首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discovery of hydrocarbons (mainly gas) in commercial quantities from Gondwanan sediments in the Mandapeta field of Krishna-Godavari Basin, India, provided impetus for intensified exploration in Mandapeta and the adjoining Kommugudem, Draksharama and Endamuru fields. Both oil and gas have been found in the reservoirs of Mandapeta (Triassic) and Golapalli (Early Cretaceous) formations. Mature, localised, basal shales (1.0–1.1% Ro) in the Mandapeta formation have sourced the oils from the Mandapeta Sandstone reservoir (Triassic). The oils being produced from Golapalli Sandstone reservoir (Early Cretaceous) are relatively less mature and have been sourced by the underlying shales in the Mandapeta Formation at a maturity level of 0.80–0.85% Ro. The source and maturity data preclude liquid hydrocarbon sourcing from the Kommugudem (Permian) sequence. Permian coals and shales of the Kommugudem Formation are the major source rocks for gaseous hydrocarbons in this area. The hydrocarbon generation started in Early Cretaceous in the Kommugudem Formation, but the intermittent tectonic activity (with associated structural developments) has resulted in reorientation and redistribution of the then existing trap configurations. The present day maturity level of the Permian sediments in the Mandapeta field is 1.2% Ro or greater, capable of generating gas dominantly. The Raghavapuram shale in the Mandapeta area is adequately mature and has good hydrocarbon potential for oil generation. The probability of finding hydrocarbon reserves in the sands of Raghavapuram shales and other suitable traps is high. Modern seismic information together with geologic models can give new exploration leads.  相似文献   

2.
准噶尔盆地西北缘南部红车断裂带- 车排子凸起油气藏众多,原油物理化学性质和地球化学特征十分复杂,原油类型及其来源长期存在很大争议。本文在准噶尔盆地不同时代烃源岩生成原油典型地球化学特征与主要油源判识指标归纳总结的基础上,对红车断裂带- 车排子凸起原油地球化学特征和来源进行系统分析研究,将该区域原油分为五类,其中三类原油分别来源于二叠系湖相烃源岩、中—下侏罗统煤系烃源岩、古近系安集海河组湖相烃源岩,另外两类为混合原油,分别为来源于二叠系湖相烃源岩的生物降解稠油与中—下侏罗统煤系烃源岩生成的正常原油和古近系湖相烃源岩生成的正常原油的混合原油。红车断裂带石炭系—白垩系油藏原油主要来源于沙湾凹陷二叠系湖相烃源岩,车排子凸起东北部春风油田稠油来源于沙湾凹陷二叠系湖相烃源岩;车排子凸起东侧- 红车断裂带西侧新近系沙湾组油藏轻质原油来源于四棵树凹陷古近系湖相烃源岩;车排子凸起中部春光油田白垩系—古近系油藏稠油为二叠系来源稠油和侏罗系正常原油的混合原油,新近系沙湾组油藏稠油为二叠系来源稠油与新近系正常原油的混合原油;车排子凸起西部石炭系—古近系油藏轻质原油来源于四棵树凹陷中—下侏罗统煤系烃源岩,而新近系沙湾组油藏轻质原油来源于四棵树凹陷古近系湖相烃源岩。本文对准噶尔盆地西北缘南部地区油气藏成藏研究及区域油气勘探决策具有重要参考作用。  相似文献   

3.
车排子隆起毗邻昌吉凹陷和四棵树凹陷,油源丰富,构造条件良好,具备比较有利的油气聚集条件。近年来已在车排子隆起的侏罗系、白垩系、古近系和新近系获高产工业油气流。分析了车排子隆起西南部原油(或油砂抽提物)的地球化学特征,并对其油源作初步分析。结果表明研究区具有两类地球化学性质存在明显差别的原油。第一类原油遭受了不同程度的生物降解,并存在二次充注现象,推测早期充注原油来自昌吉凹陷二叠系,并遭受了不同程度的生物降解,后期混入了来自侏罗系烃源岩生成的原油。第二类原油具有侏罗系煤系烃源岩与白垩系湖相泥质烃源岩混源的特点,这类原油的碳同位素组成、正构烷烃分布特征和姥植比等均表现出煤成油的特征,但甾、萜烷烃类化合物组成与白垩系烃源岩接近,推测是由于侏罗系煤成油在向上运移成藏过程中,受到成熟度相对较低、生物标志物相对丰富的白垩系烃源岩的浸析作用所致。  相似文献   

4.
<正>So far there has been no common opinion on oil source of the Chepaizi swell in the Junggar Basin.Therefore,it is difficult to determine the pathway system and trend of hydrocarbon migration, and this resulted in difficulties in study of oil-gas accumulation patterns.In this paper,study of nitrogen compounds distribution in oils from Chepaizi was carried out in order to classify source rocks of oils stored in different reservoirs in the study area.Then,migration characteristics of oils from the same source were investigated by using nitrogen compounds parameters.The results of nitrogen compounds in a group of oil/oil sand samples from the same source indicate that the oils trapped in the Chepaizi swell experienced an obvious vertical migration.With increasing migration distance,amounts and indices of carbazoles have a regular changing pattern(in a fine linear relationship).By using nitrogen compounds techniques,the analyzed oil/oil sand samples of Chepaizi can be classified into two groups.One is the samples stored in reservoir beds of the Cretaceous and Tertiary,and these oils came from mainly Jurassic source rock with a small amount of Cretaceous rock;the other is those stored in the Jurassic,Permian and Carboniferous beds,and they originated from the Permian source.In addition,a sample of oil from an upper Jurassic reservoir(Well Ka 6), which was generated from Jurassic coal source rock,has a totally different nitrogen compound distribution from those of the above-mentioned two groups of samples,which were generated from mudstone sources.Because of influence from fractionation of oil migration,amounts and ratios of nitrogen compounds with different structures and polarities change regularly with increasing migrating distance,and as a result the samples with the same source follow a good linear relationship in content and ratio,while the oil samples of different sources have obviously different nitrogen compound distribution owing to different organic matter types of their source rocks.These conclusions of oil source study are identical with those obtained by other geochemical bio-markers. Therefore,nitrogen compounds are of great significance in oil type classification and oil/source correlation.  相似文献   

5.
Geochemical composition characteristics of light oils from the Tertiary in the west of the Chepaizi uplift in the Junggar basin, northwest China, are distinct from those of biodegraded oils derived from the Permian in the study area and crude oils from some adjacent oil fields such as the Chepaizi and Xiaoguai oilfields. Oil source correlation shows that light oils in the study area have similar n-alkane and isoprenoid distribution patterns and carbon isotope compositions with the coal-derived oils from the Jurassic, and display obvious discrepancy on biomarker composition characteristics with the Cretaceous source rock extracts, inferring that they are probably the mixed oils from the Jurassic coal measures and Cretaceous source rocks. In this study, combined with the geochemical data of coal-derived oils from the Jurassic and Cretaceous source rocks or crude oils from the Cretaceous, the source and commingling features of the Tertiary crude oils of Well Pai 2 and Well Pai 8 were investigated. The proportion of the two sources in the mixed crude oils was estimated, and the hydrocarbon accumulation pattern of reservoirs in the study area was established.  相似文献   

6.
准噶尔盆地南缘东段是准噶尔盆地油气勘探的重点地区。以成盆、成烃和成藏理论为指导,应用盆地分析、有效烃源岩评价、储层(裂缝)预测、盆地模拟及流体包裹体分析等技术和方法,综合研究分析了准噶尔盆地南缘东段油气成藏条件,预测了油气资源潜力,建立了油气成藏模式。研究结果表明,该区发育上二叠统、中上三叠统和中下侏罗统三套烃源岩。最主要的烃源岩层为上二叠统,是油气资源分布的主要层位;主要储集层为柴窝堡区块的上二叠统和米泉区块的中下三叠统及中下侏罗统,其物性较差,总体为较好含气储层,是主要的勘探目的层。存在自源(侧向排烃)、它源(垂向排烃)两类油气成藏模式。柴窝堡区块北部和米泉区块仍然是有利的油气勘探地区。  相似文献   

7.
准噶尔盆地腹部侏罗系油气成藏地球化学分析   总被引:8,自引:2,他引:6       下载免费PDF全文
依据生物标志物的分布和组成特征,准噶尔盆地腹部侏罗系三工河组的原油可以分为两类,庄1井和沙1井原油属于第一类,源于下二叠统风城组;南部征沙村地区征1井原油为第二类,源于中二叠统下乌尔禾组,也有侏罗系的贡献。根据流体包裹体均一化温度分布,结合生排烃史与构造配置关系研究,认为征1井三工河组油藏主要成藏期是古近纪以来,油气来自于昌吉凹陷的下乌尔禾组和侏罗系烃源岩;而庄1井和沙1井三工河组油藏具有多源多期油气注入,早白垩世末至古近纪,油气来自于北部盆1井西凹陷风城组,古近纪构造调整以来,混入了来源于昌吉凹陷的油气。各口井原油含氮化合物的分布特征,证实了研究区侏罗系原油近期是从征1井向北运移的。  相似文献   

8.
滴南凸起-阜北斜坡区位于准噶尔盆地中央隆起带东段, 发育多个继承性古隆起, 是捕获油气的有利场所.其周缘地区存在的多个生烃凹陷均发育有侏罗系泥岩和煤岩, 油源关系较为复杂.从生烃条件探讨了侏罗纪煤系对彩南油田以北至滴南凸起白垩系吐谷鲁群原油和彩南油田以西至阜北斜坡区侏罗系石树沟群原油的贡献.该区域侏罗系煤岩分布零散, 厚度最厚达30 m, 显微组分以惰质组为主, 与侏罗系泥岩相比煤的供烃能力相对较弱.同时通过油源对比以及与南缘煤成油生物标志化合物特征对比, 明确了研究区白垩系原油来源于二叠系泥岩, 侏罗系原油来自二叠系泥岩和侏罗系泥岩.   相似文献   

9.
古亚洲与特提斯交汇带盆地群油气资源潜力   总被引:6,自引:1,他引:6  
古亚洲与特提斯构造交汇带盆地群发育石炭系、侏罗系(中下统)、白垩系(下统)等多套烃源岩,具有厚度大、分布广、有机质丰度高的特点.石炭系烃源岩有机质进入成熟-过成熟热演化阶段,侏罗系烃源岩有机质已进入大量生油阶段,白垩系烃源岩也处于生油高峰,具有良好的油气成藏的物质基础;区内储集岩发育,石炭-二叠系储集层以低孔隙度、低渗透率为特征,石炭系储集层主要为潮坪-泻湖相沉积的碎屑岩,二叠系储集层为一套河流相粗碎屑岩;侏罗-白垩系储集层物性相对较好,以中孔、中渗,或中孔、高渗为特征,为以河流-三角洲沉积砂体;在石炭-二叠系、中新生代地层中均见到了不同级别的油气显示或获工业油流.存在3种不同的生储盖组合,即①自生自储式组合.②下生上储的间隔式组合.③潜山型组合.预测油气资源量36.85亿t,目前已发现的油气储量仅为1亿t,具较大的勘探潜力.  相似文献   

10.
Cuttings and cores from the Poolowanna 1 well, Eromanga Basin, South Australia (in which oil was discovered in Lower Jurassic reservoirs) and the Macumba 1 well (no oil) have been analyzed petrographically to assess the nature of the coals and dispersed organic matter present. The Jurassic and Cretaceous coals have medium to high vitrinite contents, low to relatively high exinite, and medium to low inertinite contents. The dispersed organic matter has comparatively less vitrinite, more exinite and/or more inertinite than the associated coals. The microlithotype compositions of the coals indicate that the original vegetation was largely woody in character and was buried before much oxidation had occurred.The Jurassic sediments contain up to 2% dispersed organic matter by volume, 0–75% of which is exinite, including alginite. Vitrinite reflectances range from 0.5 to 0.7%. Where sufficiently mature, the Jurassic sediments are good potential source rocks for hydrocarbons.Statistical testing of the analytical results for the Jurassic Poolowanna Formation using Kendall's τ as a measure of dependence shows that there is a significant association between the macerals in coal and dispersed organic matter. The ratio of exinite to inertinite in dispersed organic matter is reasonably well predicted by the corresponding ratio in the associated coal.  相似文献   

11.
Three compositionally distinctive groups of oils identified in central Montana by biomarker analyses are also recognized by the unique compositions of their light hydrocarbon (gasoline range) fraction. The majority of oils produced from Paleozoic pools (Pennsylvanian Tyler–Amsden interval) group into one broad category based on the distribution of C20–C40 biomarkers. These oils not only have the lowest Paraffin Indices and relative concentrations of normal heptane, but are readily distinguishable from the other compositional groups by using selected “Mango” parameters. However, the biomarker-based subdivision of this group into at least two sub-families is not reflected in the gasoline range fraction, suggesting little effect of source rock host lithology on the distribution of C5–C8 hydrocarbons. Oils occurring predominantly in Jurassic–Cretaceous reservoirs display different biomarker and gasoline range characteristics, including Paraffin Indices, K1 parameter and relative concentrations of C7 compounds, and are classified in two separate compositional categories. In contrast to oils from the Tyler–Amsden interval, the oils produced from the Mesozoic strata are amongst the most mature oils in the study area. The unique biomarker/light hydrocarbon signatures are likely due to different source organic matter. Secondary alteration of oil due to biodegradation and migration, although recognized, appears less significant. The results indicate the overall usefulness of gasoline range compositions in delineating compositional affinities of crude oils in central Montana, clearly suggesting that the oils found in Paleozoic and Mesozoic reservoirs belong to different petroleum systems.  相似文献   

12.
通过详细的野外地质调查和有机地球化学、流体包裹体、(U-Th)/He、裂变径迹及盆地模拟等测试分析手段,深入系统地探讨了中扬子北缘京山雁门口二叠系古油藏源岩、原油有机地球化学特征及古油藏形成-改造过程。研究结果表明:区内二叠系烃源岩有机质丰度高、类型好,属于优质烃源岩;区内油气显示主要为黄绿色或褐黄色轻质油苗,产状以晶洞型、裂缝型和缝洞型为主;源岩和原油的有机质主要来源于海相还原环境,推测原油可能主要来源于二叠系烃源岩,为自生自储;古油藏油气显示保存至今的最主要因素可能是保存条件或封闭条件较好。通过流体包裹体和地层埋藏史分析认为,区内二叠系烃源岩生油时间主要在早三叠世初期;而在晚三叠世-晚侏罗世(203~159 Ma)有一期或多期与油气运移有关的热流体活动,同时也是古油藏形成的关键期。裂变径迹和(U-Th)/He热年代学证据则显示古油藏形成后主要经历3期构造叠加改造(晚侏罗-早白垩世的强烈构造抬升-冷却、晚白垩世-古近纪早期的缓慢抬升-冷却及古近纪中后期以来的相对强烈的抬升-冷却),其中晚侏罗世-早白垩世的构造抬升剥蚀-冷却事件可能是古油藏被改造,乃至完全破坏的主要因素。通过对该古油藏系统分析认为,在中扬子燕山期构造活动较弱地区,二叠系裂缝、晶洞发育带内上古生界海相油气勘探潜力较大。  相似文献   

13.
中生界侏罗系是鄂尔多斯盆地重要的石油勘探与开发目的层之一,侏罗系油藏受前侏罗纪古地貌影响较为显著。本文通过流体包裹体特征分析、均一化温度测定和包裹体丰度(GOI)分析、定量颗粒荧光(QGF、QGF-E)研究以及储集层自生伊利石K-Ar定年等实验方法和手段的应用,对鄂尔多斯盆地侏罗系油气包裹体特征进行了精细描述及定量化分析研究,揭示了侏罗系油藏形成时间、充注过程及油气包裹体与油气运移、成藏的关系。研究结果表明:侏罗系油藏存在晚期充注,早期充注少或油藏遭受调整,早期生成的烃类现今仅以沥青的形式赋存,现今烃类流体主要为晚期成藏的产物。侏罗系石油大规模充注期为(108.3±2.0)~(116.5±2.0)Ma(早白垩世中期),具有垂向运移聚集的特点。鄂尔多斯盆地侏罗系油藏早期受岩性和构造双重控制,晚期构造活动调整了油气藏的形态及局部富集。侏罗系在晚期成藏过程中没有形成过叠合连片的大规模的油藏,只在局部构造上形成规模较小的“小而肥”的独立油藏。  相似文献   

14.
It is concluded that there are three hydrocarbon generation and accumulation processes in northeastern Sichuan on the basis of the characteristics of solid bitumen, gas-light oils-heavy oils, homogenization temperature of fluid inclusions and diagenesis for beach- and reef-facies dolomite gas- bearing reservoirs in the Puguang Gas Field, northeastern Sichuan Basin, southern China. The first hydrocarbon generation and accumulation episode occurred in the Indosinian movement (late Middle Triassic). The sapropelic source rocks of the O3w (Upper Ordovician Wufeng Formation)-S1l (Lower Silurian Longmaxi Formation) were buried at depths of 2500 m to 3000 m with the paleogeothermal temperature ranging from 70℃ to 95℃, which yielded heavy oil with lower maturity. At the same time, intercrystalline pores, framework pores and corrosion caused by organic acid were formed within the organic reef facies of P2ch (Upper Permian Changxing Formation). And the first stage of hydrocarbon reservoir occurred, the level of surface porosity of residual solid bitumen {solid bitumen/ (solid bitumen + residual porosity)} was higher than 60%. The second episode occurred during the Middle Yanshanian movement (late Middle Jurassic). During that period, the mixed organic source rocks were deposited in an intra-platform sag during the Permian and sapropelic source rocks of O3w-S1l experienced a peak stage of crude oil or light oil and gas generation because they were buried at depths of 3500 m to 6800 m with paleogeothermal temperatures of 96-168℃. At that time, the level of surface porosity of residual solid bitumen of the T1f shoal facies reservoirs was between 25% and 35%, and the homogenization temperatures of the first and second stages of fluid inclusions varied from 100℃ to 150℃. The third episode occurred during the Late Yanshanian (Late Cretaceous) to the Himalayan movement. The hydrocarbon reservoirs formed during the T1f and P2ch had the deepest burial of 7700 m to 8700 m and paleogeotemperatu  相似文献   

15.
The northwestern Junggar Basin in the southwestern Central Asian Orogenic Belt is a typical petroliferous basin. The widely distributed reservoirs in Jurassic–Cretaceous strata indicate that the region records Yanshanian–Himalayan tectonic activity, which affected the accumulation and distribution of petroleum. The mechanism of this effect, however, has not been fully explored. To fill the knowledge gap, we studied the structural geology and geochemistry of the well-exposed Wuerhe bitumen deposit. Our results indicate that deformation and hydrocarbon accumulation in the northwestern Junggar Basin during the Yanshanian–Himalayan geodynamic transformation involved two main stages. During the Yanshanian orogeny, a high-angle extensional fault system formed in Jurassic–Cretaceous strata at intermediate to shallow depths owing to dextral shear deformation in the orogenic belt. This fault system connected at depth with the Permian–Triassic oil–gas system, resulting in oil ascending to form fault-controlled reservoirs (e.g., a veined bitumen deposit). During the Himalayan orogeny, this fault system was deactivated owing to sinistral shear caused by far-field stress related to uplift of the Tibetan Plateau. This and the reservoir densification caused by cementation formed favorable hydrocarbon preservation and accumulation conditions. Therefore, the secondary oil reservoirs that formed during the Yanshanian–Himalayan tectonic transformation and the primary oil reservoirs that formed during Hercynian–Indosinian orogenies form a total and complex petroleum system comprising conventional and unconventional petroleum reservoirs. This might be a common feature of oil–gas accumulation in the Central Asian Orogenic Belt and highlights the potential for petroleum exploration at intermediate–shallow depths.  相似文献   

16.
准噶尔盆地莫索湾地区断层控油作用   总被引:5,自引:1,他引:4  
莫索湾地区三叠系以上地层整体近单斜形态,圈闭大都与断层相关,并且断层在纵向上可划分为深、浅2套断层系统.深部断裂发育在石炭系至二叠系中,为逆断层;浅部断裂发育在侏罗系中,为张性和张扭性断层.侏罗纪晚期,浅部断裂开始发育,并断至地表,导致油气散失.白垩纪至第三纪,随上覆地层增厚,断层封闭性增强.通过断面两侧岩性配置、泥岩涂抹因子等分析,莫北凸起断层封闭性好于莫索湾凸起,且J1s21砂层组的泥岩涂抹效应要好于J1s22砂层组.油气沿断层垂向运移过程中,将向两侧储层分流,分流系数与储层倾角、厚度、渗透率等有关.莫索湾地区沿断层运移的油气将优先进入厚度大、渗透率高的J1s22储层,厚度小、渗透率低的J1s21储层有利于捕获后期高成熟的油或气.   相似文献   

17.
沈扬  贾东  赵宏亮  韩祥磊 《地质通报》2010,29(4):581-588
准噶尔盆地西部车排子凸起远源成藏,新近系油气藏和油气显示基本都在一套厚砂层和其上的薄砂层中,厚砂层和薄砂层之间存在密切的油源联系。针对这一成藏现象,利用区域构造、油源对比、输导体系、化验证据、成藏特征等手段,系统研究车排子的成藏体系。结果表明,车排子轻质油源岩为侏罗系,主要来自昌吉凹陷西部,油气运移指向为东南到西北方向。区域构造运动形成的白垩系与侏罗系的不整合面和红车断裂的长期活动使得油气能从深部生烃区向浅层凸起区长距离运移。沙湾组一段区域展布的厚砂层高效的横向输导作用是车排子凸起油气规模富集的关键,喜马拉雅期小断层的纵向沟通促成了沙湾组二段薄砂岩性体的最终成藏。白垩系与侏罗系的不整合面-红车断裂-沙湾组一段厚砂层的紧密接触、良好匹配构成了复式、高效的输导格架。通过成藏体系研究,归纳总结了车排子地区的成藏模式,并提出沙湾组二段岩性油气藏和一段上倾尖灭或超覆油气藏是最有利的勘探方向。  相似文献   

18.
柯克亚油田原油地球化学特征和油源研究   总被引:4,自引:0,他引:4  
应用GC/MS、GC/MS/MS分析技术,剖析了塔西南地区侏罗系和二叠系两套烃源岩生物标志物组合特征,建立了区分的指标体系,即二叠系源岩重排藿烷、C30-未知萜烷含量丰富,侏罗系源岩重排藿烷含量较低,但检测到二萜类化合物,而在二叠系源岩中未检测到该类化合物。柯克亚原油重排藿烷、C30-未知萜烷发育。精细油-岩对比结果表明,柯克亚原油主要来源于二叠系烃源岩,同时原油中检测出微量的二萜类化合物,说明侏罗系烃源岩也有一定的贡献。  相似文献   

19.
In the lower parts of oil reservoirs Chang 9 and Chang 10 of the Yanchang Formation are oil-bearing layers newly found in oil exploration in the Ordos Basin.Based on GC,GC-MS analyses of saturated hydrocarbons from crude oils and source rocks,reservoir fluid inclusions and BasinMod,the origin of crude oils,accumulation period and accumulation models are discussed in combination with other petroleum geology data in this paper.The result shows that(1) there are two different types of crude oils in oil reservoir Chang 9 in the Longdong and Jiyuan regions:crude oils of typeⅠ(Well D86,Well A44,Well A75,Well B227,Well X62 and Well Z150) are mainly de-rived from the Chang 7 source rocks(including mudstones and shales) and distributed in the Jiyuan and Longdong regions;those of typeⅡ(Well Z14 and Well Y427),are distributed in the Longdong region,which are derived from the Chang 9 source rocks.Crude oils from oil reservoir Chang 10 in the Shanbei region are mainly derived from the Chang-9 source rocks;(2) there are two phases of hydrocarbon filling in oil reservoir Chang 9 in the Jiyuan and Longdong regions and oil reservoir Chang 10 in the Shanbei region:The first phase started at the early stage of J2z.The process of hydrocarbon filling was discontinuous in the Late Jurassic,because of the tectonic-thermal event in the Ordos Basin.The second phase was the main accumulation period,and hydrocarbons began to accumulate from the late stage of J2a to the middle-late of K1,mainly at the middle-late stage of K1;(3) there exist two types of accu-mulation models in oil reservoirs Chang 9 and Chang 10 of the Yanchang Formation:source rocks of the reservoirs in oil reservoir Chang 9 in the Jiyuan region and oil reservoir Chang 10 in the Shanbei region,the mixed type of reservoirs on the lateral side of source rocks and source rocks of the reservoirs in oil reservoir Chang 9 in the Long-dong region.  相似文献   

20.
The Grains containing Oil Inclusions(GOI)data in currently gas/condensate-beating Jurassic and Cretaceous reservoir sandstones of Well Pen 5(the Mosuowan area of central Junggar Basin,NW China)are generally greater than the empirical threshold line of 5%.This is consistent with the gas-condensate section originally containing a palaeo-oil column.In order to assess the origin of the oil trapped in the oil inclusion and its relationship to the free oil/gas-condensate,a detailed molecular geochemical study was carried out for correlation between the free and inclusion oils.The paleo oil is most likely sourced from the Lower Permian Fengeheng Formation,which generated hydrocarbons primarily during Late Triassic and the oils were later secondarily altered and dysmigrated along faults likely during Late Jurassic-Early Cretaceous.In contrast,the current reservoired oil/gas-condensate mainly derived from the Middle Permian Lower Wuerhe Formation,whose peak generation time last from Late Cretaceous even to the present.This paper showed that integrated oil-bearing fluid inclusion analyses have likely allowed a complex multi-phase charge history to be recognized and resolved with a high degree of confidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号