首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A catalogue of photoelectric stellar magnitudes and colours in the UBVR Johnson system in 47 sky areas with galaxies near the Main Galactic Meridian is presented. The catalogue includes 1141 stars within the V magnitude interval 4m.5–15m.5. The rms errors are ±0.014, ±0.026, ±0.012, ±0.016 mag for stellar magnitudes V and colours (U – B),(B – V),(V – R), respectively. The catalogue contains accurate equatorial coordinates (α, δ)1950.0, too.  相似文献   

2.
The catalogue of positions and stellar V magnitudes of up to 17 m stars in the declination zone from 2° to 5.5° has been compiled. The catalogue includes 2.05 × 106 stars and is based on the observations performed in 2010–2015 on the meridian axial circle (MAC) of GAO NAN Ukraine and the Astronomical Observatory of Taras Shevchenko National University. The errors of the positions and photometry for stars of 11–14 magnitude are 0.06″–0.08″ and 0.04 m –0.08 m , respectively.  相似文献   

3.
The positions and proper motions of the stars from the XC1 catalog are compared with the data of other modern catalogs of stars and extragalactic objects. We demonstrate that the XC1 system is free from significant systematic errors. The external error in the proper motions of the stars fainter than 15 m is estimated at 3–5 mas/yr, depending on magnitude.  相似文献   

4.
Cr 135 revisited     
In this paper we combine information on photometry, radial velocities and proper motions to study the nature of the suspected open cluster Cr 135. For the first time we introduce proper motions of a large number of stars in the region of Cr 135 into the discussion. The proper motions taken from the PPM catalogue favour the hypothesis that Cr 135 is a real open cluster with at least 12 members at a distance of 300 pc having a space motion U, V, W of (−11, −13, −15) km s−1. But still more accurate observations are needed to separate it from the field stars without any doubt.  相似文献   

5.
We present comparison results of our Independent Latitude (IL) catalogue of μδ determinations for 1120 bright stars with the Hipparcos, new Hipparcos and Earth Orientation Catalogue (EOC‐2) values. Also, we took into consideration the EOC3 and EOC4 (recent versions of EOC catalogues). Our μδ values are based on zenith telescope observations from seven Independent Latitude (IL) observatories. The IL measures are spanning a time baseline of up to 90 years which is the key advantage to the accurate determination of μδ. The short interval of the Hipparcos satellite observations is a disadvantage for a good accuracy of stellar proper motion, especially in the case of double and multiple stars. For this reason many astrometric catalogues have appeared after the publication of the Hipparcos including our IL catalogue. These catalogues are an appropriate combination of the Hipparcos satellite and ground‐based data which yields more accurate stellar coordinates and/or their proper motions. Among various types of ground‐based observations the latitude and universal time variations obtained from several million observations of stars reduced to the Hipparcos reference system were used for this purpose. These observations were obtained during almost the entire last century and were originally used to determine the Earth Orientation Parameters. It is also possible to use these data in the inverse task of checking the accuracy of stellar coordinates and/or their proper motions listed in the Hipparcos Catalogue. Such latitude and universal time variations data are the basis of the EOC and IL catalogues. In this paper, we computed the differences in μδ values between pairs of catalogues and analyzed the results to characterize the μδ errors for the four catalogues with a special focus on our IL catalogue. The standard errors of μδ for IL stars observed over more than 20 years are mostly smaller than or equal to the Hipparcos errors, and close to the accuracy level of the EOC‐2 (EOC‐3, EOC‐4) and the new Hipparcos. The resulting investigations of errors of differences of μδ, show that all four catalogues have relatively small random and systematic errors which are close to each other meaning that the corresponding μδ values have a high accuracy. Our sample also contains detected double and multiple stars for which the effects of the orbital and proper motions are difficult to separate. The differences of μδ values for these stars generally exceed those obtained for single stars. Also, these discrepancies could be attributed to effect of possible, still unrecognized, astrometric binaries. These investigations about the proper motions and double stars are in line with the activity of the IAU Working Group on Astrometry by Small Ground‐Based Telescopes. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
This paper presents the RCGP catalogue of more than 0.5 million candidate red clump stars with the limiting magnitude K s = 9.5 m . These stars are selected from the PPMX catalogue as the most probable red clump members by analyzing the color-reduced proper motion diagrams built from the proper motions given in PPMX and J, K s -photometry given in the 2MASS catalogue. Reddening of the selected stars is used to find extinction in the K s -band and to consider it in the further analysis. The two-dimensional galactic rotation model generalized by Ogorodnikov is used to investigate the tangential velocity field of the selected red clump members, most of which are thin disk stars located within 1.5 kpc from the sun. The values of kinematic parameters and solar components are determined as a function of stellar heights above the galactic equatorial plane and their heliocentric distances.  相似文献   

7.
We combined data from the Two-Micron All Sky Survey (2MASS) and USNO-A2.0 catalogues in order to derive the absolute proper motions of about 280 million stars distributed all over the sky excluding a small region near the Galactic Centre, in the magnitude range  12 < B < 19 mag  . The proper motions were derived from the 2MASS Point Sources and USNO-A2.0 catalogue positions with a mean epoch difference of about 45 years for the Northern hemisphere and about 17 years for the Southern one. The zero-point of the absolute proper motion frame (the 'absolute calibration') was specified with the use of about 1.45 million galaxies from 2MASS. Most of the systematic zonal errors inherent in the USNO-A2.0 catalogue were eliminated before the calculation of proper motions. The mean formal error of absolute calibration is less than 1 mas yr−1. The XPM Catalogue will be available via CDS in Strasbourg during 2010. The generated catalogue contains the International Celestial Reference System positions of stars for the J2000 epoch, original absolute proper motions, as well as   B , R , J , H   and K magnitudes. A comparison of the proper motions obtained in this work with the data of other recent catalogues of quasars was fulfilled.  相似文献   

8.
A study of the structure and kinematics of the Galaxy from Tautenburg Schmidt plates taken towards the Galactic centre (l = 17.0°, b = +0.8°) is presented. Proper motions and B, V magnitudes were determined for about 36 500 stars up to the limiting magnitude V = 16m.8 in a field of 8.95 square degrees. Proper motion accuracy of about 3 mas/year has been obtained for stars brighter than V = 15m. The rms errors of stellar magnitudes and (B–V) colours is about 0.1 mag. The majority of field stars in the survey are main sequence stars and red giants of the disk. They belong to the Local or Sagittarius-Carina arms, or they are located between these spiral arms. Comparing the modelled and observed distributions of magnitudes and colours, we specified the interstellar extinction determined in the preceding study of open clusters in this field. The luminosity function towards the Galactic centre was determined for stars with absolute magnitudes from -4m.35 to +9m. Kinematical and spatial distribution parameters up to 4 kpc from the Sun were obtained as a function of galactocentric distance.  相似文献   

9.
On the base of CCD-observations made with the axial meridian circle of the Nikolaev Observatory from 2008 to 2009, we compiled a catalogue for astrometric positions and proper motions for 140321 stars located in an ecliptic zone and around high proper motion stars. The root-meansquare error for a star position is 20–65 mas in right ascension and 30–70 mas in declination. The UCAC2 catalogue is used as a reference for astrometric reductions. To derive stars’ proper motion and to estimate systematic errors of the compiled catalogue, cross-identification of the obtained data with modern astronomic catalogues Tycho2, 2MASS, CMC14, LSPM, PPMX, USNO-A2, and XPM-1.0 is performed. In addition to star position and proper motion, our catalogue contains photometric values B, V, r’, J, H, and K taken from other catalogues.  相似文献   

10.
We present a catalogue of radial velocities of Galactic stars with high precision astrometric data CRVAD which is the result of the cross‐identification of star lists from the General Catalog of Average Radial Velocities (GCRV) and from the homogeneous All‐sky Compiled Catalogue of 2.5Million Stars (ASCC‐2.5). The CRVAD includes accurate J2000 equatorial coordinates, proper motions and trigonometric parallaxes in the Hipparcos system, Johnson's BV photometric data, spectral types, multiplicity and variability flags from the ASCC‐2.5, and radial velocities, stellar magnitudes and spectral types from the GCRV for 34553 ASCC‐2.5 stars. The CRVAD was used for the construction of a sample of standard stars with accurate astrometric, photometric and radial velocity data for the RAVE project. A second application of the CRVAD , the radial velocity determination for 292 open clusters (including 97 with previously unknown radial velocities), using their newly defined members from proper motions and photometry in the ASCC‐2.5, is briefly described. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The absolute proper motions of about 275 million stars from the Kharkov XPM catalog have been obtained by comparing their positions in the 2MASS and USNO-A2.0 catalogs with an epoch difference of about 45 yr for northern-hemisphere stars and about 17 yr for southern-hemisphere stars. The zero point of the system of absolute proper motions has been determined using 1.45 million galaxies. The equatorial components of the residual rotation vector of the ICRS/UCAC2 coordinate system relative to the system of extragalactic sources have been determined by comparing the XPM and UCAC2 stellar proper motions: ω x,y,z = (−0.06, 0.17, −0.84) ± (0.15, 0.14, 0.14) mas yr−1. These parameters have been calculated using about 1 million faintest UCAC2 stars with magnitudes R UCAC2 > 16 m and J > 14 m . 7, for which the color and magnitude equation effects are negligible.  相似文献   

12.
We present a catalogue (CSOCA) of stars residing in 520 Galactic open cluster sky areas which is the result of the kinematic (proper motion) and photometric member selection of stars listed in the homogeneous All‐sky Compiled Catalogue of 2.5Million Stars (ASCC‐2.5).We describe the structure and contents of the catalogue, the selection procedure applied, and the proper motion and photometric membership constraints adopted. In every cluster area the CSOCA contains the complete list of the ASCC‐2.5 stars regardless of their membership probability. For every star the CSOCA includes accurate J2000 equatorial coordinates, proper motions in the Hipparcos system, BV photometric data in the Johnson system, proper motion and photometric membership probabilities, as well as angular distances from the cluster centers for about 166 000 ASCC‐2.5 stars. If available, trigonometric parallaxes, spectral types, multiplicity and variability flags from the ASCC‐2.5, and radial velocities with their errors from the Catalogue of Radial Velocities of Galactic Stars with high precision Astrometric Data (CRVAD) are also given. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
After publication of the Hipparcos catalogue (in 1997), a few new astrometric catalogues have appeared (TYCHO‐2, ARIHIP, etc.), as a good combination of the Hipparcos satellite and ground‐based data, to get more accurate coordinates and proper motions of stars than the Hipparcos catalogue ones. There are also investigations on improving the Hipparcos coordinates and proper motions by using the astrometric observations of latitude and universal time variations (via observed stars referred to Hipparcos catalogue), together with Hipparcos data, carried out during the last few years. These kind of ground‐based data were collected at the end of the last century by J. Vondrák. There are about 4.4 million optical observations made worldwide at 33 observatories and with 47 instruments during 1899.7–1992.0; our Belgrade visual zenith telescope data (for the period 1949.0‐1986.0) were included. First of all, these data were used to determine the Earth Orientation Parameters – EOP, but they are also useful for the opposite task – to check the accuracy of coordinates and proper motions of Hipparcos stars which were observed from the ground over many decades. Here, we use the latitude part of ten Photographic Zenith Tubes – PZT data (more than 0.9 million observations made at 6 observatories during the time interval 1915.8–1992.0), and combine them with the Hipparcos catalogue ones, with suitable weights, in order to check the proper motions in declination for 807 common PZT/Hipparcos stars (and to construct the PZT catalogue of μδ for 807 stars). Our standard errors in proper motions in declination of these stars are less than or equal to the Hipparcos ones for 423 stars. The mean value of standard errors of 313 stars observed over more than 20 years by PZT is 0.40 mas/yr. This is 53% of 0.75 mas/yr (the suitable value from the Hipparcos catalogue). We used the Least Squares Method – LSM with the linear model. Our results are in good agreement with the Earth Orientation Catalogue – EOC‐2 and the new Hipparcos ones. The main steps of the method and the investigations of systematic errors in determined proper motions (the proper motion differences with respect to the Hipparcos values, the EOC‐2 ones and the new Hipparcos ones, as a function of α, δ, and magnitude) are presented here. A comparison of the four catalogues by pairs shows that there is no significant relationship between the differences of their μδ values and magnitudes and color indices of the common 807 stars. All catalogues have relatively small random and systematic errors which are close to each other. However, the comparison shows that our formal errors are too small. They are underestimated by a factor of nearly 1.7 (for EOC‐2, it is 2.0) if we take the new Hipparcos (or Hipparcos) data as reference (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We study the effect of systematic variations in stellar parallaxes over the celestial sphere on the results of a kinematic analysis of stellar proper motions. Our approach is based on the representation of stellar parallaxes by scalar spherical harmonics and on the decomposition of stellar proper motions into a system of vector spherical harmonics. We derive theoretical relations that relate the coefficients of the decomposition of stellar proper motions into toroidal and spheroidal harmonics to the coefficients of the decomposition of stellar parallaxes into scalar spherical harmonics. We have established that the systematic variations of parallaxes over the celestial sphere distort all parameters of the linear Ogorodnikov-Milne model and can be responsible for the appearance of beyond-the-model harmonics. We have performed a kinematic analysis of the proper motions of blue-white and red giants based on Hipparcos data. The parallaxes of blue-white giants show a strong dependence on Galactic latitude (with predominant contraction along the Galactic equator). In contrast, the deviations of the parallaxes from the mean for red giants are localized only in two regions of the celestial sphere. For these samples, the effect of parallax variations over the celestial sphere on kinematic parameters has turned out to be comparable to their rms errors. The global solutions performed using both samples have revealed strong beyond-the-model kinematic effects described by second-order toroidal harmonics and third-order spheroidal harmonics. Using the solutions performed separately in the northern and southern Galactic hemispheres, we have established that not the systematic variations of parallaxes over the celestial sphere but the retardation of Galactic rotation with increasing distance of stars from the principal Galactic plane is mainly responsible for the appearance of these harmonics. Based on these samples of stars, we have estimated the magnitude of the vertical Galactic rotation velocity gradient to be 18.0±2.9 and 22.7±2.2 km s?1 kpc?1, respectively.  相似文献   

15.
扼要介绍了施密特巡天底片及基于此编制而成的施密特巡天星表的发展历程,并详细介绍了GSC2.3和USNO-B1.0的情况.分析研究了这类星表存在的问题和原因所在,并提出了一个新的计划:利用现有施密特底片资料并增加新的第3期观测,编制一个具有绝对自行、多色测光、系统均匀的高密度全天星表以满足各方面的需要.  相似文献   

16.
An adaptation of Bielicki's method of reduction of old cometary micrometer observations of the comet-minus-star type to the PPM star catalogue is presented. A fully automatic utility is described which reduces old positions of stars to the coordinates in the PPM star catalogue for comet-minus-star astrometric observations. The reduction clears observations from systematic errors in old catalogues and decreases the mean error of observations. That may have implications for orbit improvement. The utility predicts new positions of stars in the PPM catalogue as needed and can also restore observations which have been previously rejected due to a selection criterion. It helps to get all data in one, coherent reference frame with maximum possible precision when there are lots of old and new observations of the same object. As an illustration, results of application of the utility to observations of comets 122P/de Vico and 109P/Swift-Tuttle are presented.  相似文献   

17.
The observations and the plate reduction technique for the determination of positions and absolute proper motions which is used in Potsdam are described. Recent results have shown that an accuracy of about 0 . 1 for positions and 0 . 7 cent . –1 for proper motions can be achieved both for bright (8m–12m) and faint (16m–18m) stars. Three astrometric programmes using the Tautenburg plates are presented.  相似文献   

18.
We describe the modifications made in the design of the Kyiv meridian axial circle (MAC) and in the observation technique after the instrument was equipped with a CCD camera with an array of 1040×1160 pixels. The observations are performed in the drift-scan mode (time-delay imaging) with an effective exposure time of 108 s for equatorial stars. The MAC photometric system reproduces the standard V system; the limiting magnitude is V = 17 m . The observations made with the modified MAC in 2001–2003 served as the basis for the KMAC1 catalog which contains positions, proper motions, and magnitudes B, V, R, r′, J for 100 000 stars in the sky areas with the ICRF objects. The errors of positions and V magnitudes in the catalog are 50–90 mas and 0.1 m , respectively, for stars with V = 15 m . Stars in the equatorial sky areas and radio stars are presently observed with the aim to determine their exact positions, proper motions, and magnitudes. The catalogs are available in the data base of the Centre de Données Astronomiques de Strasbourg (ftp.cdsarc.u-strasbg.fr) and on the site of the Main Astronomical Observatory (http://www.mao.kiev.ua).  相似文献   

19.
Summary In this paper the results of the research of the stars proper motions Trapezium components are reported. They are: the galactic coordinates of the solar aprx and the Sun velocity (L =43±18°,B =+28±13°,V =13±4 km s−1), the dispersion of peculiar velocities in the direction of the galactic coordinates for the above mentioned stars (σ l =±11 km s−1, σ b =±7 km s−1).The attained accuracy of the proper motions (±0.005″ yr−1) is shown to be insufficient to the study of internal space motions in these systems. At present the work to increase the relative proper motions accuracy for multiple system components and to improve reductions from the relative to absolute proper motions, is being carried out in the Main Astronomical Observatory (Academy of Sciences of the Ukrainian SSR). The new catalogue of the AGK3 stars is composed now in the vicinity of the galactic equator in order to improve reductions from the relative to absolute proper motions. The r.m.s. errors of the proper motions, obtained in the AGK3 system, are ±0.005″ yr−1.  相似文献   

20.
王叔和  唐正宏 《天文学报》1999,40(4):351-359
利用上海天文台佘山40 厘米折射望远镜拍摄的2 个底片天区15 张照相底片上的31 次观测,以ACT 星表作为初始参考星表,按中心重叠法进行归算处理,得到了16 颗依巴谷星和38 颗场星的高精度位置和自行结果,其中依巴谷星的赤经和赤纬标准误差的平均值分别为10 .5 mas 和7 .5 mas,赤经自行和赤纬自行标准误差的平均值分别为0 .70 mas/yr 和0 .59 mas/yr  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号