首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文给出了唐山地区强震动记录应用研究的两个实例,提出了建筑结构采用时程分析时选用强震动记录的原则和方法,通过对唐山地区强震动记录的分析处理,得到了其峰值加速度及加速度反应谱,确定了本地区进行弹性时程分析时选用的强震动记录;研究了局部场地条件对地震动影响的唐山响堂三维强震动观测台阵,以唐山响堂台阵2号测井(地下32m)的基岩强震动作为输入,通过2号测井的土层剖面,利用2个一维土层地震反应分析程序,分别计算得到地表的峰值加速度和加速度反应谱,并把计算结果与同次地震相应的地表强震动记录峰值加速度与加速度反应谱进行了对比分析。  相似文献   

2.
本文以江淮地区典型场地资料为原型,将土层剪切波速实测值按照一定比例进行增减,构造多种场地土层地震反应分析模型,选择Taft、E1centro 和Kobe 三条强震记录作为地震输入,采用一维频域等效线性化波动方法进行了土层地震反应分析。研究结果表明,剪切波速的变异性与场地地表地震动的影响程度与输入基岩地震动的频谱特性、幅值、土层结构等因素有关。地表峰值加速度随着剪切波速的增大而逐渐增大,地表加速度反应谱的特征周期随着剪切波速的增大而逐渐减小。  相似文献   

3.
剪切波速对场地地表地震动参数的影响   总被引:3,自引:2,他引:1  
本文以江淮地区典型场地资料为原型,将土层剪切波速实测值按照一定比例进行增减,构造多种场地土层地震反应分析模型,选择Taft、E1centro和Kobe三条强震记录作为地震输入,采用一维频域等效线性化波动方法进行了土层地震反应分析.研究结果表明,剪切波速的变异性与场地地表地震动的影响程度与输入基岩地震动的频谱特性、幅值、土层结构等因素有关.地表峰值加速度随着剪切波速的增大而逐渐增大,地表加速度反应谱的特征周期随着剪切波速的增大而逐渐减小.  相似文献   

4.
加速度反应谱平台值表征地震动的强度特性,场地条件是影响反应谱平台值的一个重要因素.本文选取6组同一地区断层距相近而场地条件不同的强震记录,对其标准化的加速度反应谱形状及平台值进行分析;并以汶川地震中173个有详细地勘场地上的强震记录为基础,统计分析了不同场地类别和断层距区间内的加速度反应谱平台值.本文研究结果显示,场地条件对加速度反应谱平台值有较大影响,随着场地变软,加速度反应谱平台值增大.本文定义了场地影响系数,计算并给出了不同地面峰值加速度对应的场地影响系数.  相似文献   

5.
2017年8月8日四川九寨沟县发生7.0级地震,中国数字强震动台网布设在四川、甘肃、陕西、宁夏的66个强震台获得主震加速度记录。本文首先对198条三分向强震记录进行常规处理,计算出近场强震记录的加速度峰值随震中距的分布情况;再根据2个典型台站的加速度时程记录,通过计算其加速度反应谱并与设计反应谱比较,分析本次地震的基本特征;然后将实际观测数据与意大利新一代地震动衰减公式对比,分析峰值加速度(PGA)及谱加速度的衰减关系;最后结合已有的工程场地钻探资料,采用H/V谱比法对2个不同类别的典型台站进行地场地效应分析,发现该方法能很好地反映实际台站场地的反应特征。  相似文献   

6.
唐山丰南M4.1级地震强震记录分析   总被引:3,自引:2,他引:1  
2010年4月9日唐山丰南发生M4.1级地震,津冀地区共有36个强震台站获取到强震记录,记录的最大加速度为58.92cm/s2,通过对比强震记录的峰值,发现该地震竖向峰值比水平向大,在三个分量上加速度傅氏谱谱型以多峰为主。通过对强震记录频谱特征进行分析,得出随着震中距的增大,反应谱高频成分衰减快于低频成分,竖向与水平向加速度比值与常规认为的1/2—2/3差别较大。通过对本次强震动记录反应谱标定并结合唐山地区3.5级以上地震记录,获得唐山地区土层场地反应谱谱型参数。  相似文献   

7.
场地条件对地震动参数影响的关键问题   总被引:16,自引:8,他引:8  
场地条件对地震动的影响很大,在地震动幅值(如峰值加速度)和频谱特性(如反应谱特征周期)的变化上均有体现,而我国现行抗震设计规范没有考虑不同场地条件下地震动峰值加速度和加速度反应谱平台值的变化。本文介绍了我国现行抗震设计规范中场地类别的划分方法、场地对地震动参数值的规定和存在的问题。详细分析了土层结构、覆盖层厚度等场地条件对地震动峰值加速度和反应谱的影响,以及已经取得的研究成果。最后,就场地分类、影响地震动参数的场地条件、地震动参数随场地条件调整的方法等,提出了有待进一步研究的问题。  相似文献   

8.
基于有物理意义地表地震动的一致概率法   总被引:1,自引:0,他引:1  
蔡长青  沈建文 《地震学报》1998,20(5):489-495
提出了一种新的基于有物理意义地表地震动的危险性分析的一致概率法.该方法使用的地震动时程与场地周围潜源所发生的地震事件对应,其包络参数、反应谱、最大加速度等均具有明确的物理意义.在不考虑土层反应的情况下,本方法与传统的一致概率法相同.本方法支持用天然地震加速度时程直接输入.合成地震动仅作为缺乏强震资料的一种近似方案.随着场地周围强震资料的不断积累,本方案将更客观地反映场地所处的地震环境.  相似文献   

9.
本文以江淮地区典型场地资料为原型,选取不同深度的岩层位置作为地震动输入界面,构造多种场地土层模型,选择Taft、Kobe和E1centro 3条强震记录作为地震输入,采用一维频域等效线性化波动方法重点分析了地震动输入界面对场地地表地震动参数的影响。研究结果表明,随着输入界面深度的增加,场地地表的峰值加速度逐渐增加,且增加的幅度呈逐渐减小的趋势,但输入界面深度对地表加速度反应谱特征周期的影响较小;输入界面剪切波速值对反应谱特征周期影响有限,但对地表峰值加速度影响较为显著,地表峰值加速度随着输入界面剪切波速的增大而增大,且两者的增幅呈现近似的线性关系。  相似文献   

10.
随着强震台网的密布及观测记录的增加,为研究各类局部场地地震反应预测模型的合理性提供了有效的参考依据,也使利用强震记录及场地条件研究地震动特征成为可能。选取场地地质参数资料和地震记录数据齐全的日本小田原(Ashigara Valley)盲测试验场地,通过对比不同地震动输入方式及场地反应分析模型,研究地震动特征,分析现有模型的优劣。基于1990年8月5日M5.1强震事件的地表基岩记录和地下基岩地震记录,采用地下台强震记录直接输入、地表基岩台强震记录减半为基底地震动输入、地表基岩台强震记录反演为基底地震动输入作为3种基岩地震动输入。基于局部场地条件分别建立一维等效线性模型、二维黏弹性模型及二维时域等效线性化模型等工程中常用的场地数值分析模型,进行局部场地地震反应分析,预测该盲测场地的地表地震动特征,并与对应的实测强震记录结果进行对比,分析不同基岩地震动输入方式对预测地震动特征及地表土层反应谱特征的影响,重点分析地震动输入、土体非线性、场地横向不均匀性及几何与非线性特征共同作用等因素对地表地震动特征的影响,以期为地表地震动的合理预测提供参考。  相似文献   

11.
吴效勇  王晓青  袁小祥  窦爱霞  丁香 《地震》2019,39(4):147-157
场地条件对地震动具有较大影响, 研究不同场地条件下的地震动特征对地震动的校正具有重要意义。 本文以九寨沟地震为例, 收集了66个台站的198条三分量强震观测记录和SRTM(Shuttle Radar Topography Mission)公里格网的DEM(Digital Elevation Model)数据, 从多个角度对场地特征进行分析。 首先根据坡度法使用DEM数据对九寨沟特征进行了场地分类, 然后讨论了不同场地类型下的加速度时程、 加速度反应谱、 地震动衰减等地震动特征。 研究表明, 缺少实测资料的情况下, 地形坡度可以作为Vs30(地表以下30 m范围的平均剪切波速度)的一种替代指标, 利用坡度法可以较快速地对场地进行分类; 利用强震观测记录能够从多角度对台站的场地特征进行分析, 不同场地类型对地震动影响不同, 其中, 土层对地震动具有明显的放大效应。 该结论可以为地震动结果的校正提供依据。  相似文献   

12.
依据龙头山集镇6个典型场地上的钻探资料及土体的动力非线性特性试验数据,分别建立了相应场地的地震反应分析模型。以幅值折半的龙头山镇强震动台站(053LLT)东西向主震加速度记录作为入射地震动,采用一维土层地震反应分析等效线性化方法计算了场地地震反应,讨论了近地表覆盖土层结构对地震动加速度峰值及反应谱的影响,并对场地效应与震害的关系进行了分析。   相似文献   

13.
抗震设计反应谱特征周期研究   总被引:2,自引:1,他引:1       下载免费PDF全文
搜集整理1933—2015年美国西部地区166个有详细钻孔资料台站场地上的1 237条水平方向强震记录,按照我国建筑抗震设计规范(GB 50011-2010)中反应谱的形状对强震记录的加速度反应谱进行拟合,提取反应谱的特征周期。分析特征周期随场地类别、震级、震中距的变化特征;按特征周期分区统计计算不同场地类别上的特征周期平均值,并与我国现行的建筑抗震设计规范中给定的特征周期值进行对比研究;最后探讨地震动峰值加速度对特征周期的影响。根据研究分析结果提出关于抗震设计反应谱特征周期值的改进建议。  相似文献   

14.
2014年云南景谷先后发生M_S6.6、M_S5.8和M_S5.9中强地震,云南强震动台网获取了丰富的加速度记录。本文整理了各次地震中固定台和流动台获取的强震动加速度记录资料,分别进行了地震动衰减关系和加速度反应谱分析,结果表明,所观测到的加速度峰值比云南地区地震动衰减关系预测值高,反应谱谱值随震级的增加有增大趋势。最后将益智强震台作为典型台站,分析了该台站在地震中的场地放大效应。  相似文献   

15.
以人工爆炸波为震源,通过现场测试获取基岩及土层的地震动参数,并采用等效线性化分析方法计算相应的地震动参数用于与实测结果进行对比分析。峰值加速度对比结果表明,等效线性化分析方法对于Ⅱ类场地的适应性较好,计算结果与实测结果非常接近,而Ⅲ类场地的计算结果与实测值之间存在较大的误差。加速度反应谱的对比结果表明,无论是计算结果还是实测记录,加速度反应谱的峰值均比基岩输入的要大,且土层反应计算的结果小于实际记录;加速度反应谱的宽度与场地类别关系密切,Ⅲ类场地明显比Ⅱ类场地要大,两类场地的计算结果也均小于实测值。  相似文献   

16.
齐玉妍  孙丽娜  吕国军  李慧 《地震》2019,39(4):172-180
2012年5月28日河北省唐山市古冶区与滦县交界发生4.8级地震, 国家强震动台网中心在河北、 天津和北京的94个强震动台站记录到了本次地震的加速度。 本文给出了获取记录的强震动台站分布及强震动记录结果, 统计了强震动记录数量随震中距的变化, 给出了3个较小震中距台站记录到的加速度时程; 绘制了空间地震动峰值加速度等值线图及周期0.2 s、 2.0 s加速度反应谱值的等值线, 发现峰值加速度等值线与长周期加速度反应谱等值线极值分布具有明显地域差异, 分析认为是由于厚沉积层对长周期地震动具有放大作用造成的。 通过强震动记录与适用于本区的三个衰减关系对比, 分析了此次地震的峰值加速度衰减特征, 同时研究了周期0.2 s、 2.0 s加速度反应谱值的衰减特征, 周期2.0 s反应谱值随震中距的衰减与衰减关系能较好地对应, 然而在震中距100~130 km沉积层较厚的集中地区, 表现出了实际记录较衰减关系值偏大的现象, 认为同样是由于厚沉积层对地震动加速度反应谱长周期的放大作用导致的。 研究了震中距差别不大的情况下, 场地类型与沉积层厚度对反应谱特征周期的影响, 对比基岩台站与软弱地基土层台站的强震动记录反应谱, 发现软弱土层台站的土层对地震动有一定的放大作用, 导致中长周期地震动被放大, 对比位于沉积层较薄的隆起区台站与位于沉积层较厚的凹陷区台站强震动记录反应谱, 发现厚的沉积层不仅对反应谱长周期有放大的作用, 同时也会使得反应谱特征周期值变大。  相似文献   

17.
强震作用下的土层非线性是研究场地效应的重要因素之一.选取2019年6月18日日本山形Mw6.7级地震中8个台站的主震及20次余震的强震动记录,采用主余震速度反应谱水平/垂直(HVSR)谱比,并结合非线性识别指标DNL、ADNL和PNL对主震中可能发生非线性反应特征的台站进行研究.结果表明:土体在强震动作用下场地卓越频率有向低频移动的趋势,体现了土层非线性反应的特征;非线性指标DNL和ADNL与地震动峰值加速度之间存在显著的相关性,但PNL对应关系不明显.  相似文献   

18.
汪素云  俞言祥 《地震学报》1998,20(5):481-488
利用65次地震的中国数字地震台网(CDSN和NCDSN)宽频带和甚宽频带(BB及VBB)记录,分别计算了阻尼比=0.005,0.01,0.02,0.05和0.10的基岩水平向相对位移反应谱、相对速度反应谱和绝对加速度反应谱.结果表明,工程上常用的强震加速度记录,不足以给出可靠的长周期地震动反应谱,而CDSN宽频带记录恰恰可以作为强震加速度记录的重要资料补充来源,用于长周期地震动反应谱特性的研究.   相似文献   

19.
场地条件对地震动特性影响显著,在抗震设计反应谱的确定过程中,需根据场地条件对加速度反应谱予以相应的调整。已有场地条件影响调整方案研究成果,均基于数值模拟或局部地区强震动记录统计,多数仅给出了峰值加速度PGA场地条件影响调整系数,对非线性的考虑缺乏观测数据依据。为此在全球强震动记录统计获得的PGA归一化加速度反应谱和日本钻井台阵记录获得的加速度反应谱平台值非线性衰减指数的基础上,结合钻孔模型数值模拟和近期研究成果,建立了考虑场地条件影响非线性的地震动加速度反应谱场地条件影响调整系数方案。  相似文献   

20.
本文以强震记录为基础,通过土层地震反应计算得到了地表加速度与加速度反应谱,对比研究了由强震记录得到的地表加速度以及由地表加速度得到的与土层地震反应相同阻尼下的加速度反应谱.结果表明:在高频段与中频段,用一维等效线性化计算得到的土层地震反应加速度值与反应谱值比地表实测得到的加速度记录值与加速度反应谱值偏低;但在低频段,计...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号