首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three simple models of the behaviour of a series of basaltic eruptions have been tested against the eruptive history of Nyamuragira. The data set contains the repose periods and the volumes of lava emitted in 22 eruptions since 1901. Model 1 is fully stochastic and eruptions of any volume with random repose intervals are possible. Models 2 and 3 are constrained by deterministic limits on the maximum capacity of the magma reservoir and on the lowest drainage level of the reservoir respectively. The method of testing these models involves (1) seeking change points in the time series to determine regimes of uniform magma supply rate, and (2) applying linear regression to these regimes, which for models 2 and 3 are the determinsstic limits to those models. Two change points in the time series for Nyamuragira, in 1958 and 1980, were determined using a Kolmogorov-Smirnov technique. The latter change involved an increase in the magma supply rate by a factor of 2.5, from 0.55 to 1.37 m3s-1. Model 2 provides the best fit to the behavior of Nyamuragira with the ratio of variation explained by the model to total variation. R2, being greater than 0.9 for all three regimes. This fit can be interpreted to mean that there is a determinstic limit to the elastic strength of the magma reservoir 4–8 km below the summit of the volcano.  相似文献   

2.
The 1224 Mt. Etna eruption is a significant event both in terms of the mass of erupted materials and because it involved the lower eastern slope of the volcano, reaching down to the sea. Nevertheless, it is unknown to current historical catalogues. According to the historical sources, only two other lava flows actually reached as far as the sea: in 396 BC, just north of the present-day inhabited area of Acireale, according to the geological data alone, and in 1669, when the lava covered the south-eastern flank of Mt. Etna and damaged Catania. We present and discuss the two medieval sources that attest to the eruption of 1224 and make available the original texts. Furthermore, through the close analysis of the historical and topographic context of the Etna area, taking account of the roads and ports in the early 13th century, we have tried to single out the possible area of the lava's outlet into the sea in 1224 on historical grounds. A repeat of an eruption similar to that of 1224 would have a serious impact today as the coast is densely populated.  相似文献   

3.
Excessive degassing of Izu-Oshima volcano: magma convection in a conduit   总被引:2,自引:0,他引:2  
Excess degassing of magmatic H2O and SO2 was observed at Izu-Oshima volcano during its latest degassing activity from January 1988 to March 1990. The minimum production rate for degassed magma was calculated to be about 1×104 kg/s using emission rates of magmatic H2O and SO2, and H2O and S contents of the magma. The minimum total volume of magma degassed during the 27-month period is estimated to be 2.6×108 m3. This volume is 20 times larger than that of the magma ejected during the 1986 summit eruption. Convective transport of magma through a conduit is proposed as the mechanism that causes degassing from a magma reservoir at several kilometers depth. The magma transport rate is quantitatively evaluated based on two fluid-dynamic models: Poiseuille flow in a concentric double-walled pipe, and ascent of non-degassed magma spheres through a conduit filled with degassed magma. This process is further tested for an andesitic volcano and is concluded to be a common process for volcanoes that discharge excess volatiles.  相似文献   

4.
Popocatépetl volcano in central Mexico has been erupting explosively and effusively for almost 4 years. SO2 emission rates from this volcano have been the largest ever measured using a COSPEC. Pre-eruptive average SO2 emission rates (2–3 kt/d) were similar to the emission rates measured during the first part of the eruption (up to August 1995) in contrast with the effusive–explosive periods (March 1996–January 1998) during which SO2 emission rates were higher by a factor of four (9–13 kt/d). Based on a chronology of the eruption and the average SO2 emission rates per period, the total SO2 emissions (up to 1 January 1998) are estimated to be about 9 Mt, roughly half as much as the SO2 emissions from Mount Pinatubo in a shorter period. Popocatépetl volcano is thus considered as a high-emission rate, passively degassing eruptive volcano. SO2 emission rates and SO2 emissions are used here to make a mass balance of the erupted magma and related gases. Identified excess SO2 is explained in terms of continuous degassing of unerupted magma and magma mixing. Fluctuations in SO2 emission rate may be a result of convection and crystallization in the chamber or the conduits, cleaning and sealing of the plumbing system, and/or SO2 scrubbing by the hydrothermal system.  相似文献   

5.
The 1973 eruption of Eldfell volcano, Iceland, appears to have been a short, simple event, but textural and geochemical evidence suggest that it may have had three different magmatic components. The first-erupted fissure magmas were chemically evolved, rich in plagioclase (∼ 18%) and had shallow, straight crystal size distribution (CSD) curves. The early lavas were less evolved chemically, had lower plagioclase contents (∼ 13%) and steeper, slightly concave up CSDs. The late lavas were chemically similar to the early lavas, but even richer in plagioclase than the initial magmas (∼ 24%) and had the steepest CSDs. There was no chemical evidence for plagioclase fractionation, but compositional diversity could be produced by clinopyroxene fractionation which must have occurred at depth. We propose that the eruption started with old, coarsened (Ostwald ripened) magma left over from a previous eruption, possibly that which produced Surtsey Island ten years earlier. The early flows may be mixtures of small amounts of this old magma with a new, low crystallinity, uncoarsened magma or a completely new magma. The late flows are another new magma from depth, chemically similar to the early flows, but which has grown plagioclase under increasing saturation (undercooling) perhaps during its ascent. All three magmatic components may have originated from the same parent, but had varying degrees of clinopyroxene fractionation, plagioclase nucleation and growth, and coarsening.  相似文献   

6.
The pyroclastic deposits of many basaltic volcanic centres show abrupt transitions between contrasting eruptive styles, e.g., Hawaiian versus Strombolian, or `dry' magmatic versus `wet' phreatomagmatic. These transitions are controlled dominantly by variations in degassing patterns, magma ascent rates and degrees of interaction with external water. We use Crater Hill, a 29 ka explosive/effusive monogenetic centre in the Auckland volcanic field, New Zealand, as a case study of the transitions between these end-member eruptive styles. The Crater Hill eruption took place from at least 4 vents spaced along a NNE-trending, 600-m-long fissure that is contained entirely within a tuff ring generated during the earliest eruption phases. Early explosive phases at Crater Hill were characterised by eruption from multiple unstable and short-lived vents; later, dominantly extrusive, volcanism took place from a more stable point source. Most of the Crater Hill pyroclastic deposits were formed in 3 phreatomagmatic (P) and 4 `dry' magmatic (M) episodes, forming in turn the outer tuff ring and maar crater (P1, M1, P2) and scoria cone 1 (M2–M4). This activity was followed by formation of a lava shield and scoria cone 2. Purely `wet' activity is represented by the bulk of P1 and P2, and purely `dry' activity by much of M2–M4. However, M1 and parts of M2 and M4 show evidence for simultaneous eruptions of differing style from adjacent vents and rapid variations in the extent and timing of magma:water interaction at each vent. The nature of the wall-rock lithics, and these rapid variations in inferred water/magma ratios imply interaction was occurring mostly at depths of ≤80 m, and the vesicularity patterns in juvenile clasts from these and the P beds imply that rapid degassing occurred at these shallow levels. We suggest that abrupt transitions between eruptive styles, in time and space, at Crater Hill were linked to changes in the local magma supply rate and patterns and vigour of degassing during the final metres of ascent.  相似文献   

7.
Impact of large-scale explosive eruptions largely depends on the dynamics of transport, dispersal and deposition of ash by the convective system. In fully convective eruptive columns, ejected gases and particles emitted at the vent are vertically injected into the atmosphere by a narrow, buoyant column and then dispersed by atmosphere dynamics on a regional scale. In fully collapsing explosive eruptions, ash partly generated by secondary fragmentation is carried and dispersed by broad co-ignimbrite columns ascending above pyroclastic currents. In this paper, we investigate the transport and dispersion dynamics of ash and lapillis during a transitional plinian eruption in which both plinian and co-ignimbrite columns coexisted and interacted. The 800 BP eruptive cycle of Quilotoa volcano (Ecuador) produced a well-exposed tephra sequence. Our study shows that the sequence was accumulated by a variety of eruptive dynamics, ranging from early small phreatic explosions, to sustained magmatic plinian eruptions, to late phreatomagmatic explosive pulses. The eruptive style of the main 800 BP plinian eruption (U1) progressively evolved from an early fully convective column (plinian fall bed), to a late fully collapsing fountain (dense density currents) passing through an intermediate transitional eruptive phase (fall + syn-plinian dilute density currents). In the transitional U1 regime, height of the convective plinian column and volume and runout of the contemporaneous pyroclastic density currents generated by partial collapses were inversely correlated. The convective system originated from merging of co-plinian and co-surge contributions. This hybrid column dispersed a bimodal lapilli and ash-fall bed whose grain size markedly differs from that of classic fall deposits accumulated by fully convective plinian columns. Sedimentological analysis suggests that ash dispersion during transitional eruptions is affected by early aggregation of dry particle clusters.  相似文献   

8.
The 1991–1993 eruption was probably the largest on Mt. Etna for 300 years. Since then the volcano has entered an unusually quiescent period. A comprehensive record of gravity and ground deformation changes presented here bracket this eruption and give valuable insight into magma movements before, during and after the eruption. The gravity and deformation changes observed before the eruption (1990–1991) record the intrusion of magma into the summit feeder and the SSE-trending fracture system which had recently been active in 1978, 1979, 1983 and 1989, creating the feeder dyke for the 1991–1993 eruption. In the summit region gravity changes between 1992 and 1993 (spanning the end of the eruption) reflect the withdrawal of magma from the conduit followed more recently (1993–1994) by the re-filling of magma in the conduit up to pre-eruption levels. In contrast, in the vicinity of the fracture zone, gravity has remained at the 1991–1992 level, indicating that no withdrawal has occurred here. Rather, magma has solidified in the fracture system and sealed it such that the 1993–1994 increase in magma level in the conduit was not accompanied by further intrusion into the flanks. Mass calculations suggest that a volume of at least 107 m3 of magma has solidified within the southeastern flank of the volcano.  相似文献   

9.
Pyroclastic density currents (PDC) related to paroxysmal eruptions have caused a large number of casualties in the recent history of Stromboli. We combine here a critical review of historical chronicles with detailed stratigraphic, textural, and petrographic analyses of PDC deposits emplaced at Stromboli over the last century to unravel the origin of currents, their flow mechanism and the depositional dynamics. We focus on the 1930 PDC as they are well described in historical accounts and because the 1930 eruption stands as the most voluminous and destructive paroxysm of the last 13 centuries. Stromboli PDC deposits are recognizable from their architecture and the great abundance of fresh, well-preserved juvenile material. General deposit features indicate that Stromboli PDC formed due to the syn-eruptive gravitational collapse of hot pyroclasts rapidly accumulated over steep slopes. Flow channelization within the several small valleys cut on the flanks of the volcano can enhance the mobility of PDC, as well as the production of fine particles by abrasion and comminution of hot juvenile fragments, thereby increasing the degree of fluidization. Textural analyses and historical accounts also indicate that PDC can be fast (15–20 m/s) and relatively hot (360–700 °C). PDC can thus flow right down the slopes of the volcano, representing a major hazard. For this reason, they must be adequately taken into account when compiling risk maps and evaluating volcanic hazard on the Island of Stromboli.  相似文献   

10.
The vesiculation of magma during the 1983 eruption of Miyakejima Volcano, Japan, is discussed based on systematic investigations of water content, vesicularity, and bubble size distribution for the products. The eruption is characterized by simultaneous lava effusion and explosive sub-plinian (‘dry’) eruptions with phreatomagmatic (‘wet’) explosions. The magmas are homogeneous in composition (basaltic andesite) and in initial water content (H2O = 3.9±0.9 wt%), and residual groundmass water contents for all eruption styles are low (H2O <0.4 wt%) suggestive of extensive dehydration of magma. For the scoria erupted during simultaneous ‘dry’ and ‘wet’ explosive eruptions, inverse correlation was observed between vesicularity and residual water content. This relation can be explained by equilibrium exsolution and expansion of ca. 0.3 wt% H2O at shallow level with different times of quenching, and suggests that each scoria with different vesicularity, which was quenched at a different time, provides a snapshot of the vesiculation process near the point of fragmentation. The bubble size distribution (BSD) varies systematically with vesicularity, and total bubble number density reaches a maximum value at vesicularity Φ ∼ 0.5. At Φ  ∼ 0.5, a large number of bubbles are connected with each other, and the average thickness of bubble walls reaches the minimum value below which they would rupture. These facts suggest that vesiculation advanced by nucleation and growth of bubbles when Φ < 0.5, and then by expansion of large bubbles with coalescence of small ones for Φ > 0.5, when bubble connection becomes effective. Low vesicularity and low residual water content of lava and spatter (Φ  < 0.1, H2O  < 0.1 wt%), and systematic decrease in bubble number density from scoria through spatter to lava with decrease in vesicularity suggest that effusive eruption is a consequence of complete degassing by bubble coalescence and separation from magma at shallow levels when magma ascent rate is slow.
T. ShimanoEmail:
  相似文献   

11.
The Sarikavak Tephra from the central Galatean Volcanic Province (Turkey) represents the deposit of a complex multiple phase plinian eruption of Miocene age. The eruptive sequence is subdivided into the Lower-, Middle-, and Upper Sarikavak Tephra (LSKT, MSKT, USKT) which differ in type of deposits, lithology and eruptive mechanisms.The Lower Sarikavak Tephra is characterised by pumice fall deposits with minor interbedded fine-grained ash beds in the lower LSKT-A. Deposits are well stratified and enriched in lithic fragments up to >50 wt% in some layers. The upper LSKT-B is mainly reversely graded pumice fall with minor amounts of lithics. It represents the main plinian phase of the eruption. The LSKT-A and B units are separated from each other by a fine-grained ash fall deposit. The Middle Sarikavak Tephra is predominantly composed of cross-bedded ash-and-pumice surge deposits with minor pumice fall deposits in the lower MSKT-A and major pyroclastic flow deposits in the upper MSKT-B unit. The Upper Sarikavak Tephra shows subaerial laminated surge deposits in USKT-A and subaqueous tephra beds in USKT-B.Isopach maps of the LSKT pumice fall deposits as well as the fine ash at the LSKT-A/B boundary indicate NNE–SSW extending depositional fans with the source area in the western part of the Ovaçik caldera. The MSKT pyroclastic flow and surge deposits form a SW-extending main lobe related to paleotopography where the deposits are thickest.Internal bedding and lithic distribution of the LSKT-A result from intermittent activity due to significant vent wall instabilities. Reductions in eruption power from (partial) plugging of the vent produced fine ash deposits in near-vent locations and subsequent explosive expulsion of wall rock debris was responsible for the high lithic contents of the lapilli fall deposits. A period of vent closure promoted fine ash fall deposition at the end of LSKT-A. The subsequent main plinian phase of the LSKT-B evolved from stable vent conditions after some initial gravitational column collapses during the early ascent of the re-established eruption plume. The ash-and-pumice surges of the MSKT-A are interpreted as deposits from phreatomagmatic activity prior to the main pyroclastic flow formation of the MSKT-B.  相似文献   

12.
We apply a geospeedometer previously developed in this lab to investigate cooling rate profiles of rhyolitic samples initially held at 720–750°C and quenched in water, liquid nitrogen, and air. For quench of mm-size samples in liquid nitrogen and in air, the cooling rate is uniform and is controlled by heat transfer in the quench medium instead of heat conduction in the sample. The heat transfer coefficient in ‘static’ air decreases with increasing sample size. For quench of mm-size samples in water, heat transfer in water is rapid and the cooling rate is largely controlled by heat conduction in the sample. Our experimental results are roughly consistent with previous calculations for cooling in air and in water (although constant heat transfer coefficients were used in these calculations), but cooling rate in liquid nitrogen is only 1.8–2.3 times that in ‘static’ air, and slower by a factor of 2 than calculated by previous authors. Cooling rate in compressed airflow is about the same as that in liquid nitrogen. The experimental results are applied to interpret cooling rates of pyroclasts in ash beds of the most recent eruptions of the Mono Craters. Cooling rates of pyroclasts are inversely correlated with sample size and slower than those in air. The results indicate that the hydrous species concentrations of the pyroclasts were frozen in the eruption column, rather than inside ash beds or in flight in ambient air. From the cooling rates, we infer eruption column temperature in a region where and at a time when hydrous species concentrations in a pyroclast were locked in. The temperature ranges from 260 to 570°C for the most recent eruptions of Mono Craters. These are the first estimates of temperatures in volcanic eruption columns. The ability to estimate cooling rates and eruption column temperatures from eruptive products will provide constraints to dynamic models for the eruption columns.  相似文献   

13.
14.
Rhenium and other trace element data were obtained in situ by laser ablation ICP-MS analysis of submarine-erupted volcanic glasses and olivine-hosted melt inclusions from the Valu Fa Ridge, the south tip of the Lau Basin, in the southwestern Pacific Ocean. The chemistry of the Lau Basin basaltic glasses changes systematically from compositions similar to MORB in the Lau Spreading Centers, to more arc-like compositions in the Valu Fa Ridge, providing geochemical profiles both along the Lau Spreading Centers (ridges) and across the Valu Fa Ridge. The east seamount samples of the Valu Fa Ridge have diagnostic trace element ratios (Ba/Nb, Nb/U, Ce/Pb) close to global arc averages, with high Ba/La, indicating addition of considerable amounts of subduction-released fluids. In contrast, samples from the west seamount and the Lau Spreading Centers show a smaller influence from subduction fluids. The variable degrees of subduction influences apparent in the chemistry of these suites provide an ideal means to explore the mechanisms of Re enrichment in undegassed arc magmas. All of the analyzed arc melts have significantly higher Re concentrations than previously published, largely subaerially erupted samples, confirming that high Re is a characteristic of undegassed arc magmas. The east seamount samples are characterized by higher Re and lower Yb/Re than the more MORB-like Lau Spreading Center lavas. The lack of correlation between Yb/Re and Fo of host olivine suggests that low Yb/Re is not due to magmatic differentiation. When the Lau Basin sample suite is plotted together with MORB data, Yb/Re is positively correlated with Ce/Pb and Nb/U, and negatively correlated with Ba/Nb, indicating that Re is much more mobile than Yb during dehydration of subducted slabs. Thus, Re enrichment in arc magmas is likely due to addition of Re via fluids released from subducted slabs; the recognition of high Re in arcs favors arguments for a slab origin of radiogenic 187Os/188Os components in arc rocks.  相似文献   

15.
This paper presents evidence for strong biochemical weathering of basaltic outcrops induced by fungal communities in a cold environment. Weathering rind formation is considered to be a consequence of the biological activity. Comparisons between in vitro experiments and in situ observations allow a characterization of fungal effects on rocks and help to define the place of these micro‐organisms in the cold environment weathering chain. It is concluded that biological weathering is chronologically the first process of weathering, probably leading to the subsequent expression of cryogenic processes. Information presented here suggests the need for reconsideration of the traditional frost‐driven morphogenetic system normally considered for subpolar areas. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
The 2002–03 Mt Etna flank eruption began on 26 October 2002 and finished on 28 January 2003, after three months of continuous explosive activity and discontinuous lava flow output. The eruption involved the opening of eruptive fissures on the NE and S flanks of the volcano, with lava flow output and fire fountaining until 5 November. After this date, the eruption continued exclusively on the S flank, with continuous explosive activity and lava flows active between 13 November and 28 January 2003. Multi-disciplinary data collected during the eruption (petrology, analyses of ash components, gas geochemistry, field surveys, thermal mapping and structural surveys) allowed us to analyse the dynamics of the eruption. The eruption was triggered either by (i) accumulation and eventual ascent of magma from depth or (ii) depressurisation of the edifice due to spreading of the eastern flank of the volcano. The extraordinary explosivity makes the 2002–03 eruption a unique event in the last 300 years, comparable only with La Montagnola 1763 and the 2001 Lower Vents eruptions. A notable feature of the eruption was also the simultaneous effusion of lavas with different composition and emplacement features. Magma erupted from the NE fissure represented the partially degassed magma fraction normally residing within the central conduits and the shallow plumbing system. The magma that erupted from the S fissure was the relatively undegassed, volatile-rich, buoyant fraction which drained the deep feeding system, bypassing the central conduits. This is typical of most Etnean eccentric eruptions. We believe that there is a high probability that Mount Etna has entered a new eruptive phase, with magma being supplied to a deep reservoir independent from the central conduit, that could periodically produce sufficient overpressure to propagate a dyke to the surface and generate further flank eruptions.Editorial responsibility: J. Donnelly-Nolan  相似文献   

17.
ABSTRACT

Recession curves are widely used in hydrological studies and projects, such as in rivers, streams or springs. However, no cave drip water has been analysed with recession curves. In this paper, four cave drips were monitored in the Velika Pasica Cave, in order to discover the water flow and storage properties of the epikarst. Various methods were applied in the recession analysis, combining the hydrological characteristics of the four drips: for the slow water in the epikarst, the matching strip method was the identified as the appropriate model for the drip water recession analysis. According to the recession coefficient k, the water flow in the epikarst was divided into fast flow, intermediate flow and slow flow. The volume of water retained in the reservoir (the epikarst storage) could be presented as a function of its specific recession coefficient.
EDITOR D.Koutsoyiannis; ASSOCIATE EDITOR X. Chen  相似文献   

18.
Hydrologic models that rely on site specific linear and non‐linear regression water temperature (Tw) subroutines forced solely with observed air temperature (Ta) may not accurately estimate Tw in mixed‐use urbanizing watersheds where hydrogeological and land use complexity may confound common Tw regime assumptions. A nested‐scale experimental watershed study design was used to test Tw model predictions in a representative mixed‐use urbanizing watershed of the central USA. The linear regression Tw model used in the Soil and Water Assessment Tool (SWAT), a non‐linear regression Tw model, and a process‐based Tw model that accounts for watershed hydrology were evaluated. The non‐linear regression Tw model tested at a daily time step performed significantly (P < 0.01) better than the linear Tw model currently used in SWAT. Both regression Tw models overestimated Tw in lower temperature ranges (Tw < 10.0 °C) with percent bias (PBIAS) values ranging from ?28.2% (non‐linear Tw model) to ?66.1% (linear regression Tw model) and underestimated Tw in the higher temperature range (Tw > 25.0 °C) by 3.2%, and 7.2%, respectively. Conversely, the process‐based Tw model closely estimated Tw in lower temperature ranges (PBIAS = 4.5%) and only slightly underestimated Tw in the higher temperature range (PBIAS = 1.7%). Findings illustrate the benefit of integrating process‐based Tw models with hydrologic models to improve model transferability and Tw predictive confidence in urban mixed‐land use watersheds. The findings in this work are distinct geographically and in terms of mixed‐land use complexity and are therefore of immediate value to land‐use managers in similarly urbanizing watersheds globally. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The vent-hosted hydrothermal system of Ruapehu volcano is normally covered by a c. 10 million m3 acidic crater lake where volcanic gases accumulate. Through analysis of eruption observations, granulometry, mineralogy and chemistry of volcanic ash from the 1995–1996 Ruapehu eruptions we report on the varying influences on environmental hazards associated with the deposits. All measured parameters are more dependent on the eruptive style than on distance from the vent. Early phreatic and phreatomagmatic eruption phases from crater lakes similar to that on Ruapehu are likely to contain the greatest concentrations of environmentally significant elements, especially sulphur and fluoride. These elements are contained within altered xenolithic material extracted from the hydrothermal system by steam explosions, as well as in residue hydrothermal fluids adsorbed on to particle surfaces. In particular, total F in the ash may be enriched by a factor of 6 relative to original magmatic contents, although immediately soluble F does not show such dramatic increases. Highly soluble NaF and CaSiF6 phases, demonstrated to be the carriers of ‘available’ F in purely magmatic eruptive systems, are probably not dominant in the products of phreatomagmatic eruptions through hydrothermal systems. Instead, slowly soluble compounds such as CaF2, AlF3 and Ca5(PO4)3F dominate. Fluoride in these phases is released over longer periods, where only one third is leached in a single 24-h water extraction. This implies that estimation of soluble F in such ashes based on a single leach leads to underestimation of the F impact, especially of a potential longer-term environmental hazard. In addition, a large proportion of the total F in the ash is apparently soluble in the digestive system of grazing animals. In the Ruapehu case this led to several thousand sheep deaths from fluorosis.  相似文献   

20.
Despite their significance for estimating hazards and forecasting future activity, dating young volcanic deposits and landforms (<50,000 yrs old) remains a challenge due to the limitations inherent to the different isotopic chronometers used. The Trans-Mexican Volcanic Belt is one of the most active and populated continental arcs worldwide, yet its temporal pattern of activity is poorly constrained. Such deficiency is particularly problematic for the Sierra Chichinautzin Volcanic Field (SCVF) that is located at the doorstep of Mexico City and Cuernavaca and is hence a major source of risk for these cities. Existing ages for this area derive mostly from either radiocarbon on charcoal, which is rare and may be contaminated, or 40Ar/39Ar on rock matrix, which is poorly precise for this time period and rock type. Here, we focus on the Pelado monogenetic volcano, which is located in the central part of the SCVF and erupted both explosively and effusively, producing a large lava shield and a widespread tephra blanket. This unique eruptive event was previously dated at ∼12 calibrated (cal) kyrs BP, using radiocarbon dating on charcoal from deposits related to the eruption. To test alternative dating approaches and confirm the age of this significant eruption, we applied two less conventional techniques, radiocarbon dating of bulk paleosol samples collected below the complete tephra sequence at nine sites around the shield, and in-situ 36Cl exposure dating of two samples of an aphyric lava from the base of the shield. Radiocarbon paleosol ages span a continuous time interval from 13.2 to 20.2 cal kyrs BP (2σ), except for one anomalously young sample. This wide age spread, along with the low organic contents of the paleosols, may be due to erosive conditions, related to the sloping topography of the sampling sites and the cool and relatively dry climate of the Younger Dryas (11.7–12.9 ka), during which the Pelado eruption probably occurred. The two 36Cl-dated lava samples have consistent ages at 1σ analytical errors of 15.5 ± 1.4 ka and 13.2 ± 1.2 ka, respectively, yielding an average age of 14.3 ± 1.6 ka for this lava flow. The high full uncertainty in 36Cl ages (24%) is due to high rock Cl content. We conclude that paleosol radiocarbon dating is useful if numerous samples are analyzed and climatic and relief conditions at the time of the eruption and at the sites of tephra deposition are considered. The 36Cl dating technique is an alternative method to date volcanic eruptions, as it gave consistent results, but in the specific case of Pelado volcano, the high Cl content in the analyzed rocks increases the age uncertainties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号