首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In a correlated study using coronagraph and interplanetary data from 1978 to 1983, a set of 56 coronal mass ejections (CMEs) was confidently associated with interplanetary shocks by Sheeleyet al. (1985). In this paper we analyze the characteristics of these particular CMEs in contrast to the whole population of them during the period. We find that the associated CMEs are not a representative sample of all the variety of CMEs and that they share specific characteristics. Contrary to common beliefs, these characteristics are not a high velocity or a large extension, but have more to do with the importance and shape of the CME. Practically all the CMEs associated with shocks were of importance Y (bright and/or large) and had a curved-type front structural class (a continuous curved front with either straight edges or curved legs). Another common characteristic of these particular CMEs is that they show a considerable increase in their angular span as they go out from the Sun, moving the peak of the distribution from 30° to 70°.  相似文献   

2.
3.
Features of flares that occur in association with coronal mass ejections(CMEs) have often displayed variations compared to flares with no associated CMEs. A comparative estimation of peak flux values of flares associated with CMEs and those without CMEs is made. Peak flux values of flares associated with CMEs show distinctly higher values in comparison to flares with no associated CMEs.Higher peak flux of CME associated flares may be attributed to the heating of plasma to higher temperature when associated with CMEs. While providing a distinct difference between the flux values of flares clearly associated with CMEs compared to flares associated with no CMEs, this study also highlights an evident difficulty in making distinct flare-CME associations.  相似文献   

4.
The statistical relationship between the parameters of X-ray flares and coronal mass ejections on the Sun that are associated with these flares, is considered. It is shown that short X-ray flares are characterized on average by a lower mass ejection in the outer layers of the corona and interplanetary space as compared to high-energy long-duration events.  相似文献   

5.
In this paper we present observations of two types of solar mass ejections, which seem to be associated with the location of coronal, holes. In the first type, a filament eruption was observed near a coronal hole, which gave rise to a strong interplanetary scintillations. as detected by IPS observations. In the second type, several large scale soft X-ray blow-outs were observed in the YOHKOH SXT X-ray movies, in all the cases they erupted from or near the boundary of coronal holes and over the magnetic neutral line. It is proposed that the open magnetic field configuration of the coronal hole provides, the necessary field structure for reconnection to take place, which in turn is responsible for filament eruption, from relatively lower heights. While, in the case of X-ray blow-outs, the reconnection takes place at a greater height, resulting in high temperature soft X-ray emission visible as X-ray blow-outs.  相似文献   

6.
The purpose of the present study is to investigate the association of solar energetic particle (SEP) events with halo coronal mass ejections (CME) and with their associated solar flares during the period 1997–2014 (solar cycle 23 and 24). We have found that halo CMEs are more effective in producing SEP events. The occurrence probability and peak fluxes of SEPs strongly depend on the halo CMEs speed (V) as follows. The highest associations, 56% for occurrence probability and 90% for average peak fluxes, are found for the halo CMEs with V> 1400 km s−1 but the lowest associations, 20% for occurrence probability and 5% for average peak fluxes, are found for halo CMEs with speed range 600 ≤ V ≤ 1000 km s−1. We have also examined the relationship between SEP events and halo CME associated solar flares and found that 73% of events are associated with western solar flares while only 27% are with eastern solar flares. For longitudinal study, 0–20° belt is found to be more dominant for the SEP events. The association of SEP events with latitudinal solar flares is also examined in the study. 51% of events are associated with those halo CMEs associated solar flares which occur in the southern hemisphere of the Sun while 49% are with those solar flares that occur in the northern hemisphere of the Sun. Also, 10–20° latitudinal belt is found to be likely associated with the SEP events. Further, 45% of SEP events are associated with M-class solar flares while 44% and 11% are with X and C-class respectively. Maximum number of SEP events are found for the fast halo CME associated X- class solar flares (68%) than M and C- class solar flares.  相似文献   

7.
Activity associated with the solar origin of coronal mass ejections   总被引:2,自引:0,他引:2  
Solar coronal mass ejections (CMEs) observed in 1980 with the HAO Coronagraph/Polarimeter on the Solar Maximum Mission (SMM) satellite are compared with other forms of solar activity that might be physically related to the ejections. The solar phenomena checked and the method of association used were intentionally patterned after those of Munro et al.'s (1979) analysis of mass ejections observed with the Skylab coronagraph to facilitate comparison of the two epochs. Comparison of the results reveals that the types and degree of CME associations are similar near solar activity minimum and at maximum. For both epochs, most CMEs with associations had associated eruptive prominences and the proportions of association of all types of activity were similar. We also found a high percentage of association between SMM CMEs and X-ray long duration events (LDEs), in agreement with Skylab results. We conclude that most CMEs are the result of the destabilization and eruption of a prominence and its overlying coronal structure, or of a magnetic structure capable of supporting a prominence.Much of this work was performed as a Visiting Scientist at the High Altitude Observatory/NCAR.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

8.
An investigation is made to determine the relationship between a coronal mass ejection (CME) and the characteristics of associated metre-wave activity. It is found that (1) the CME width and leading edge velocity can be highly influential in determining the intensity, spectral complexity and frequency coverage of both type II and continuum bursts; (2) the presence of a CME is possibly a necessary condition for the production of a metric continuum event and (3) metric continuum bursts as well as intense, complex type II events are preferentially associated with strong, long lasting soft X-ray events.  相似文献   

9.
The intensity-time profiles of solar proton events(SPEs) are grouped into three types in the present study. The Type-I means that the intensity-time profile of an SPE has one peak, which occurs shortly after the associated solar flare and coronal mass ejection(CME). The Type-II means that the SPE profile has two peaks: the first peak occurs shortly after the solar eruption, the second peak occurs at the time when the CME-driven shock reaches the Earth, and the intensity of the second peak is lower than the first one.If the intensity of the second peak is higher than the first one, or the SPE intensity increases continuously until the CME-driven shock reaches the Earth, this kind of intensity-time profile is defined as Type-III. It is found that most CMEs associated with Type-I SPEs have no geoeffectiveness and only a small part of CMEs associated with Type-I SPEs can produce minor(–50 n T ≤ Dst ≤–30 n T) or moderate geomagnetic storms(–100 n T≤ Dst ≤–50 n T), but never an intense geomagnetic storm(–200 n T ≤ Dst -100 n T). However,most of the CMEs associated with Type-II and Type-III SPEs can produce intense or great geomagnetic storms(Dst ≤-200 n T). The solar wind structures responsible for the geomagnetic storms associated with SPEs with different intensity-time profiles have also been investigated and discussed.  相似文献   

10.
11.
We study the correlation between near-Earth observations of interplanetary coronal mass ejections (ICMEs) detected by the Wind and ACE spacecrafts and their counterparts of coronal mass ejections (CMEs) observed near the Sun by the SOHO/LASCO coronagraph during 1996–2002. The results have been compared with an empirical model given by Gopalswamy, et al. (2000; 2001) to predict the 1-AU arrival time of CMEs. In this paper, we use an expected data set with a wider range with initial velocities than that considered in previous models. To improve the accuracy of the predicted arrival time, we divided the CME events into two groups according to their effective acceleration and deceleration. The results show that our model works well for events with a negative acceleration in the initial velocity range between 500 and 2500 km/s, while the model described by Gopalswamy is better for events with initial velocities near the solar wind velocity. Published in Russian in Astronomicheskii Vestnik, 2009, Vol. 43, No. 2, pp. 137–144. The text was translated by the authors.  相似文献   

12.
We have used data from the HAO white light coronagraph and AS&E X-ray telescope on Skylab to investigate the coronal manifestations of 18 prompt solar proton events observed with the GSFC detectors on the IMP-7 spacecraft during the Skylab period. We find evidence that a mass ejection event is a necessary condition for the occurrence of a prompt proton event. Mass ejection events can be observed directly in the white light coronagraph when they occur near the limb and inferred from the presence of a long decay X-ray event when they occur on the disk. We suggest that: (1) the occurrence of mass ejection events facilitates the escape of protons - whether accelerated at low or high altitudes - to the interplanetary medium; and (2) there may exist a proton acceleration region above or around the outward moving ejecta far above the flare site.Also: Dept. of Physics and Astronomy, University of Maryland, College Park, Md. 20742, U.S.A.  相似文献   

13.
The source regions of solar coronal mass ejections   总被引:1,自引:0,他引:1  
Knowledge of the origin of the solar coronal mass ejection (CME) may be crucial to our understanding of several active solar phenomena, such as flares, as well as to the structure and stability of the corona and the prediction of interplanetary disturbances. In recent years, two camps of opinion have emerged, based on the belief that CMEs either commonly originate from structures intimately linked to active regions or they originate from coronal hole regions. This present study investigates the locations of 95 CME events observed during 1984–1986 relative to coronal hole and active region features. We find no evidence to support the coronal hole hypothesis and many indications that active regions are indeed associated with the source regions of CMEs.  相似文献   

14.
We have studied the characteristics of radio-loud (RL) and radio-quiet (RQ) front side halo coronal mass ejections (HCMEs) (angular width 360°) observed between the time period years 1996–2014. RL-HCMEs are associated with type II radio bursts, while RQ-HCMEs are not associated with type II radio bursts. CMEs near the Sun in the interplanetary medium associated with radio bursts also affect the magnetosphere. The type II radio burst data was observed by WIND/WAVES instrument and HCMEs were observed by LASCO/ SOHO instruments. In our study, we have examined the properties of RL-HCMEs and RQ-HCMEs and found that RL-HCMEs follow the solar cycle variation. Our study also shows that the 26% of slow speed HCMEs and 82% of fast speed HCMEs are RL. The average speed of RL-HCMEs and RQ-HCMEs are 1370 km/s and 727 km/s, respectively. Most of the RQ-HCMEs occur around the solar disc center while most of RL-HCMEs are uniformly distributed across the solar disc. The mean value of acceleration of RL-HCMEs is more than twice that of RQ-HCMEs and mean value of deceleration of RL- HCMEs is very small compare to RQ-HCMEs events. It is also found that RQ-HCMEs events are associated with C- and M-class of SXR flares, while RL-HCMEs events are associated with M and X-class of SXR flares, which indicates that the RQ-HCMEs are less energetic than the RL-HCMEs. We have also discussed the various results obtained in present investigation in view of recent scenario of solar physics.  相似文献   

15.
The coronal response to six solar X-ray flares has been investigated. At a time coincident with the projected onset of the white-light coronal mass ejection associated with each flare, there is a small, discrete soft X-ray enhancement. These enhancements (precursors) precede by typically 20 m the impulsive phase of the solar flare which is dominant by the time the coronal mass ejection has reached an altitude above 0.5 R . We identify motions of hot X-ray emitting plasma, during the precursors, which may well be a signature of the mass ejection onsets. Further investigations have also revealed a second class of X-ray coronal transient, during the main phase of the flare. These appear to be associated with magnetic reconnection above post-flare loop systems.NCAR is sponsored by the National Science Foundation.  相似文献   

16.
We attempt to study the origin of coronal shocks by comparing several flare characteristics for two groups of flares: those with associated metric type II bursts and coronal mass ejections (CMEs) and those with associated metric type II bursts but no CMEs. CMEs accompany about 60% of all flares with type II bursts for solar longitudes greater than 30°, where CMEs are well observed with the NRL Solwind coronagraph. H flare areas, 1–8 Å X-ray fluxes, and impulsive 3 cm fluxes are all statistically smaller for events with no CMEs than for events with CMEs. It appears that both compact and large mass ejection flares are associated with type II bursts. The events with no CMEs imply that at least many type II shocks are not piston-driven, but the large number of events of both groups with small 3 cm bursts does not support the usual assumption that type II shocks are produced by large energy releases in flare impulsive phases. The poor correlation between 3 cm burst fluxes and the occurrence of type II bursts may be due to large variations in the coronal Alfvén velocity.Sachs/Freeman Associates, Inc., Bowie, MD 20715, U.S.A.  相似文献   

17.
Using data from the SOLWIND coronagraph and photometers aboard HELIOS-A we examine coronal mass ejections from an active region which produced a series of giant post-flare coronal arches. HXIS X-ray observations reveal that in several cases underlying flares did not disrupt these arch structures, but simply revived them, enhancing their temperature, density and brightness. Thus we are curious to know how these quasi-stationary X-ray structures could survive in the corona in spite of recurrent appearances of powerful dynamic flares below them. We have found reliable evidence that two dynamic flares which clearly revived the preexisting giant arch were not associated with any mass ejection. After two other flares, which were associated with mass ejections, the arch might have been newly formed when the ejection was over. In one of these cases, however, the arch had typical characteristics of a revived structure so that it is likely that it survived a powerful mass ejection nearby. In a magnetic configuration of the arch which results from potential-field modelling (Figure 1(b)) such a survival seems possible.  相似文献   

18.
We have selected single frequency recordings of 28 high-frequency type II bursts characterized by a starting frequency greater than 237 MHz to estimate as accurately as possible the launch-time of the flare-associated MHD shocks. We established the time associations between metric type II burst onsets and the time characteristics of the microwave and X-ray fluxes of the associated flares. The associated flares were impulsive events with rise times most often about 1 min in the hard X-ray range and 1–2 min in the microwave wavelength range. The majority of the type II bursts from our sample started about 1 min after the maximum of the microwave burst. Launch times of MHD shocks producing type II bursts were obtained using the 10 × Saito coronal model and shock velocities estimated from burst characteristics at different frequencies. Back-extrapolations of type II recordings indicate that MHD shocks are launched in the time interval prior to the maximum of the first peak in the associated microwave burst, most probably at the beginning of the rapid increase of the microwave burst.  相似文献   

19.
The cells of photospheric background magnetic fields during Carrington rotation 2009 in October–November 2003 are considered. The small number of large sunspots and the high activity on the Sun in this period allow the correspondence between the activity of background field cells (flares) and the appearance of coronal mass ejections (CMEs) observed with the LASCO coronagraphs to be established without statistical analyses. The sunspots of opposite polarities in one background field cell are shown to serve as the legs of the same CME. The separation between them is close to 30°.  相似文献   

20.
The relationships between disappearing solar filaments and geomagnetic activity are examined using data obtained between 1974 and 1980. The average level of geomagnetic activity is found to increase after the disappearance of large filaments. The magnitudes of the geomagnetic disturbances depend upon the sizes and, to a lesser extent, upon the darkness of the filaments. The delays between filament disappearances and resulting geomagnetic disturbances are typically 3–6 days, corresponding to Sun-Earth velocities 580–290 km s–1. These are consistent with the observed velocities of those coronal mass ejections that are associated with disappearing filaments.The average delay is: (a) shorter for large and dark filaments than for small and faint filaments respectively; (b) shorter during solar maximum than during solar minimum; (c) dependent in a complex way upon the longitudes of the filaments. Disturbances associated with filaments with longitudes 50 ° have delays 10 days.Quieter than average geomagnetic conditions sometimes occur for several days prior to the geomagnetic disturbances that follow disappearing filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号