首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A shallow seismic refraction survey was conducted as part of a geologic and hydrologic investigation of an area adjacent to a proposed coal strip mine in southeastern Illinois. Data obtained from the survey were used to estimate the thickness and geometry of litho-logic units within approximately 40 feet of the surface in unconsolidated material overlying bedrock. Data from a nearby ground water monitoring well and several shallow geologic cores obtained in the survey area indicated the presence of a silt-clay unit roughly 10 feet beneath the surface. This unit strongly inhibits the vertical movement of ground water, resulting in a perched water table.
The refraction survey revealed that the morphology of the top of this silt-clay layer is dominated by a narrow, sinuous channel criss-crossing the survey region with an overall downward trend in elevation from the mine site to a small creek roughly 0.25 miles away. Detailed knowledge of the location of this channel was used to identify optimal sites for shallow ground water monitoring stations. The method proved to be a relatively rapid and cost-efficient means of obtaining detailed information concerning the thickness and geometry of the near-surface unconsolidated materials.  相似文献   

2.
Benzene, toluene and xylenes (BTX) were detected in ground water during a contaminant hydrogeological investigation of a landfill site. The landfill site was situated on approximately 10m (33 ft) of clay and glacial till overburden soils, which were underlain by a shaly limestone bedrock. The top part of the bedrock was the regional aquifer in the study area. Initial thoughts were that the landfill was the source of the BTX. However, the BTX was detected in ground water a considerable distance from the known extent of the leachate plume. Subsequent detailed analysis of rock cores showed the BTX could be leached from bituminous layers of shale that were interbedded in limestone. Rock core testing included gas chromatograph (GC) analysis of organic free reagent water used for leaching tests, flame ionization detection on a solvent used for leaching tests and thermal desorption analysis of the solid rock. The naturally occurring BTX, along with the presence of brackish ground water in the shaly bedrock, made it difficult to identify ground water contamination emanating from the landfill. Thus, the presence of BTX should not be considered definitive evidence of ground water contamination in certain sedimentary rock aquifers.  相似文献   

3.
Warner KL 《Ground water》2001,39(3):433-442
The lower Illinois River Basin (LIRB) covers 47,000 km2 of central and western Illinois. In the LIRB, 90% of the ground water supplies are from the deep and shallow glacial drift aquifers. The deep glacial drift aquifer (DGDA) is below 152 m altitude, a sand and gravel deposit that fills the Mahomet Buried Bedrock Valley, and overlain by more than 30.5 m of clayey till. The LIRB is part of the USGS National Water Quality Assessment program, which has an objective to describe the status and trends of surface and ground water quality. In the DGDA, 55% of the wells used for public drinking-water supply and 43% of the wells used for domestic drinking water supply have arsenic concentrations above 10 micrograms/L (a new U.S. EPA drinking water standard). Arsenic concentrations greater than 25 micrograms/L in ground water are mostly in the form of arsenite (AsIII). The proportion of arsenate (AsV) to arsenite does not change along the flowpath of the DGDA. Because of the limited number of arsenic species analyses, no clear relations between species and other trace elements, major ions, or physical parameters could be established. Arsenic and barium concentrations increase from east to west in the DGDA and are positively correlated. Chloride and arsenic are positively correlated and provide evidence that arsenic may be derived locally from underlying bedrock. Solid phase geochemical analysis of the till, sand and gravel, and bedrock show the highest presence of arsenic in the underlying organic-rich carbonate bedrock. The black shale or coal within the organic-rich carbonate bedrock is a potential source of arsenic. Most high arsenic concentrations found in the DGDA are west and downgradient of the bedrock structural features. Geologic structures in the bedrock are potential pathways for recharge to the DGDA from surrounding bedrock.  相似文献   

4.
The screened auger is a laser-slotted, hollow-stem auger through which a representative sample of ground water is pumped from an aquifer and tested for water-quality parameters by appropriate field-screening methods. Screened auger sampling can be applied to ground water quality remedial investigations, providing:(1) a mechanism for determining a monitoring well's optimal screen placement in a contaminant plume; and (2) data to define the three-dimensional configuration of the contaminant plume.
Screened auger sampling has provided an efficient method for investigating hexavalent chromium and volatile organic compound contamination in two sandy aquifers in Cadillac, Michigan. The aquifers approach 200 feet in thickness and more than 1 square mile in area. A series of screened auger borings and monitoring wells was installed, and ground water was collected at 10-foot intervals as the boreholes were advanced to define the horizontal and vertical distribution of the contaminant plumes. The ability of the screened auger to obtain representative ground water samples was supported by the statistical comparison of field screening results and subsequent laboratory analysis of ground water from installed monitoring wells.  相似文献   

5.
Two borehole geophysical methods—electromagnetic induction and natural gamma radiation logs—were used to vertically delineate landfill leachate plumes in a glacial aquifer. Geophysical logs of monitoring wells near two land-fills in a glacial aquifer in west-central Vermont show that borehole geophysical methods can aid in interpretation of geologic logs and placement of monitoring well screens to sample landfill leachate plumes.
Zones of high electrical conductance were delineated from the electromagnetic log in wells near two landfills. Some of these zones were found to correlate with silt and clay units on the basis of drilling and gamma logs. Monitoring wells were screened specifically in zones of high electrical conductivity that did not correlate to a silt or clay unit. Zones of high electrical conductivity that did not correlate to a silt or clay unit were caused by the presence of ground water with a high specific conductance, generally from 1000 to 2370 μS/cm (microsiemens per centimeter at 25 degrees Celsius). Ambient ground water in the study area has a specific conductance of approximately 200 to 400 μS/cm. Landfill leachate plumes were found to be approximately 5 to 20 feet thick and to be near the water table surface.  相似文献   

6.
David F. Boutt 《水文研究》2017,31(7):1479-1497
This study analyzes a long‐term regional compilation of water table response to climate variability based on 124 long‐term groundwater wells distributed across New England, USA, screened in a variety of geologic materials. The New England region of the USA is located in a humid‐temperature climate underlain by low‐storage‐fractured metamorphic and crystalline bedrock dissected by north–south trending valleys filled with glacial and post‐glacial valley fill sediments. Uplands are covered by thin glacial till that comprises more than 60% of the total area. Annual and multi‐annual responses of the water table to climate variability are assessed to understand how local hydraulic properties and hydrogeologic setting (located in recharge/discharge region) of the aquifer influence the hydrologic sensitivity of the aquifer system to climate variability. This study documents that upland aquifer systems dominated by thin deposits of surface till comprise ~70% of the active and dynamic storage of the region. Total aquifer storage changes of +5 to ?7 km3 occur over the region during the study interval. The storage response is dominated by thin and low permeability surficial till aquifer that fills and drains on a multi‐annual basis and serves as the main mechanism to deliver water to valley fill aquifers and underlying bedrock aquifers. Whereas the till aquifer system is traditionally neglected as an important storage reservoir, this study highlights the importance of a process‐based understanding of how different landscape hydrogeologic units contribute to the overall hydrologic response of a region.  相似文献   

7.
Gasoline constituents were detected in unsaturated soil and rock during abandonment of a leaky underground storage tank (UST). The unsaturated sequence beneath the former UST consists of 90 feet of silty till, fractured dolomite, and friable sand-stone. Pore gas probes were installed in each of the unsaturated units, both in the source area and in a background on-site location. Pore gas samples were collected to evaluate the nature, extent, and fate of residual hydrocarbons in the vadose zone. Pore gas from the till and dolomite in the source area was enriched in petroleum hydrocarbons and carbon dioxide, and was depleted in oxygen, relative to pore gas from the background area. During two years of ground water monitoring at the site, methyl tertiary butyl ether was periodically detected in the ground water beneath the source area as pulses of recharge passed through the unsaturated zone, but no other gasoline constituents were detected. Apparently, the most degradable fraction of the gasoline (aromatic hydrocarbons) is being attenuated in the vadose zone before the water table is reached.  相似文献   

8.
Despite significant advances over the past decades, our understanding of drumlin formation and associated ice‐bed processes is still incomplete. In this paper, we present the integrated use of geomorphological, sedimentological and geophysical techniques as a powerful means to force a breakthrough towards solving the drumlin enigma. We report on investigations of the anatomy of the Pigeon Point drumlin, Clew Bay, Ireland. We found that the bulk of the landform, which displays a classical drumlin shape, consists of silty‐clayey diamicton showing evidence of deformation, hydrofracturing and comminution. The unit is interpreted as a sub‐glacial traction till/comminution till. The thin unit overlying this basal till consists of silty‐sandy diamicton, and is interpreted as a para‐glacially modified melt‐out till. The partly cemented third unit consists of stratified, massive to graded sands and gravels. Its contact with the sub‐glacial traction till consists of a series of concave shapes, which suggests that it was deposited in meltwater channels that flowed in sub‐glacial cavities and that cut laterally into the drumlin. We propose that highs in the undulating rockhead relief, as shown in the seismic profile, have provided nuclei which initiated drumlin formation. This idea is supported by the observation of local detached bedrock slabs that grade upwards into a comminution till. In the long profile, very high normalized induced polarization (IP) values form a wedge‐shape, which is interpreted as a set of conjugate thrusts, or a ‘pop‐up’ structure. The structure is positioned directly above one of the undulations in the bedrock, suggesting a direct relationship. The high values are thought to reflect the presence of pre‐existing clays, which were sheared into the till, thus forming linings in the thrust features. It is concluded that glacitectonic processes, notably differential bedrock weathering and thrusting, have played a key role in the formation of this drumlin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The west watershed of Mirror Lake in the White Mountains of New Hampshire contains several terraces that are at different altitudes and have different geologic compositions. The lowest terrace (FSE) has 5 m of sand overlying 9 m of till. The two next successively higher terraces (FS2 and FS1) consist entirely of sand and have maximum thicknesses of about 7 m. A fourth, and highest, terrace (FS3) lies in the north‐west watershed directly adjacent to the west watershed. This highest terrace has 2 m of sand overlying 8 m of till. All terraces overlie fractured crystalline bedrock. Numerical models of hypothetical settings simulating ground‐water flow in a mountainside indicated that the presence of a terrace can cause local ground‐water flow cells to develop, and that the flow patterns differ based on the geologic composition of the terrace. For example, more ground water moves from the bedrock to the glacial deposits beneath terraces consisting completely of sand than beneath terraces that have sand underlain by till. Field data from Mirror Lake watersheds corroborate the numerical experiments. The geology of the terraces also affects how the stream draining the west watershed interacts with ground water. The stream turns part way down the mountainside and passes between the two sand terraces, essentially transecting the movement of ground water down the valley side. Transects of water‐table wells were installed across the stream's riparian zone above, between, and below the sand terraces. Head data from these wells indicated that the stream gains ground water on both sides above and below the sand terraces. However, where it flows between the sand terraces the stream gains ground water on its uphill side and loses water on its downhill side. Biogeochemical processes in the riparian zone of the flow‐through reach have resulted in anoxic ground water beneath the lower sand terrace. Results of this study indicate that it is useful to understand patterns of ground‐water flow in order to fully understand the flow and chemical characteristics of both ground water and surface water in mountainous terrain. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
A New Multilevel Ground Water Monitoring System Using Multichannel Tubing   总被引:5,自引:0,他引:5  
A new multilevel ground water monitoring system has been developed that uses custom-extruded flexible 1.6-inch (4.1 cm) outside-diameter (O.D.) multichannel HOPE tubing (referred to as Continuous Multichannel Tubing or CMT) to monitor as many as seven discrete zones within a single borehole in either unconsolidated sediments or bedrock. Prior to inserting the tubing in the borehole, ports are created that allow ground water to enter six outer pie-shaped channels (nominal diameter = 0.5 inch [1.3 cm]) and a central hexagonal center channel (nominal diameter = 0.4 inch [1 cm]) at different depths, facilitating the measurement of depth-discrete piezometric heads and the collection of depth-discrete ground water samples. Sand packs and annular seals between the various monitored zones can be installed using conventional tremie methods. Alternatively, bentonite packers and prepacked sand packs have been developed that are attached to the tubing at the ground surface, facilitating precise positioning of annular seals and sand packs. Inflatable rubber packers for permanent or temporary installations in bedrock aquifers are currently undergoing site trials. Hydraulic heads are measured with conventional water-level meters or electronic pressure transducers to generate vertical profiles of hydraulic head. Ground water samples are collected using peristaltic pumps, small-diameter bailers, inertial lift pumps, or small-diameter canister samplers. For monitoring hydrophobic organic compounds, the CMT tubing is susceptible to both positive and negative biases caused by sorption, desorption, and diffusion. These biases can be minimized by: (1) purging the channels prior to sampling, (2) collecting samples from separate 0.25-inch (0.64 cm) O.D. Teflon sampling tubing inserted to the bottom of each sampling channel, or (3) collecting the samples downhole using sampling devices positioned next to the intake ports. More than 1000 CMT multilevel wells have been installed in North America and Europe to depths up to 260 feet (79 m) below ground surface. These wells have been installed in boreholes created in unconsolidated sediments and bedrock using a wide range of drilling equipment, including sonic, air rotary, diamond-bit coring, hollow-stem auger, and direct push. This paper presents a discussion of three field trials of the system, demonstrating its versatility and illustrating the type of depth-discrete data that can be collected with the system.  相似文献   

11.
Subglacial water flow drives the excavation of a variety of bedrock channels including tunnel valleys and inner gorges. Subglacial floods of various magnitudes – events occurring once per year or less frequently with discharges larger than a few hundred cubic metres per second – are often invoked to explain the erosive power of subglacial water flow. In this study we examine whether subglacial floods are necessary to carve bedrock channels, or if more frequent melt season events (e.g. daily production of meltwater) can explain the formation of substantial bedrock channels over a glacial cycle. We use a one‐dimensional numerical model of bedrock erosion by subglacial meltwater, where water flows through interacting distributed and channelized drainage systems. The shear stresses produced drive bedrock erosion by bed‐ and suspended‐load abrasion. We show that seasonal meltwater discharge can incise an incipient bedrock channel a few tens of centimetres deep and several metres wide, assuming abrasion is the only mechanism of erosion, a particle size of D=256 mm and a prescribed sediment supply per unit width. Using the same sediment characteristics, flood flows yield wider but significantly shallower bedrock channels than seasonal meltwater flows. Furthermore, the smaller the shear stresses produced by a flood, the deeper the bedrock channel. Shear stresses produced by seasonal meltwater are sufficient to readily transport boulders as bedload. Larger flows produce greater shear stresses and the sediment is carried in suspension, which produces fewer contacts with the bed and less erosion. We demonstrate that seasonal meltwater discharge can excavate bedrock volumes commensurate with channels several tens of metres to a few hundred metres wide and several tens of metres deep over several thousand years. Such simulated channels are commensurate with published observations of tunnel valleys and inner gorges. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
Hydrogeologic and ground water quality data obtained from a gas-driven multilevel sampler system and a polyvinyl chloride (PVC) monitoring well nest with the same aquifer communication intervals are compared. All monitoring points are in close proximity to each other. The study was conducted at an eight-acre uncontrolled hazardous waste site. The site is located in an alluvial valley composed of approximately 40 feet of alluvium overlying shale bedrock. The ground water at the site is contaminated with various organic constituents. A ground water monitoring network consisting of 26 conventional monitoring wells, nine observation well points, and six multilevel gas-driven samplers was established to characterize the hydrogeologic regime and define the vertical and horizontal extent of contamination in the vicinity of the abandoned chemical plant. As part of this study, a multilevel monitoring system was installed adjacent to a well nest. The communication zones of the multilevel samplers were placed at the same elevation as the sand packs of the well nest. The multilevel sampler system and well nest are located in a contaminated area directly downgradient of the site. A comparison of the vertical head distribution and ground water quality was performed between the well nest and the multilevel sampling system. The gas-driven multilevel sampling system consists of three gas-driven samplers that monitor separate intervals in the unconsolidated materials. The well nest, composed of two PVC monitoring wells in separate boreholes, has the same communication interval as the other two gas-driven samplers. Hydraulic head information for each multilevel sampler was obtained using capillary tubing. This was compared with heads obtained from the well nest utilizing an electric water level indicator. Chemical analyses from the PVC and multilevel sampler wells were performed and compared with one another. The analyses included organic acids, base neutrals, pesticides, PCBs, metals, volatile organics, TOX, TOC, CN, pH and specific conductance.  相似文献   

13.
The objective of this study was to assess the possible impact of deep well disposal operations, conducted between 1958 and 1974, on the ground water quality in a shallow fresh water aquifer beneath Sarnia, Ontario, Canada. Because of the breakout of formation fluids in Sarnia and Port Huron, Michigan, in the early 1970s, it had been hypothesized that liquid waste from the disposal zone in bedrock had leaked through numerous abandoned oil, gas, and salt wells in the area up to the shallow fresh water aquifer and from there to the surface.
A monitoring well network of 29 5cm (2 inch) diameter piezometers was established in the thin sand and shale aquifer system, which exists between 30 and 70m (100 and 230 feet) below ground surface. In addition, a 300m (1000 foot) deep borehole was drilled and instrumented with a Westbay multilevel casing, which permitted sampling of the disposal zone.
Ground water samples from the shallow monitoring wells and the Westbay multilevel casing were analyzed for volatiles by GC/MS. Those volatile aromatics that were conspicuously present in the deep disposal zone, e.g., ethyl toluenes and trimethyl benzene, were not detected in the shallow monitoring wells. Thus, if contaminants from the disposal zone did indeed migrate to the shallow aquifer, contamination was not widespread and probably consisted mostly of displaced chloride-rich formation waters.  相似文献   

14.
The basaltic lava flows of the Deccan Traps in the Dadiapada area are traversed by abundant dykes trending mostly in ENE to WSW direction. The density of the dykes distribution is 2 to 3 per mile. They vary in size from a few feet to 300 feet in width and some can be traced for many miles. Some of the dolerites contain quartz in considerable amounts and it is significant to find micropegmatite texture in them indicating their tholetitic nature.  相似文献   

15.
In view of the increasing demand on ground water supplies in the northeastern United States, it is imperative to develop appropriate methods to geophysically characterize the most widely used sources of ground water in the region: shallow unconfined aquifers consisting of well-sorted, stratified glacial deposits laid down in bedrock valleys and channels. The gravity method, despite its proven value in delineating buried bedrock valleys elsewhere, is seldom used by geophysical contractors in this region. To demonstrate the method's effectiveness for evaluating such aquifers, a pilot study was undertaken in the Palmer River Basin in southeastern Massachusetts. Because bedrock is so shallow beneath this aquifer (maximum depth is 30 m), the depth-integrated mass deficiency of the overlying unconsolidated material was small, so that the observed gravity anomaly was on the order of 1 milligal (mGal) or less. Thus data uncertainties were significant. Moreover, unlike previous gravity studies elsewhere, we had no a priori information on the density of the sediment. Under such circumstances, it is essential to include model constraints and weighted least-squares in the inversion procedure. Among the model constraints were water table configuration, bedrock outcrops, and depth to bedrock from five water wells. Our procedure allowed us to delineate depth to bedrock along a 3.5 km profile with a confidence interval of 1.8 m at a nominal depth of 17 m. Moreover, we obtained a porosity estimate in the range of 39% to 44%. Thus the gravity method, with appropriate refinements, is an effective tool for the reconnaissance of shallow unconfined aquifers.  相似文献   

16.
The glacial records of the inner-core regions of the Laurentide Ice Sheet (LIS) document complex yet coherent patterns reflecting ice-sheet change (e.g. ice-divide migration), providing unique insights into past glacial conditions. This study develops a conceptual model of subglacial dynamics evolution within a major ice-dispersal centre of the LIS in northeastern Quebec, Canada using a GIS-based analysis of the surficial geologic record. Multiple proxies of subglacial conditions (subglacial streamlined landforms, lake density and lake area over thin drift/bedrock) were analysed through grid-overlay techniques and then classified based on different proxy variables ranging from highly mobile warm-based to immobile cold-based conditions. An additional proxy (till blanket) was used to identify areas of thick till deposition, but with few proxies (few lake or landform metrics). Based on local ice-flow reconstructions, the most ‘relict’ glacial terrain zone (GTZ1) has warm-based conditions over 66% of its area and is remarkably well preserved, suggesting laterally extensive warm-based conditions during the oldest identified ice-flow phase. This relict glacial terrain is partially overprinted by two subsequent ice-flow phases in spatially restricted zones in the northeast (73% warm-based), east-central (41% warm-based), and northwest (33% warm-based) of the study area. A zone of more sluggish conditions (only 3% warm-based) was identified in the highlands at the centre of the study area, characterized by thin till cover, few landforms, yet with large patches of relatively abundant small lakes, indicative of areal scouring. No clear evidence of sustained cold-based conditions (i.e. high chemical index of alteration values or high 10Be abundances) was found in the study area. These results suggest that warm-based conditions (active erosion and/or deposition) were uniformly widespread during the earliest ice-flow phase, later becoming more spatially restricted with broader sluggish ice conditions. These spatially restricted regions of warm-based subglacial regimes were likely controlled by surrounding and down-flow ice streaming. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

17.
Surface water draining granitic bedrock in Yosemite National Park exhibits considerable variability in chemical composition, despite the relative homogeneity of bedrock chemistry. Other geological factors, including the jointing and distribution of glacial till, appear to exert strong controls on water composition. Chemical data from three surface water surveys in the upper Merced River basin conducted in August 1981, June 1988 and August 1991 were analysed and compared with mapped geological, hydrological and topographic features to identify the solute sources and processes that control water chemistry within the basin during baseflow. Water at most of the sampling sites was dilute, with alkalinities ranging from 26 to 77 μequiv. l−1. Alkalinity was much higher in two subcatchments, however, ranging from 51 to 302 μequiv. l−1. Base cations and silica were also significantly higher in these two catchments than in the rest of the watershed. Concentrations of weathering products in surface water were correlated to the fraction of each subcatchment underlain by surficial material, which is mostly glacial till. Silicate mineral weathering is the dominant control on concentrations of alkalinity, silica and base cations, and ratios of these constituents in surface water reflect the composition of local bedrock. Chloride concentrations in surface water samples varied widely, ranging from <1 to 96 μequiv. l−1. The annual volume-weighted mean chloride concentration in the Merced River at the Happy Isles gauge from 1968 to 1990 was 26 μequiv. l−1, which was five times higher than in atmospheric deposition (4–5 μequiv. l−1), suggesting that a source of chloride exists within the watershed. Saline groundwater springs, whose locations are probably controlled by vertical jointing in the bedrock, are the most likely source of the chloride. Sulphate concentrations varied much less than most other solutes, ranging from 3 to 14 μequiv. l−1. Concentrations of sulphate in quarterly samples collected at the watershed outlet also showed relatively little variation, suggesting that sulphate may be regulated to some extent by a within-watershed process, such as sulphate adsorption.  相似文献   

18.
A Full-Scale Porous Reactive Wall for Prevention of Acid Mine Drainage   总被引:3,自引:0,他引:3  
The generation and release of acidic drainage containing high concentrations of dissolved metals from decommissioned mine wastes is an environmental problem of international scale. A potential solution to many acid drainage problems is the installation of permeable reactive walls into aquifers affected by drainage water derived from mine waste materials. A permeable reactive wall installed into an aquifer impacted by low-quality mine drainage waters was installed in August 1995 at the Nickel Rim mine site near Sudbury, Ontario. The reactive mixture, containing organic matter, was designed to promote bacterially mediated sulfate reduction and subsequent metal sulfide precipitation. The reactive wall is installed to an average depth of 12 feet (3.6 m) and is 49 feet (15 m) long perpendicular to ground water flow. The wall thickness (flow path length) is 13 feet (4 m). Initial results, collected nine months after installation, indicate that sulfate reduction and metal sulfide precipitation is occurring. Comparing water entering the wall to treated water exiting the wall, sulfate concentrations decrease from 2400 to 4600 mg/L to 200 to 3600 mg/L; Fe concentrations decrease from 250 to 1300 mg/L to 1.0 to 40 mg/L; pH increases from 5.8 to 7.0; and alkalinity (as CaCO3) increases from 0 to 50 mg/L to 600 to 2000 mg/L. The reactive wall has effectively removed the capacity of the ground water to generate acidity on discharge to the surface. Calculations based on comparison to previously run laboratory column experiments indicate that the reactive wall has potential to remain effective for at least 15 years.  相似文献   

19.
The Picillo Farm, EPA Superfund Site, in western Rhode Island was an unauthorized disposal site of hazardous organic chemicals. Predominantly organic contaminants have entered an aquifer comprised of layered glacial deposits and fractured bedrock and spread past the site boundaries with groundwater flow. Hydraulic conductivities in the glacial deposits range over two orders of magnitude and fractures and faults in the granitic bedrock further complicate the spreading of contaminants. Monitoring wells delineate two plumes that extend towards a fault-controlled valley with lakes and wetlands; one to the northwest and the other to the southwest. In this investigation we studied the electrical characteristics of both plumes.One dimensional Schlumberger depth soundings were conducted along several profile lines over the plumes and compared to those over non-contaminated sections of the site. With regard to the southwestern plume, high formation factors (ratio of bulk layer to pore water resistivity) between 12 and 45 were observed compared to values between 2.5 and 7.7 measured over the non-contaminated sections. Also, high values (> 5) of vertical electrical anisotropy (ratio of geoelectrically determined depth to high resistivity bedrock to drilled depth to bedrock) were measured over the contaminated part of the site. These values are extremely high compared to other non-contaminated sites (range: 2 to 3) in glacial stream channels of southern Rhode Island. Geoelectric measurements were affected by lateral effects. However, the consistency of high formation factors (11 to 35) and high vertical anisotropies (3 to 5) over the southwestern plume in comparison to low formation factors (3 to 8) and vertical anisotropies (1 to 1.5) over non-contaminated sites represents a marked difference between both sites. Overall, the Schlumberger depth soundings are less susceptible to near-surface lateral inhomogeneities than expected from other geoelectrical methods. Also, the disadvantage of a 1D interpretation was compensated by estimating resistivity and thickness ranges within the concept of non-uniqueness using the Dar Zarrouk parameters (Maillet, R., 1947. The fundamental equations of electrical prospecting. Geophysics, 12(4): 529–556.).The results over the northwestern plume, i.e. an area with higher contaminant concentration than the southwestern plume, were mixed and showed no consistent trends. Predominantly reducing conditions, as indicated by the presence of soluble ferric (FeII) iron hydroxides in ground water samples, increased the electrical conductivity. This is believed to have compensated the effect of high formation factors on the bulk saturated layer resistivity within the affected area.  相似文献   

20.
This paper addresses the distribution, origin and controls upon nitrate in a 30-km2 area of the Interior Great Plains Region of southern Alberta, Canada. High concentrations of nitrate (> 100 mg l−1 NO3-N) occurred in several isolated enclaves below the water table in brown weathered till. Nitrate concentrations of over 300 mg l−1-N were encountered in groundwater samples collected from these enclaves. Low nitrate concentrations (< 1.1 mg l−1 NO3-N) were also encountered in the weathered till upgradient and downgradient of the nitrate enclaves. Groundwater samples collected from the underlying grey nonweathered till and bedrock had NO3-N concentrations of < 1.1 mg l−1.

Through the application of geochemical (NO3-N and NH+4-N) studies, environmental isotope studies (tritium), microbial analyses (nitrifiers) and laboratory experiments, it was shown that the high nitrates found in the weathered till are the result of the oxidation of ammonium present within the tills. It is postulated that this oxidation occurred during the Holocene epoch when water tables were much lower than present-day levels (5–18 m, and 2 m below ground, respectively).

Through the use of Eh measurements, the enumeration of denitrifying bacteria and laboratory experiments, the potential for denitrification was shown to exist below the present-day water table in the weathered till as well as in the nonweathered till and bedrock. Isotopic data showed that less denitrification may be occurring within the nitrate enclaves than in adjacent downgradient areas.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号