首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
San Martin Tuxtla Volcano, the largest and highest edifice in the Tuxtla Volcanic Field, had explosive eruptions in 1664 and 1793. This volcano poses the highest hazard for the growing population centers surrounding it. The impacts and deposits of the 1793 eruption have been studied recently, and some of its characteristics, such as eruptive mass, grain-size distribution of the products and plume height, have been estimated. These data, together with daily data on wind velocities taken in the nearby city of Veracruz, have been used to conduct numerical modeling of ash distribution from an eruptive column comparable to that estimated during the 1793 event. Using wind velocities of randomly chosen days, we constructed probability maps of areas likely to receive, at least 1, 5, or 10 cm of ash. Our results indicate that an area about 1.3 × 104 km2 has a 12% probability of being covered by an ash fall more than 1 cm thick, if a mass of 1014 g was erupted and deposited from a 10-km-high eruptive plume. The results presented in this paper serve as a scientific basis to estimate volcano risk in the area from a possible eruption, consisting of one or several large explosive events, at San Martin Tuxtla volcano.  相似文献   

2.
《地学前缘(英文版)》2020,11(5):1789-1803
Video cameras are common at volcano observatories,but their utility is often limited during periods of crisis due to the large data volume from continuous acquisition and time requirements for manual analysis.For cameras to serve as effective monitoring tools,video frames must be synthesized into relevant time series signals and further analyzed to classify and characterize observable activity.In this study,we use computer vision and machine learning algorithms to identify periods of volcanic activity and quantify plume rise velocities from video observations.Data were collected at Villarrica Volcano,Chile from two visible band cameras located~17 km from the vent that recorded at 0.1 and 30 frames per second between February and April 2015.Over these two months,Villarrica exhibited a diverse range of eruptive activity,including a paroxysmal eruption on 3 March.Prior to and after the eruption,activity included nighttime incandescence,dark and light emissions,inactivity,and periods of cloud cover.We quantify the color and spatial extent of plume emissions using a blob detection algorithm,whose outputs are fed into a trained artificial neural network that categorizes the observable activity into five classes.Activity shifts from primarily nighttime incandescence to ash emissions following the 3 March paroxysm,which likely relates to the reemergence of the buried lava lake.Time periods exhibiting plume emissions are further analyzed using a row and column projection algorithm that identifies plume onsets and calculates apparent plume horizontal and vertical rise velocities.Plume onsets are episodic,occurring with an average period of~50 s and suggests a puffing style of degassing,which is commonly observed at Villarrica.However,the lack of clear acoustic transients in the accompanying infrasound record suggests puffing may be controlled by atmospheric effects rather than a degassing regime at the vent.Methods presented here offer a generalized toolset for volcano monitors to classify and track emission statistics at a variety of volcanoes to better monitor periods of unrest and ultimately forecast major eruptions.  相似文献   

3.
The April 2010 eruption of Eyjafjallajökull volcano created major disruption to European air traffic. The main uncertainty in predicting the volcanic ash distribution in air space was the nature of the eruption plume including the grain size of the volcanic ash. The volcanic ash samples collected in the vicinity of the volcano on April 15th 2010, the first day of air traffic disruption in Europe, reveal that up to 70% of the mass was less than 60 μm in diameter. This fine grained ash could remain suspended in the atmosphere for days, posing threats to air traffic.  相似文献   

4.
23 layers of altered volcanic ash (bentonites) originating from the North Atlantic Igneous Province have been recorded in early Eocene deposits of the Austrian Alps, about 1,900 km away from the source area. The Austrian bentonites are distal equivalents of the “main ash-phase” in Denmark and the North Sea basin. We have calculated the total eruption volume of this series as 21,000 km3, which occurred in 600,000 years. The most powerful single eruption of this series took place 54.0 million years ago (Ma) and ejected ca. 1,200 km3 of ash material, which makes it one of the largest basaltic pyroclastic eruptions in geological history. The clustering of eruptions must have significantly affected the incoming solar radiation in the early Eocene by the continuous production of stratospheric dust and aerosol clouds. This hypothesis is corroborated by oxygen isotope values, which indicate a global decrease of sea surface temperatures between 1 and 2°C during this major phase of explosive volcanism.  相似文献   

5.
On December 24th, Mt. Etna volcano underwent a seismic crisis beneath the summit and upper southern flank of the volcano, accompanied by significant ash emission. Eruptive fissures opened at the base of summit craters, propagating SE‐wards. This lateral eruption lasted until December 27th. Despite the small eruption, seismic swarm and ground deformation were very strong. Sentinel‐1 interferograms show a wide and intense ground deformation with some additional features related to volcano‐tectonic structures. We inverted DInSAR data to characterise the magma intrusion. The resulting model indicates that a large dyke intruded but aborted its upraise at about the sea level; however, this big intrusion stretched the edifice, promoting the opening of the eruptive fissures fed by a shallower small dyke, and activating also several faults. This model highlights that a big intrusion beneath a structurally complex volcano represents a main issue even if the eruption is aborted.  相似文献   

6.
High resolution thermal cameras were used in observations of gas-and-ash plumes during eruption of the Koryak volcano in March 2009. Our results provide the thermal structure of gas-and-ash flows. The structure of the eruption column consists of several individual plumes. The vertical velocity of plume rise was estimated at 5.5–7 m/s. The eruption column or plume can be conventionally divided into three parts: a highly convective region, a buoyant region, and a region of horizontal motion. The temperature of the plume is higher than that of the surrounding atmosphere by 3–5°C for the horizontal motion region and by about 20°C for the buoyant region. The velocity at the buoyant region is 5–7 m/s. For the boundary between highly convective and buoyant regions, where the plume diameter is known, the vapor mass flow and the heat capacity of the thermal jet flow can be determined from the heat balance equation. The mass flow of the overheated vapor, which has a temperature of 450°C and comprises a gas-and-ash eruption plume, was estimated to be Q = 35 kg/s. The total mass of water vapor over the period of eruption (100 days) is estimated at 3 · 105 t. The total thermal energy of the eruption amounted to 109 MJ.  相似文献   

7.
This retrospective study focuses on the fine silicate particles (<62 µm in diameter) produced in a large eruption that was otherwise well studied. Fine particles represent a potential hazard to aircraft, because as simple particles they have very low terminal velocities and could potentially stay aloft for weeks. New data were collected to describe the fine particle size distributions of distal fallout samples collected soon after eruption. Although, about half of the mass of silicate particles produced in this eruption of ~1 km3 dense rock equivalent magma were finer than 62 µm in diameter, and although these particles were in a stratospheric cloud after eruption, almost all of these fine particles fell to the ground near (<300 km) the volcano in a day or two. Particles falling out from 70 to 300 km from the volcano are mostly <62 µm in diameter. The most plausible explanation for rapid fallout is that the fine ash nucleates ice in the convective cloud and initiates a process of meteorological precipitation that efficiently removes fine silicates. These observations are similar to other eruptions and we conclude that ice formation in convective volcanic clouds is part of an effective fine ash removal process that affects all or most volcanic clouds. The existence of pyroclastic flows and surges in the El Chichón eruption increased the overall proportion of fine silicates, probably by milling larger glassy pyroclasts.  相似文献   

8.
中国北方大陆下的地幔热柱与岩石圈运动   总被引:36,自引:1,他引:35  
邓晋福  赵海玲 《现代地质》1992,6(3):267-274
本文首次提出中国北方大陆下存在一个地幔热柱的论证,并提出亚热柱(sub—plume)的新概念。热柱的中心与边缘部分的隙间熔浆分别为苦橄质玄武岩与碱性玄武岩。在渐新世到中新世约18.4 Ma内,北方大陆以3.26cm/a的速率向东南飘移了约600km,使日本海、渤海—华北平原等脱离热柱。导致晚第三纪日本海扩张的停止,渤海—华北平原等早第三纪火山喷发的突然中止。火山喷发期间,在热柱头部若干个亚热柱的形成,好似若干个“铆钉”穿入岩石圈,有效地阻止了岩石圈的飘移(这时的飘移速率只有0.05cm/a),我们把火山喷发称为固定岩石圈的“铆钉效应”。  相似文献   

9.
Conclusion The data collected during the Mentawai cruise help to clarify understanding of the 1883 eruption of Krakatau. We have previously discussed the weaknesses of the interpretation of Williams (1941) and others (Self and Rampino 1981) and emphasized that only a Mount St. Helens-type collapse during the course of the eruption could account for all the characteristics of the eruption and of the related deposits.The discovery on land of deposits attributable to a debris-avalanche, in the stratigraphic position where they were expected, is a strong argument for the validity of our scenario.Marine surveys confirm that the sea bottom around Krakatau is covered by a thick ignimbritic deposit. But the presence of this deposit does not invalidate the presence of a debris-avalanche deposit under the ignimbrites. The hummocky morphology favours this hypothesis.Flank-failure of volcanoes is generally considered as a very efficient mechanism for triggering tsunamis (Kienle et al. 1987; Siebert et al. 1987). However, the majority of the volcanoes where flank-failure has been described are tall and bulky and the collapse of a broad edifice like Krakatau may be surprising. However the geological evidence shows that such a mechanism can act at various scales; for example the flank collapse of Mayu Yama volcano (height 700 m, volume 0,3 km3), a parasitic cone of Unzen volcano (Japan), triggered a debris-avalanche into the sea that was 1 km long, with a characteristic hummocky surface; the resulting tsunami killed 9528 people (Katayama 1974). In the same way, a partial collapse of Iliwerung volcano, Indonesia (50 × 106 m3) in July 1979, triggered a tsunami which killed several hundred people (McClelland et al. 1989). At Krakatau, the main summit was 822 m asl; the collapse took place along the edge of the prehistoric caldera and this structural unconformity probably facilitated the triggering of the process.  相似文献   

10.
五大连池老黑山火山弹和喷发柱动力学模拟   总被引:2,自引:0,他引:2  
火山喷发是一个气体、液体和固体混合物的复杂的流体动力学过程。正确理解这个过程是研究火山喷发的关键因素。Eject和Plumeria软件可以很好地模拟现实火山喷发过程中火山弹和喷发柱的动力学过程。在详细调查五大连池老黑山地区火山弹、火山碎屑物和整理已有数据的基础上,运用Eject和Plumeria软件对老黑山火山的火山弹和喷发柱进行了动力学模拟。结果表明:老黑山火山喷发的火山弹喷射最大高度为530 m,喷射角度45°时喷射水平距离最远为1 000 m,喷发柱最大高度为4.7 km,喷发柱半径为2.3 km。通过对其喷发规模和火山灰构成比例的探讨,认为老黑山火山喷发属于镁铁质火山小型喷发,对环境的影响范围有限。  相似文献   

11.
Cerro Machín is a dacitic tuff ring located in the central part of the Colombian Andes. It lies at the southern end of the Cerro Bravo–Cerro Machín volcanic belt. This volcano has experienced at least six major explosive eruptions during the last 5000 years. These eruptions have generated pyroclastic flows associated with Plinian activity that have traveled up to 8 km from the crater, and pyroclastic flows associated with Vulcanian activity with shorter runouts of 5 km from the source. Today, some 21,000 people live within a 8 km radius of Cerro Machín. The volcano is active with fumaroles and has shown increasing seismic activity since 2004, and therefore represents a potentially increasing threat to the local population. To evaluate the possible effects of future eruptions that may generate pyroclastic density currents controlled by granular flow dynamics we performed flow simulations with the TITAN2D code. These simulations were run in all directions around the volcano, using the input parameters of the largest eruption reported. The results show that an eruption of 0.3 km3 of pyroclastic flows from a collapsing Plinian column would travel up to 9 km from the vent, emplacing a deposit thicker than 60 m within the Toche River valley. Deposits >45 m thick can be expected in the valleys of San Juan, Santa Marta, and Azufral creeks, while 30 m thick deposits could accumulate within the drainages of the Tochecito, Bermellón, and Coello Rivers. A minimum area of 56 km2 could be affected directly by this kind of eruption. In comparison, Vulcanian column-collapse pyroclastic flows of 0.1 km3 would travel up to 6 km from the vent depositing >45 m thick debris inside the Toche River valley and more than 30 m inside the valleys of San Juan, Santa Marta, and Azufral creeks. The minimum area that could be affected directly by this kind of eruption is 33 km2. The distribution and thickness of the deposits obtained by these simulations are consistent with the hazard map presented by INGEOMINAS (Geological Survey of Colombia) in 2002. The composite map of the simulated flow deposits suggests that after major explosive events such as these, the generation of lahars is probable.  相似文献   

12.
ANDREAS WETZEL 《Sedimentology》2009,56(7):1992-2009
Following the eruption of Mount Pinatubo on 15 June 1991, volcanic ash was transported westward to the South China Sea in an atmospheric plume, falling out and settling to the sea floor within days and forming an up to 10 cm thick layer on an area >400 000 km2. Immediately after deposition, surviving deep‐burrowing animals re‐opened their connection to the sea floor to obtain water for respiration and/or food take‐up. Later, small‐sized meiofauna and then macrofauna re‐colonized the sea floor, mixing newly deposited organic fluff with the underlying ash. Consequently, ash deposits thinner than 1 mm have not often been observed as a continuous layer when cored six years after the eruption, while ash about 2 mm thick is now patchily bioturbated. In areas covered by ash thicker than 5 mm, mixing by benthic animals is controlled mainly by the adaptation of the burrowing fauna to variations in grain‐size, the rate of background sedimentation, the availability of benthic food on and within the sediment and pore water oxygen levels. With respect to these factors, four provinces can be distinguished: (i) Along the Philippines margin run‐off from land fuels primary production that, in turn, leads to a high benthic food content. The benthic fauna is adapted to a variable grain‐size and rapid sedimentation. Therefore, mixing is intense and the preservation potential of the ash layer is low. (ii) In areas affected by deposition of hyperpycnites and turbidites, i.e. in canyons in front of river mouths and in the Manila Trench, the ash layer is preserved due to rapid burial. (iii) The area to the west to about 116° E receives low amounts of benthic food, benthic mixing is less intense and the preservation potential of the ash is high. (iv) The central South China Sea, where the ash is thinner than 3 cm, is affected by intense wind mixing and upwelling and the benthic food content is high; thus, the chance that the ash will be preserved as a sharp‐based layer is low. Consequently, the style of ash preservation has palaeo‐environmental significance. Older buried and burrowed event layers provide further information to elucidate the fate of the 1991 Pinatubo ash layer; in general their appearance fits with observations in the Recent.  相似文献   

13.
Abstract: Mount Bambouto is a polygenic stratovolcano of the Cameroon Volcanic Line, built between 21?Ma and 4.5?Ma. It is situated approximately 200?km NE of Mount Cameroon, between 09°55′ and 10°15′ longitude east and, 05°25′ and 05°50′ latitude north. The volcano covers an area of 500?km2 and culminates at 2740?m at Mélétan dome and bears a collapsed caldera at the summit (13?×?8?km). Mount Bambouto is characterized by several natural hazards of different origins: meteorological, such as landslides and rock falls; anthropogenic, such as bushfires, tribal wars and deforestation; and volcanological, such as volcanic eruption. The thematic map shows that 55–60% of the caldera has high probability of occurrence of mass movement. The caldera has a high population density (3000 inhabitants), which increases the level of risk, evaluated at approximately $US3.8 million for patrimony, 3000 civilian deaths and destruction of biodiversity.  相似文献   

14.
We have identified an ash layer in association with Australasian microtektites of ∼0.77 Ma old in two sediment cores which are ∼450 km apart in the central Indian Ocean Basin (CIOB). Morphology and chemical composition of glass shards and associated microtektites have been used to trace their provenance. In ODP site 758 from Ninetyeast Ridge, ash layer-D (13 cm thick, 0.73–0.75 Ma) and layer-E (5 cm thick, 0.77–0.78 Ma) were previously correlated to the oldest Toba Tuff (OTT) eruptions of the Toba caldera, Sumatra. In this investigation, we found tephra ∼3100 km to the southwest of Toba caldera that is chemically identical to layer D of ODP site 758 and ash in the South China Sea correlated to the OTT. Layer E is not present in the CIOB or other ocean basins. The occurrence of tephra correlating to layer D suggests a widespread distribution of OTT tephra (∼3.6 × 107 km2), an ash volume of at least ∼1800 km3, a total OTT volume of 2300 km3, and classification of the OTT eruption as a super-eruption.  相似文献   

15.
Sulfur isotope compositions of pumice and adsorbed volatiles on ash from the first historical eruption of Anatahan volcano (Mariana arc) are presented in order to constrain the sources of sulfur erupted during the period 10-21 May, 2003. The isotopic composition of S extracted from erupted pumice has a narrow range, from δ34SV-CDT +2.6‰ to +3.2‰, while the composition of sulfur adsorbed onto ash has a larger range (+2.8‰ to +5.3‰). Fractionation modeling for closed and open system scenarios suggests that degassing of SO2 raised the δ34SV-CDT value of S dissolved in the melt from an initial composition of between +1.6‰ and +2.6‰ for closed-system degassing, or between −0.5‰ and +1.5‰ for open-system degassing, however closed-system degassing is the preferred model. The calculated values for the initial composition of the magma represent a MORB-like (δ34SV-CDT ∼ 0‰) mantle source with limited contamination by subducted seawater sulfate (δ34SV-CDT +21‰). Modeling also suggests that the δ34SV-CDT value of SO2 gas in closed-system equilibrium with the degassed magma was between +0.9‰ and +2.5‰. The δ34SV-CDT value of sulfate adsorbed onto ash in the eruption plume (+2.8‰ to +5.1‰) is consistent with sulfate formation by oxidation of magmatic SO2 in the eruption column. The sulfur isotope composition of sulfate adsorbed to ash changes from lower δ34S values for ash erupted early in the eruption to higher δ34S values for ash erupted later in the eruption. We interpret the temporal/stratigraphic change in sulfate isotopic composition to primarily reflect a change in the isotopic composition of magmatic SO2 released from the progressively degassing magma and is attributed to the expulsion of an accumulated gas phase at the beginning of the eruption. More efficient oxidation of magmatic SO2 gas to sulfate in the early water-rich eruption plume probably contributed to the change in S isotope compositions observed in the ash leachates.  相似文献   

16.
《Applied Geochemistry》1998,13(7):841-850
Increasing fumarolic activity at Popocatépetl volcano has been observed since 1992. On 21 December 1994, a series of eruptions at Popocatépetl volcano produced ash emissions that reached the city of Puebla located to the east of the volcano. Eruptive activity declined sharply from June 1995 until 5 March 1996 when ash emissions and fumarole flux increased to levels similar to those of December, 1994. Intermittent ash production has continued to 1997. Ash was sampled at more than 80 different locations around the volcano during the various eruptions. Gas produced during an eruption may be scavenged by the ash and leaching of the ash with water allows determination of the concentration of ions adsorbed from the volcanic gases. The leachates obtained from eruptions from December 1994 until 28 November 1996, were analyzed by potentiometry with selective electrodes for Cl and F and by ion chromatography for SO42−. Minor cations (Co2+, Pb2+, Zn2+, Cu2+, Mn2+, Sb2+, Ti4+, Cd2+, Tl3+) were determined in some samples by ICP-MS. The highest concentrations of Cl and SO42− were obtained for the 21 December 1994 ash at the start of the eruptions with 19 550 ppm SO42− and 1028 ppm Cl and for the emission which occurred on 5 March 1996, with 21 775 ppm SO42− and 1250 ppm Cl. At both times a concentration decrease was observed, but with particular trends in each case. The composition of the ash leachates suggests that the two Popocatépetl eruptions in 1994 and 1996 began with phreatic and magmatic components. The increase in F and the decrease in the Cl/F ratio may indicate a heating up of the volcanic system at the beginning of March, 1996, one week before the outpouring of lava in the bottom of the crater on 20 March 1996. The concentration trends for SO42−, Cl and F suggest that during the 1996 activity, the system attained higher temperatures than in 1994–1995.  相似文献   

17.
长白山天池地区全新世以来火山活动及其特征   总被引:10,自引:0,他引:10  
长白山火山全新世规模最大的喷发活动发生在公元1199-1200年,即800年前的大爆发,被确定为普林尼或布里尼(Plinian)式喷发。这次大爆发形成体积巨大的、分布广泛的以空中降落堆积物为主的火山喷发碎屑堆积物,在长白山火山周围,远至日本都留下了地质记录。文章辨认并划分了这次大爆发火山碎屑物的成因类型:火山喷发空中降落堆积物(airfalltephra)、火山碎屑流(pyroclasticflow)状堆积物和火山泥流(lahar)堆积物,并且点、面结合,近、远和国内、国外兼顾,分析了这些火山碎屑物的主要特征、分布和相互关系,进而确定这些火山碎屑物分别属于两次普林尼式爆发。第1次(早期)普林尼式爆发称赤峰期,火山喷发模式为:普林尼式喷发柱(赤峰空落浮岩层)-火山碎屑流(长白山火山碎屑流层),随即主要由火山碎屑流诱发火山泥流(二道白河火山泥流层);第2次(晚期)普林尼式爆发称园池期,喷发模式为:普林尼式喷发柱(园池空落浮岩火山灰层)-火山碎屑流(冰场火山碎屑流层)。在层序上将气象站期碱流岩置于800年前大爆发火山碎屑物之下是正确的,其时代为晚更新世-全新世早期。  相似文献   

18.
This study presents petrographic and compositional data for coexisting peralkaline silicate glass and quenched natrocarbonatite melt in nepheline phenocrysts from the 24 September 2007 and July 2008 eruptions of the natrocarbonatite volcano Oldoinyo Lengai (Tanzania). Data are also given for peralkaline residual glass in combeite nephelinite ash clasts occurring in the March–April 2006 large volume natrocarbonatite flow. These data are considered to demonstrate the occurrence of liquid immiscibility between strongly peralkaline Fe-rich nephelinite melt and natrocarbonatite at Oldoinyo Lengai. Compositional data for coexisting silicate–carbonate pairs in conjunction with previous experimental studies suggest that the size of the field of liquid immiscibility for carbonated nephelinitic magmas is a function of their peralkalinity. It is shown that peralkaline combeite wollastonite nephelinite was present at Oldoinyo Lengai prior to, and during, the 24 September 2007 ash eruption. It is postulated that the driving force for this major eruption was assimilation and decomposition of previously emplaced solid natrocarbonatite. Assimilation resulted in the formation of the unusual hybrid nepheline–andradite–melilite–combeite–phosphate magma represented by the 24 September 2007 ash.  相似文献   

19.
The 2011 eruption of Nabro volcano, Eritrea, produced one of the largest volcanic sulphur inputs to the atmosphere since the 1991 eruption of Mt. Pinatubo, yet has received comparatively little scientific attention. Nabro forms part of an off-axis alignment, broadly perpendicular to the Afar Rift, and has a history of large-magnitude explosive silicic eruptions, as well as smaller more mafic ones. Here, we present and analyse extensive petrological data obtained from samples of trachybasaltic tephra erupted during the 2011 eruption to assess the pre-eruptive magma storage system and explain the large sulphur emission. We show that the eruption involved two texturally distinct batches of magma, one of which was more primitive and richer in sulphur than the other, which was higher in water (up to 2.5 wt%). Modelling of the degassing and crystallisation histories demonstrates that the more primitive magma rose rapidly from depth and experienced degassing crystallisation, while the other experienced isobaric cooling in the crust at around 5 km depth. Interaction between the two batches occurred shortly before the eruption. The eruption itself was likely triggered by recharge-induced destabilisation of vertically extensive mush zone under the volcano. This could potentially account for the large volume of sulphur released. Some of the melt inclusions are volatile undersaturated, and suggest that the original water content of the magma was around 1.3 wt%, which is relatively high for an intraplate setting, but consistent with seismic studies of the Afar plume. This eruption was smaller than some geological eruptions at Nabro, but provides important insights into the plumbing systems and dynamics of off-axis volcanoes in Afar.  相似文献   

20.
A critical factor in successfully monitoring and forecasting volcanic ash dispersion for aviation safety is the height reached by eruption clouds, which is affected by environmental factors, such as wind shear and atmospheric instability. Following earlier work using the Active Tracer High Resolution Atmospheric Model for strong Plinian eruptions, this study considered a range of eruption strengths in different atmospheres. The results suggest that relatively weak volcanic eruptions in the moist tropics can trigger deep convection that transports volcanic material to 15–20 km. For the same volcanic strength there can be ~9 km difference between eruption heights in moist tropical and dry subpolar environments (a larger height difference than previously suggested), which appears consistent with observations. These results suggest that eruption intensity should not be estimated from eruption height alone for tropospheric eruptions and also that the average height of volcanic eruptions may increase if the tropical atmospheric belt widens in a changing climate. Ash aggregation is promoted by hydrometeors (particularly liquid water), so the smaller modelled eruptions in moist atmospheres, which have a relatively small ash content for their height and water content, result in a relatively small proportion of fine ash in the dispersing cloud when compared to a dry atmosphere. This in turn makes the ash clouds much more difficult to detect using remote sensing than those in dry atmospheres. Overall, a weak eruption in the tropics is more likely to produce a plume above cruising levels for civil aviation, harder to detect and track, but with a lower concentration of fine ash than a mid-latitude or polar equivalent. There is currently no defined ‘acceptable’ concentration of ash for aircraft, but as these results suggest low-grade encounters in the tropics from undetected clouds are likely, it would be desirable to explore that issue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号