首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
We have used the ROSAT PSPC to study the properties of a sample of 24 X-ray-bright galaxy groups, representing the largest sample examined in detail to date. Hot plasma models are fitted to the spectral data to derive temperatures, and modified King models are used to characterize the surface brightness profiles.
In agreement with previous work, we find evidence for the presence of two components in the surface brightness profiles. The extended component is generally found to be much flatter than that observed in galaxy clusters, and there is evidence that the profiles follow a trend with system mass. We derive relationships between X-ray luminosity, temperature and optical velocity dispersion. The relation between X-ray luminosity and temperature is found to be L X∝ T 4.9, which is significantly steeper than the same relation in galaxy clusters. These results are in good agreement with pre-heating models, in which galaxy winds raise the internal energy of the gas, inhibiting its collapse into the shallow potential wells of poor systems.  相似文献   

2.
We analyse the ASCA spectra accumulated within 100 kpc radii of 12 of the brightest groups of galaxies. Upon fitting isothermal models (1T) jointly to the ASCA SIS and GIS spectra we obtain fits for most groups that are of poor or at best marginal quality and give very subsolar metallicities similar to previous studies, Z =0.29±0.12 Z. Two-temperature models (2T) provide significantly better fits for 11 out of the 12 groups, and in every case have metallicities that are substantially larger than obtained for the 1T models, Z =0.75±0.24 Z. Though not very well constrained, for most of the groups absorption in excess of the Galactic value is indicated for the cooler temperature component of the 2T models. A simple multiphase cooling flow model gives results analogous to the 2T models including large metallicities, Z =0.65±0.17 Z. The nearly solar Fe abundances and also solar /Fe ratios indicated by the 2T and cooling flow models are consistent with models of the chemical enrichment of ellipticals, groups, and clusters which assume ratios of Type Ia to Type II supernovae and an initial mass function (IMF) similar to those of the Milky Way.
Thus we have shown that the very subsolar Fe abundances and Si/Fe enhancements obtained from most previous studies within r 100 kpc of galaxy groups are an artefact of fitting isothermal models to the X-ray spectra, which also has been recently demonstrated for the brightest elliptical galaxies. Owing to the importance of these results for interpreting X-ray spectra, in an appendix we use simulated ASCA observations to examine in detail the 'Fe bias' and 'Si bias' associated with the spectral fitting of ellipticals, groups and clusters of galaxies.  相似文献   

3.
4.
We discuss the X-ray properties of the cooling flows in a sample of 30 highly X-ray luminous clusters of galaxies, observed using the ASCA and ROSAT satellites. We demonstrate the need for multiphase models to consistently explain the spectral and imaging X-ray data for the clusters. The mass deposition rates of the cooling flows, independently determined from the ASCA spectra and ROSAT images, exhibit good agreement and exceed 1000 M yr−1 in the largest systems. We confirm the presence of intrinsic X-ray absorption in the clusters using a variety of spectral models. The measured equivalent hydrogen column densities of absorbing material are sensitive to the spectral models used in the analysis, varying from average values of a few 1020 atom cm−2 for a simple isothermal emission model, to a few 1021 atom cm−2 using our preferred cooling flow models, assuming in each case that the absorber lies in a uniform foreground screen. The true intrinsic column densities are likely to be even higher if the absorbing medium is distributed throughout the clusters. We summarize the constraints on the nature of the X-ray absorber from observations in other wavebands. Much of the X-ray absorption may be caused by dust.  相似文献   

5.
6.
7.
8.
Environment plays an important role in the evolution of the gas contents of galaxies. Gas deficiency of cluster spirals and the role of the hot intracluster medium in stripping gas from these galaxies is a well-studied subject. Loose groups with diffuse X-ray emission from the intragroup medium (IGM) offer an intermediate environment between clusters and groups without a hot IGM. These X-ray bright groups have smaller velocity dispersion and lower temperature than clusters, but higher IGM density than loose groups without diffuse X-ray emission. A single-dish comparative study of loose groups with and without diffuse X-ray emission from the IGM, showed that the galaxies in X-ray bright groups have lost more gas on average than the galaxies in non X-ray bright groups. In this paper we present GMRT H  i observations of 13 galaxies from four X-ray bright groups: NGC 5044, 720, 1550 and IC1459. The aim of this work is to study the morphology of H  i in these galaxies and to see if the hot IGM has in any way affected their H  i content or distribution. In addition to disturbed H  i morphology, we find that most galaxies have shrunken H  i discs compared to the field spirals. This indicates that IGM-assisted stripping processes like ram pressure may have stripped gas from the outer edges of the galaxies.  相似文献   

9.
Ram-pressure stripping can remove significant amounts of gas from galaxies that orbit in clusters and massive groups, and thus has a large impact on the evolution of cluster galaxies. In this paper, we reconstruct the present-day distribution of ram pressure and the ram-pressure histories of cluster galaxies. To this aim, we combine the Millennium Simulation and an associated semi-analytic model of galaxy evolution with analytic models for the gas distribution in clusters. We find that about one quarter of galaxies in massive clusters are subject to strong ram pressures that are likely to cause an expedient loss of all gas. Strong ram pressures occur predominantly in the inner core of the cluster, where both the gas density and the galaxy velocity are higher. Since their accretion on to a massive system, more than 64 per cent of galaxies that reside in a cluster today have experienced strong ram pressures of  >10−11 dyn cm−2  which most likely led to a substantial loss of the gas.  相似文献   

10.
We investigate the history of galactic feedback and chemical enrichment within a sample of 15 X-ray bright groups of galaxies, on the basis of the inferred Fe and Si distributions in the hot gas and the associated metal masses produced by core-collapse and Type Ia supernovae (SNe). Most of these cool-core groups show a central Fe and Si excess, which can be explained by prolonged enrichment by SN Ia and stellar winds in the central early-type galaxy alone, but with tentative evidence for additional processes contributing to core enrichment in hotter groups. Inferred metal mass-to-light ratios inside r 500 show a positive correlation with total group mass but are generally significantly lower than in clusters, due to a combination of lower global intracluster medium (ICM) abundances and gas-to-light ratios in groups. This metal deficiency is present for products from both SN Ia and SN II, and suggests that metals were either synthesized, released from galaxies or retained within the ICM less efficiently in lower mass systems. We explore possible causes, including variations in galaxy formation and metal release efficiency, cooling out of metals, and gas and metal loss via active galactic nuclei (AGN) – or starburst-driven galactic winds from groups or their precursor filaments. Loss of enriched material from filaments coupled with post-collapse AGN feedback emerges as viable explanations, but we also find evidence for metals to have been released less efficiently from galaxies in cooler groups and for the ICM in these to appear chemically less evolved, possibly reflecting more extended star formation histories in less massive systems. Some implications for the hierarchical growth of clusters from groups are briefly discussed.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
It is difficult to detect X-ray emission associated with galaxies in rich clusters, because the X-ray images of the clusters are dominated by the emission from their hot intracluster media (ICM). Only the nearby Virgo cluster provides us with information about the X-ray properties of galaxies in clusters. Here we report on the analysis of a deep ROSAT HRI image of the moderately rich cluster Abell 2634, by which we have been able to detect the X-ray emission from the galaxies in the cluster. The ICM of Abell 2634 is an order of magnitude denser than that of the Virgo cluster, and so this analysis allows us to explore the X-ray properties of individual galaxies in the richest environment yet explored.
By stacking the X-ray images of the galaxies together, we show that the emission from the galaxies appears to be marginally resolved by the HRI. This extent is smaller than for galaxies in poorer environments, and is comparable to the size of the galaxies in optical light. These facts suggest that the detected X-ray emission originates from the stellar populations of the galaxies, rather than from extended hot interstellar media. Support for this hypothesis comes from placing the optical and X-ray luminosities of these galaxies in the LB–LX plane: the galaxies of Abell 2634 lie in the region of this plane where models indicate that all the X-ray emission can be explained by the usual population of X-ray binaries. It is therefore probable that ram pressure stripping has removed the hot gas component from these galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号