首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
INTRODUCTIONThemannerefraCtionseisAncmehodisirnP0Ftantf0rstudyofmarinecrustandregionalgeo1ogicalteCtonics.Mufauchi(1968),Leyden(l973),Ludwig(l973),JinXianglongetal.(l986)reportedsonobu0yreffoCtionseisAncrmurernentSintheEesandtheOkinawaTroughregion,studiedthetaltatarysequenceandthickness0fthebasernent,andcomPataltheveoCityugeoftheuppercrustallayers.beetal.(l98O)werethefustto0btainaMohodepthofl5kminthecentralaxisoftheOkinawaTroughbyusingtwo-shipreffoCtionseisAncrneh0ds.Usingl8ocanb…  相似文献   

2.
INTRODUCTIONTheYellowSeaandtheEastChinaSea (ECS)aremarginalseasofthenorthwestPacificandhaveexpansivecontinentalshelves .TheuniqueandstrikingfeaturesoftheYellowSeaandtheECSarethattheyhavestrongtidalcurrent;aresubjecttostrongmonsooninfluence ;andreceiveinflowfromthebiggestriverinChina ,theChangjiangRiver ;andthatthefamouswesternboundarycurrent,theKuroshio ,passesthroughtheECS ,withitsbranchesintrudingupwardintothecontinentalshelfareas.Generallyspeaking ,thewaterexchangecapacityofthe…  相似文献   

3.
From 1997 to 2000, four field surveys were conducted in the East China Sea (ECS) (23°30′–33°00′N, 118°30′–128°00′E). A field data yield density model was used to determine the optimal salinities for 19 dominant copepod species to establish the relationship between surface salinities and abundance of those species. In addition, ecological groups of the copepods were classified based on optimal salinity and geographical distribution. The results indicate that the yield density model is suitable for determining the relationship between salinity and abundance. Cosmocalanus darwini, Euchaeta rimana, Pleuromamma gracilis, Rhincalanus cornutus, Scolecithrix danae and Pareucalanus attenuatus were determined as oceanic species, with optimal salinities of >34.0. They were stenohaline and mainly distributed in waters influenced by the Kuroshio or Taiwan warm current. Temora discaudata, T. stylifera and Canthocalanus pauper were nearshore species with optimal salinities of <33.0 and most abundant in coastal waters. The remaining 10 species, including Undinula vulgaris and Subeucalanus subcrassus, were offshore species, with optimal salinity ranging from 33.0–34.0. They were widely distributed in nearshore, offshore and oceanic waters but mainly in the mixed water of the ECS.  相似文献   

4.
5.
The seasonal changes of the ten-day mean sea surface temperature in the East China Sea for the years 1953–1972 were studied using the singular value decomposition technique. Main results obtained are as follows: In the singular vector analysis of the ten-day mean sea surface temperature in the East China Sea, the first three singular vectors (or seasonal march functions) account for 97.76% of the variance of the data. The geographical distribution in the weightings (or spatial pattern functions) on these vectors shows a remarkable regional organization. An objective classification of the surface water mass in the East China Sea was based on the mode of its seasonal temperature changes. Contribution No. 801 from the Institute of Oceanology, Academia Sinica. An abstract of this paper was presented at an IAPSO Session of XVII IUGG held at Canberra, Australia, December 1979.  相似文献   

6.
Rainwater samples were collected in series in Qianliyan Island (southern Yellow Sea) and Shengsi Archipelago (East China Sea) between May 2000 and May 2002, chemical analysis for pH values,concentrations of heavy metals (Cu, Pb, Zn and Cd) and nutrients (NH4^-, NO3^-, PO43^-, SiO32^-) were performed.Results indicate that concentrations of most of the heavy metals and nutrients in rainwater show clear seasonal variation, i.e. high level in winter and low level in summer. Regionally, concentrations are higher in the southern Yellow Sea than in the East China Sea, but the annual input of heavy metals into oceans by wet deposition is similar in both stations. However, the input of nutrients by wet deposition in the East China Sea is 2-3 times higher than that in the southern Yellow Sea. In individual, Pb and PO4^3- are input to the sea mainly by dry deposition; whereas Cu, Zn, Cd and N compounds are input dominantly by wet deposition, the N/P ratios in the rainwater from two stations are much higher than those in seawater, showing a significant impact of atmospheric wet deposition on marine production and biogeochemical circulation of nutrients in these sea regions.  相似文献   

7.
In this paper, the sea-air heat exchange over the Kuroshio in the East China Sea during the winters of 1954–1972 is computed and analysed. The results indicate that the year to year anomalies of sea-air heat exchange are obvious and the values are mainly controlled by the intensity of the cold air at the same time. The authors have found a close relationship between sea-air heat exchange and precipitation in the region of the Changjiang River during the early summer. Finally, the predicting indication for forecasting this precipitation around the middle and lower reaches of Changjiang River in June is given. Contribution No. 839 from the Institute of Oceanology, Academia Sinica. This paper was published in Chinese inOceanologia et Limnologia Sinica 14 (3): 256–262, 1983.  相似文献   

8.
Measurement of the surface emissivity of turbid waters   总被引:2,自引:0,他引:2  
For interpreting thermal IR imagery of the ocean surface, the emissivity of the sea surface is usually assumed to be constant, approximately 0.98. However, the emissivity varies with the roughness of the sea surface, and the concentration and type of suspended particulates. The emissivity variations caused by the suspended sediments introduce significant errors in the satellite-derived temperature maps of turbid coastal waters. We measured in the laboratory the thermal IR emissivity of water as the suspended sediment concentration was varied from zero to extremely high values. The results indicated that increasing the sediment concentration decreases the spectral emissivity within the 8–14 μm waveband. Editor’s note A conference on West Pacific Circulation Influence in China Seas (WEPACICS) was held during November 10–14, 1986 in Qingdao, China, under the joint auspices of the Institute of Onceanology, Academic Sinica (IOAS) and the National Science Foundation, United States, and under the convernorship of Ya Hsueh, Florida State University, and Hu, Dunxin, IOAS. The primary subject of the conference is the influence of the West Pacific Circulation in the Yellow Sea and the East China Sea through the intermediary of the Kuroshio. In the conference more than 20 papers were presented, summarizing the works on the interaction between the Yellow and East China Sea, and the oceanic circulation, and the research experiences gained in the studies of the Gulf Stream and its influences in the U.S. Coastal waters were shared. In order to facilitate scientific exchange we chose to published successively the significant papers presented at the conference in the journal.  相似文献   

9.
1 Introduction ShandongProvince ,whichislocatedintheeastofChina ,consistspartlyofpeninsulaandpartlyofinlandwithatotalareaofabout 1 5 0 0 0 0km2 .Lyingfrom34°2 0′Nto 38°2 0′Nandfrom 1 1 4°4 0′Eto 1 2 2°4 0′E ,alltheareabelongstothemoderateregionandtothetypicalAsianmonsoonclimate .SoShandong’ssum merprecipitationaccountsforover 6 0 %oftheannualrainfall,andaccordinglyflood droughtdisastersmain lyoccurinsummer.Moreover,becauseitisgeographi callylocatedinthetransitionalareabetweenthe…  相似文献   

10.
Based on an analysis of drifter data from the World Ocean Circulation Experiment during 1979-1998, the sizes of the eddies in the North subtropical Pacific are determined from the radii of curvature of the drifter paths calculated by using a non-linear curve fitting method. To support the drifter data results, Sea Surface Height from the TOPEX/POSEIDON and ERS2 satellite data are analyzed in connection with the drifter paths. It is found that the eddies in the North Pacific (18^*- 23^*N and 125^*-150^*E) move westward at an average speed of approximately 0.098 ms^-1 and their average radius is 176 km, with radii ranging from 98 km to 298 km. During the nineteen-year period, only 4 out of approximately 200 drifters (2%) actually entered the South China Sea from the area adjacent to the Luzon Strait (18^*-22^*N and 121^*-125^*E) in the winter. It is also found that eddies from the interior of the North Pacific are unlikely to enter the South China Sea through the Luzon Strait.  相似文献   

11.
A comprehensive study of the data profiles, including the 2D seismic data, single channel seismic data, shallow sections, etc., reveals that gas hydrates occur in the East China Sea. A series of special techniques are used in the processing of seismic data, which include enhancing the accuracy of velocity analysis and resolution, estimating the wavelet, suppressing the multiple, preserving the relative amplitude, using the DMO and AVO techniques and some special techniques in dealing with the wave impedance. The existence of gas hydrates is reflected in the subbottom profiles in the appearance of BSRs, amplitude anomalies, velocity anomalies and AVO anomalies, etc. Hence the gas hydrates can be identified and predicted. It is pointed out that the East China Sea is a favorable area of the gas hydrates resource, and the Okinawa Trough is a target area of gas hydrates reservoir.  相似文献   

12.
INTRODUCTIONMorethanadecadehaspassedsincebacteriawasrecognizedasquantitativelyimportantcon sumersoforganiccarboninmarinefoodwebsandmarineecosystems (Fuhrman ,1 992 ) .ThebasicinformationonthesignificanceofthemicrobialfoodwebwaspresentedbyPomeroy ( 1 974 ) ,whopie…  相似文献   

13.
mODUCTIONTheislandsOfHaitan,Yuo,Dalian,DowiangandCaoguinPingtanCoUntyofFu-jianProvincearetogetherthewhtoasPingtan(25'l5'-25o45'E,l19"32'-12o"lo'N,EaStChinaSea).AmngthemHaitangIslanisthedrinoneinPingtanCotmty,andthelargestinFuianProvince.RngtanhaSanatuIalfishinggroUn(SeduMOUntaln)beingrenownedboghoutthecOUnnyandawelldeVfoPedaqUacultUreindusny.Pingtanwa-tersresotirceswerestirveyedforthefirsttimebytheauthorssothattheknowedgegainedcanbeaPPliedforbettereaploitahon,PIDechon,andde…  相似文献   

14.
This research on the influence of sediment resuspension on the flux of materials in the margin of the East China Sea showed that the sediment resuspension rates, was 47.40%–79.18% in the surface layers, and 72.75%–96.96% in the bottom layers. The research confirmed that the Changjiang River runoff and the eddy area upwelling flow near 125°E were two important factors affecting the sediment resuspension in summer; the transformation of DOC to POC through the flocculation in the transitional region (123°–124°E) was also confirmed by comparison of the resuspension rate. The sediment resuspension was shown to be influenced by the seasonal factor, especially in the surface layer. Contribution No. 4017 from the Institute of Oceanology, Chinese Academy of Sciences. Project 49636210 supported by NSFC.  相似文献   

15.
Clay minerals of 34 sediments collected from the northwestern continental shelf of the East China Sea have been determined by X-ray diffraction analysis. The clay mineral distribution is mainly controlled by the sediment source and the dominant circulation pattern. The predominant clay mineral in our study area is illite comprising more than 67% of the whole clay fraction. The highest concentration of illite (>68%) is found in the southeastern offshore parts beyond the reach of terrigenous input from the Jeju Island. It means that these illites are largely transported by the Kuroshio Current from the South China Sea (SCS). Smectite is highly concentrated in the northwest middle part and in the outer-shelf mud patch. It seems to be due to the high supply of smectite transported from China where fine-grained sediments are discharged from modern and ancient Huanghe (Yellow) River. The relatively high abundant kaolinite is likely derived from the Changjiang (Yangtze) River via the Taiwan Warm Current. In contrast, large amounts of chlorite and high chlorite/kaolinite ratios occur in the northwestern area, reflecting the transportation by the Yellow Sea Coastal Current from the southern Yellow Sea. The discrimination diagrams clearly show that the sediments in the northwestern East China Sea are ultimately sourced from Chinese rivers, especially from the Huanghe River, whereas the sediment in the northeast part might come from the Jeju Island. The muddy sediments of the Changjiang River’s submerged delta have much lower 87Sr/86Sr ratios (0.716 2–0.718 0) than those of the Shandong Peninsular mud wedge (0.721 6–0.724 9), which are supposed to be originated from the Huanghe River, suggesting the distribution pattern of 87Sr/86Sr ratios as a new tracer to discriminate the provenance of shelf sediments in the study area. The 87Sr/86Sr ratios of the outer-shelf muddy sediments ranged from 0.7169 to 0.7216 in a wide range and was between those of the Huanghe River and Changjiang River sediments, suggesting multiple sources of the sediment in the area.  相似文献   

16.
Based on high-resolution tree-ring data from Dulan area of Qinghai Province, five spells have been divided: the warm period before 230’s A. D., the cold period between 240’s A. D. and 800’s A. D., the significantly warm period between 810’s A. D. and 1070’s, i. e. “Medieval Warm Period”, the cold period including the “Little Ice Age” 1420’ – 1870’s and the warming period since 1880’s. All the eleven coldest or warmest decades and several great abrupt changes took place before the Middle Ages, indicating that climatic system operated in great instability during the period 150’s – 1100’s A. D., Comparison of the tree-ring data with other temperature proxy data from East China, Guliya ice core as well as the south of Qinghai-Xizang Plateau shows that such great climatic events as Eastern Han warm period between the beginning of the 1st century and the previous fifty years of the third century, the cold period covering the span of the Wei, the Jin, and the Southern and Northern dynasties, the well-known “Medieval Warm Period” as well as the “Little Ice Age” appeared in these series such as East China and Dulan area. Only the first two climatic events were recorded conspicuously in Guliya ice core while the “Medieval Warm Period” and “Little Ice Age” is far weaker. Also, the well-defined “Medieval Warm Period” didn’t occurred in the south of Qinghai-Xizang Plateau. The warming since the 20th century is the warmest in the last 2000 years Guliya ice core, the second in Dulan area and East China, but it scarcely seems pronounced in the eastern part of Qinghai-Xizang Plateau. Foundation item: Under the auspices of the projects of the Chinese Academy of Sciences (KZ951-A1-204-02 and KZ951-A1 402-03). Biography: YANG Bao(1971–), male, a native of Yanggao County, Shanxi Province, Ph. D. His research interestinclude global change.  相似文献   

17.
Warming trend in northern East China Sea in recent four decades   总被引:2,自引:0,他引:2  
Global warming has become a notable trend especially since an abrupt climate change in 1976. Response of the East China Sea (ECS) to the global warming trend, however, is not well understood because of sparse long-term observation. In this paper, hydrographic observation data of 1957–1996 are collected and reviewed to study climatological variability in northern ECS. Significant warming trends are found in both summer and winter. In summer, the average SST is about 0.46°C higher during the period of 1977-19...  相似文献   

18.
The fundamental principle for differentiating water masses is a strict consideration of their “relative interier homogeneity” and obvious exterior differences with others in characteristics. The conceptions of water type, water mass and water system are dealt with on the basis of the theory of fuzzy sets. A proposal to apply the theory of fuzzy sets to define the water mass and its core, independent area, boundary and mixing area is put forward. As an example, the membership function of the surface water masses in the Yellow Sea and East China Sea in August, 1979, are considered. Their cores, independent areas, boundaries, mixing areas and the approximation degrees between different water masses are calculated respectively. The water masses are ranged according to their fuzzy degrees. This paper was published inOceanologia et Limnologia Sinica, 1986,17(2): 102–110. This study was financially supported by National Natural Sciences Foundation of China.  相似文献   

19.
In summer of 2001, 2002 and 2003, ten, six and seventeen satellite-tracked surface drifters with drogues centered at 15 and 4 m were deployed, respectively, in the southern Yellow Sea (YS). 23 drifters of them transmitted useful data of at least 30 days. The wind-driven component of the drift was removed from the original drift velocity of drifters. The wind data used are from NCEP (National Center for Environmental Prediction), USA.Trajectories and drift velocities of the 23 drifters depicted the upper circulation structure in the southern YS. There exists an anti-cyclonic eddy with a mean speed and radius of 0.063 m/s and 50km in the central southern YS, whose center lingered within 35.3-36.0°N / 123.5-124.0°E. Showed by 6 drifters, a basin-scale elliptic cyclonic gyre with a mean speed of 0.114 m/s, long and short radius of 250 and 200 km surrounds the anti-cyclonic eddy. In the southwestern part of the southern YS has obvious frontal eddy activities within about 100 km with a mean speed about 0.076  相似文献   

20.
The Taiwan Warm Current Deep Water (or the East China Sea Upper Layer Water, or the East China Sea Subsurface Water) lying in the deep and bottom layers off the coast of Fujian-Zhejiang is one of the main watermasses in the continental shelf region of the western East China Sea. The hydrographical conditions and the fishery productions in this region are affected remarkably by the decline and growth of the Taiwan Warm Current Deep Water. Although the temperature, salinity and origin of the Taiwan Warm Current Deep Water have been investigated[3] by oceanographers the world over, there are up to now few papers published on its characteristics of ariations (seasonal and multiyear variations). Understanding of this problem will be helpful to further characterize this watermass. For this reason, in this paper, section 28°N representing the middle Taiwan Warm Current Deep Water and section 30°N representing the northern Taiwan Warm Current Deep Water are taken for examples, and the method of similar coefficient is used for analysis of this problem. Contribution No. 861 from the Institute of Oceanology, Academia Sinica. This paper was published in Chinese inOceanologia et Limnologia, Sinica 14 (4): 357–366.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号