with a projection on the sky near the centre of M 35 but at a larger distance from the Sun. The cluster membership determination was carried out using information on spatial and proper motion distributions of stars in the field. The colour-magnitude diagrams were derived down to the limiting stellar magnitude. For each cluster the interstellar extinction Av, the diameters of the core and corona, the ages and spatial velocity components (V,W) relative to the LSR in the Y,Z – Galactic directions were determined. The distances to the clusters of 960 pc, 2 600 pc, 2 520 pc and 3 700 pc were obtained for M 35, IC 2157, C 0605+242 and NGC 2158. They show the loci of the clusters in the Local and Perseus spiral arms and at external border of Perseus arm, respectively. 相似文献
9.
Santiago Torres Enrique García-Berro reas Burkert Jordi Isern 《Monthly notices of the Royal Astronomical Society》2001,328(2):492-500
In this paper we analyse the consequences in the white dwarf population of a hypothetical merger episode in our Galactic disc. We have studied several different merging scenarios with our Monte Carlo simulator. For each one of these scenarios we have derived the main characteristics of the resulting white dwarf population and we have compared them with the available observational data, namely the white dwarf luminosity function and the kinematic properties of the white dwarf population. Our results indicate that very recent (less than ∼6 Gyr ago) and massive (∼16 per cent of the mass of our Galaxy) merger episodes are quite unlikely in view of the available kinematical properties of the disc white dwarf population. Smaller merger episodes (of the order of ∼4 per cent of the mass of our Galaxy) are, however, compatible with our current knowledge of those kinematical properties. Finally, we prove that the white dwarf luminosity function is quite insensitive to such a merger episode. 相似文献
10.
The space velocities and Galactic orbital elements of stars calculated from the currently available high-accuracy observations in our compiled catalog of spectroscopic magnesium abundances in dwarfs and subgiants in the solar neighborhood are used to identify thick-disk objects. We analyze the relations between chemical, spatial, and kinematic parameters of F–G stars in the identified subsystem. The relative magnesium abundances in thick-disk stars are shown to lie within the range 0.0 < [Mg/Fe] < 0.5 and to decrease with increasingmetallicity starting from [Fe/H] ≈ ?1.0. This is interpreted as evidence for a longer duration of the star formation process in the thick disk. We have found vertical gradients in metallicity (gradZ[Fe/H] = ?0.13 ± 0.04 kpc?1) and relative magnesium abundance (gradZ[Mg/Fe] = 0.06 ± 0.02 kpc?1), which can be present in the subsystem only in the case of its formation in a slowly collapsing protogalaxy. However, the gradients in the thick disk disappear if the stars whose orbits lie in the Galactic plane, but have high eccentricities and low azimuthal space velocities atypical of the thin-disk stars are excluded from the sample. The large spread in relative magnesium abundance (?0.3 < [Mg/Fe] < 0.5) in the stars of the metal-poor “tail” of the thick disk, which constitute ≈8% of the subsystem, can be explained in terms of their formation inside isolated interstellar clouds that interacted weakly with the matter of a single protogalactic cloud. We have found a statistically significant negative radial gradient in relative magnesium abundance in the thick disk (gradR[Mg/Fe] = ?0.03 ± 0.01 kpc? 1) instead of the expected positive gradient. The smaller perigalactic orbital radii and the higher eccentricities for magnesium-richer stars, which, among other stars, are currently located in a small volume of the Galactic space near the Sun, are assumed to be responsible for the gradient inversion. A similar, but statistically less significant inversion is also observed in the subsystem for the radial metallicity gradient. 相似文献
11.
12.
U. Löckmann H. Baumgardt P. Kroupa 《Monthly notices of the Royal Astronomical Society》2009,398(1):429-437
Observations of the Galactic Centre show evidence of one or two disc-like structures of very young stars orbiting the central supermassive black hole within a distance of a few 0.1 pc. A number of analyses have been carried out to investigate the dynamical behaviour and consequences of these discs, including disc thickness and eccentricity growth as well as mutual interaction and warping. However, most of these studies have neglected the influence of the stellar cusp surrounding the black hole, which is believed to be one to two orders of magnitude more massive than the disc(s).
By means of N -body integrations using our bhint code, we study the impact of stellar cusps of different compositions. We find that although the presence of a cusp does have an important effect on the evolution of an otherwise isolated flat disc, its influence on the evolution of disc thickness and warping is rather mild in a two-disc configuration. However, we show that the creation of highly eccentric orbits strongly depends on the graininess of the cusp (i.e. the mean and maximum stellar masses). While Chang recently found that full cycles of Kozai resonance are prevented by the presence of an analytic cusp, we show that relaxation processes play an important role in such highly dense regions and support short-term resonances. We thus find that young disc stars on initially circular orbits can achieve high eccentricities by resonant effects also in the presence of a cusp of stellar remnants, yielding a mechanism to create S-stars and hypervelocity stars.
Furthermore, we discuss the underlying initial mass function (IMF) of the young stellar discs and find no definite evidence for a non-canonical IMF. 相似文献
By means of N -body integrations using our bhint code, we study the impact of stellar cusps of different compositions. We find that although the presence of a cusp does have an important effect on the evolution of an otherwise isolated flat disc, its influence on the evolution of disc thickness and warping is rather mild in a two-disc configuration. However, we show that the creation of highly eccentric orbits strongly depends on the graininess of the cusp (i.e. the mean and maximum stellar masses). While Chang recently found that full cycles of Kozai resonance are prevented by the presence of an analytic cusp, we show that relaxation processes play an important role in such highly dense regions and support short-term resonances. We thus find that young disc stars on initially circular orbits can achieve high eccentricities by resonant effects also in the presence of a cusp of stellar remnants, yielding a mechanism to create S-stars and hypervelocity stars.
Furthermore, we discuss the underlying initial mass function (IMF) of the young stellar discs and find no definite evidence for a non-canonical IMF. 相似文献
13.
14.
C. Pichon A. Siebert O. Bienaymé 《Monthly notices of the Royal Astronomical Society》2002,329(1):181-194
A method for inverting the statistical star counts equation, including proper motions, is presented; in order to break the degeneracy in that equation, it uses the supplementary constraints required by dynamical consistency. The inversion gives access to both the kinematics and the luminosity function of each population in three régimes: the singular ellipsoid, the constant ratio Schwarzschild ellipsoid plane-parallel models and the epicyclic model. This more realistic model is tailored to account for the local neighbourhood density and velocity distribution.
The first model is fully investigated, both analytically and by means of a non-parametric inversion technique, while the second model is shown to be formally its equivalent. The effect of noise and incompleteness in apparent magnitude is investigated. The third model is investigated by a non-parametric inversion technique where positivity of the underlying luminosity function is explicitly accounted for.
It is argued that its future application to data such as the Tycho catalogue (and in the upcoming satellite GAIA ) could lead – provided that the vertical potential and or the asymmetric drift or w⊙ are known – to a non-parametric determination of the local neighbourhood luminosity function without any reference to stellar evolution tracks. It should also yield the proportion of stars for each kinematic component and a kinematic diagnostic to split the thin disc from the thick disc or the halo. 相似文献
The first model is fully investigated, both analytically and by means of a non-parametric inversion technique, while the second model is shown to be formally its equivalent. The effect of noise and incompleteness in apparent magnitude is investigated. The third model is investigated by a non-parametric inversion technique where positivity of the underlying luminosity function is explicitly accounted for.
It is argued that its future application to data such as the Tycho catalogue (and in the upcoming satellite GAIA ) could lead – provided that the vertical potential and or the asymmetric drift or w
15.
16.
Takashi Tsuji 《Journal of Astrophysics and Astronomy》1981,2(3):253-276
On the basis of the effective temperature scale proposed previously for cool carbon stars (Paper I), other intrinsic properties
of them are examined in detail. It is shown that the major spectroscopic properties of cool carbon stars, including those
of molecular bands due to polyatomic species (SiC2, HCN, C2H2
etc.), can most consistently be understood on the basis of our new effective temperature scale and the theoretical prediction of
chemical equilibrium. Various photometric indices of cool carbon stars also appear to be well correlated with the new effective
temperatures. Furthermore, as effective temperatures of some 30 carbon stars are now obtained, the calibration of any photometric
index is straightforward, and some examples of such a calibration are given. In general, colour index-effective temperature
calibrations for carbon stars are quite different from those for K-M giant stars. It is found that the intrinsic (R —I)0 colour is nearly the same for N-irregular variables in spite of a considerable spread in effective temperatures, and this
fact is used to estimate the interstellar reddening of carbon stars.
An observational HR diagram of red giant stars, including carbon stars as well as K-M giant stars, is obtained on the basis
of our colour index-effective temperature calibrations and the best estimations of luminosities. It is shown that carbon stars
and M giant stars are sharply divided in the HR diagram by a nearly vertical line at aboutT
eff = 3200 K (logT
eff = 3.50) and the carbon stars occupy the upper right region of M giant stars (except for some high luminosity, high temperature
J-type stars in the Magellanic Clouds; also Mira variables are not considered). Such an observational HR diagram of red giant
stars shows rather a poor agreement with the current stellar evolution models. Especially, a more efficient mixing process
in red giant stars, as compared with those ever proposed, is required to explain the formation of carbon stars. 相似文献
17.
18.
Santiago Torres Enrique García-Berro Jordi Isern 《Monthly notices of the Royal Astronomical Society》2007,378(4):1461-1470
The disc white dwarf luminosity function is an important tool for studying the solar neighbourhood, since it allows the determination of several Galactic parameters, the most important one being the age of the Galactic disc. However, only the method has been employed so far for observationally determining the white dwarf luminosity function, whereas for other kind of luminosity functions several other methods have been frequently used. Moreover, the procedures to determine the white dwarf luminosity function are not free of biases. These biases have two different origins: they can either be of statistical nature or a consequence of the measurement errors. In a previous paper we carried out an in-depth study of the first category of biases for several luminosity function estimators. In this paper we focus on the biases introduced by the measurement errors and on the effects of the degree of contamination of the input sample used to build the disc white dwarf luminosity function by different kinematical populations. To assess the extent of these biases we use a Monte Carlo simulator to generate a controlled synthetic population and analyse the behaviour of the disc white dwarf luminosity function for several assumptions about the magnitude of the measurement errors and for several degrees of contamination, comparing the performances of the most robust luminosity function estimators under such conditions. 相似文献
19.
20.
A study of four open clusters on Tautenburg Schmidt plates in the direction to the Galactic Centre (l = 17.0°, b = +0.8°) is presented. In a field of 8.95 square degrees proper motions and B, V magnitudes were determined for about 36 500 stars up to the limiting magnitudes B = 17m.9, V = 16m.8. For stars brighter than B = 16m an accuracy of about 3 mas/year has been estimated for proper motions. The rms errors of stellar magnitudes and (B—V) colours is about 0.1 mag. There are two open clusters already known in this sky area: Trumpler 32 (C 1814-133) and NGC 6611 (C 1816-138). By the inspection of the plates two additional anonymous clusters were identified near the double star ADS 11285 or BD −14°5014 (C 1819-146) and near the star BD −14°5016 (C 1820-146). The cluster membership determination was carried out using information on spatial and proper motion distributions of stars in the field. The colour-magnitude diagrams up to the limiting stellar magnitude were constructed. For each cluster interstellar extinction AV, diameters of the core and corona, ages and spatial velocity components (V, W) relative to the LSR in the Y, Z-galactic directions were derived. The distances to the clusters were obtained to 1720 pc, 2260 pc, 2130 pc and 2130 pc for Trumpler 32, NGC 6611, C 1819-146 and C 1820-146, respectively. All clusters are situated in the Sagittarius-Carina spiral arm. Their spatial location confirms the assumption that galactic spiral arms are close to logarithmic spirals with a characteristic angle of about 20 degrees. 相似文献